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Abstract: This work proposes a novel connectivity-based localization algorithm, well suitable for large-scale1

sensor networks with complex shapes and non-uniform nodal distribution. In contrast to current state-of-art2

connectivity-based localization methods, the proposed algorithm is highly scalable with linear computation and3

communication costs with respect to the size of the network, and fully distributed where each node only needs the4

information of its neighbors without cumbersome partitioning and merging process. The algorithm is theoretically5

guaranteed and numerically stable. Moreover, the algorithm can be readily extended to localization of networks6

with one-hop transmission range distance measurement, and the propagation of the measurement error at one sensor7

node is limited within a small area of the network around the node. Extensive simulations and comparison with8

other methods under various representative network settings are carried out, showing superior performance of the9

proposed algorithm.10

Keywords: Localization; large-scale sensor network; scalable; fully distributed11

1. Introduction12

Geographic location information is imperative to a variety of applications in wireless sensor networks, ranging13

from position-aware sensing to distributed data storage and processing, geographic routing, and nodal deployment.14

While global navigation satellite systems (such as GPS) have been widely employed for localization, integrating15

a GPS receiver in every sensor of an entire large-scale sensor network is unrealistic. Moreover, some application16

scenarios prohibit the reception of satellite signals by part or all of the sensors, rendering it impossible to solely rely17

on global navigation systems.18

Even for those ranging information based localization schemes, extra equipments installed to measure the19

distance or the angle between nodes, can also lead to a dramatically increase of network cost. To this end, many20

interesting approaches have been proposed for localization with mere connectivity information. Each node only21

knows which nodes are nearby within its one-hop communication radio range, but does not know how far away and22

what direction its neighbors are.23

1.1. Challenges of Previous Approaches24

Previous localization methods with mere connectivity have mainly focused on dimension reduction of25

multidimensional data sets based on the input distance matrix, which is approximated by hop counts between26
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each possible pair of nodes. The two major methods, multi-dimensional scaling (MDS) based [1–3] and neural27

network based [4,5] achieve the highest localization accuracy and yield coordinates of sensor nodes that preserve the28

distance matrix between the data points of the input space and the output space (i.e., a 2D plane) as much as possible.29

One of the major problems for MDS based methods is their low scalability. The time complexity for obtaining30

the distance matrix is O(nm) where n and m are the number of vertices and edges, respectively. The time complexity31

to compute the two largest eigenvalues and the corresponding eigenvectors is O(n2). With the increase of a network32

size n, the computational cost is prohibitive. Another issue is that they are inherently centralized. As a sensor network33

grows large in size, centralized computation has a fundamental bottleneck at nodes near the sink as each sensor34

node has a limited power and computation capability. So a distributed algorithm is highly preferred especially for a35

large-scale network. Different algorithms have been proposed to overcome these disadvantages. A basic approach is36

to partition the network to many subnetworks, and compute the localization of each subnetwork, and then merge37

these subnetworks together. This method requires delicate strategies and great caution in the merging stage.38

For neural network based methods, stability is their major problem due to the non-convex shape of their39

minimized energy. Although several approaches have been proposed to increase the possibility to escape from local40

minima of the minimized energy, the selection of initial values are still crucial for the final localization results [5].41

1.2. Our Approach42

We propose a novel localization algorithm which overcomes the major difficulties of conventional MDS and43

neural network based methods. We first explain the basic idea using a smooth and planar surface, and then transform44

it to sensor network localization.45

Let’s consider a smooth and planar surface. It is flat everywhere, so the Gaussian curvature, which measures46

how much a surface is curved and can be computed based on local distance information, equals to zero at every point47

of the surface. Assume we only have approximated distance information instead of the exact one of the surface. Such48

approximated distance generates non-zero Gaussian curvatures, which induce a curved surface instead of a planar one.49

We can distort the approximated distance such that the deformed one generates zero Gaussian curvatures for every50

point that guarantee a surface can be embedded in plane. The tool we apply to distort the approximated distance is51

Ricci flow [6].52

Given a large-scale sensor network deployed on plane, we can extract a triangular mesh structure from the53

connectivity graph of the network such that the mesh structure approximates well the geographic structure of the54

sensor network. Specifically, we uniformly select a set of landmark nodes such that any two neighboring landmarks55

are a fixed K hops away. Landmarks initiate local flooding to build a landmark-based Voronoi diagram of the network56

such that any non-landmark node is within k hops of some landmark. We can build a triangulation based on the dual57

of the landmark-based Voronoi diagram. Each vertex of the triangulation is a landmark node. Each edge connecting58

two neighboring vertices is a shortest path between the two neighboring landmark nodes.59

We can consider the triangular mesh as a discrete approximation of a smooth and planar surface. The local60

distance information of the mesh is discrete and represented by the approximated edge lengths (i.e., a fixed K-hop).61

The Gaussian curvature of the mesh is also discrete and can be computed based on the approximated edge lengths.62

Discrete Ricci flow deforms the length of each edge such that the deformed edge lengths induce zero Gaussian63

curvature at each vertex of the mesh. The deformed edge lengths guarantee the triangular mesh can be embedded in64

plane. We call such edge lengths a flat metric. However, there exist infinite number of flat metrics. Each one of them65

can isometrically embed the triangular network into plane. The key is which one of those flat metrics introduces the66

minimal deformation to the initially approximated edge length (i.e., achieves the minimal localization error). We67

prove that we can obtain an optimal flat metric with the least deformation from an initially non-flat one by controlling68

the condition of boundary vertices. The theorem is the foundation of our paper. Computing the optimal flat metric is69

the key step of our algorithms. Based on the computed optimal flat metric, localization (i.e., isometric embedding of70

the network to plane) is straightforward.71
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In our algorithm, all the involved computations for each node only require information from nodes within its72

one-hop transmission range, therefore it is fully distributed without cumbersome cutting and merging process. The73

proposed method is numerically stable, free of the choice of initial values and local minima with theoretical guarantee.74

The computational cost and communication cost are both linear to the size of the network, so the method is scalable,75

suitable for large ad-hoc networks with thousands of highly resource-constrained sensor nodes (processor, memory,76

and power) that have limited communication radio range.77

Although accurate distance measurement is too expensive, or even impossible for a network with thousands78

or even millions of sensors, it is possible for a node to approximate its distance to nearby nodes within one-hop79

transmission range in practice. If the range distance information is available, even with unavoidable measurement80

errors, our algorithm can incorporate the approximated one-hop distance information to further improve the81

localization accuracy. The impact of the measurement error at one node on the localization of other nodes of82

the network decreases dramatically in terms of the distance between them. This limited error propagation also83

contributes to the high scalability and localization accuracy of our proposed algorithms.84

The rest of this paper is organized as follows. Section 2 gives a brief review of related works. Section 385

introduces the theoretic background of the proposed optimal flat metric based localization algorithms. Section 486

describes the localization algorithm with mere connectivity information step by step. Section 5 discusses the87

localization algorithm with one-hop distance measurement. Section 6 presents the simulation results under various88

scenarios and different network topologies. Extensive comparison of the proposed localization algorithm with89

previous methods are also conducted in Section 6. Section 7 concludes the paper and gives future directions.90

2. Related Works91

With merely connectivity information available, three major techniques are employed in current state-of-the-art92

localization schemes: multi-dimensional scaling (MDS), neural networks, and graph embedding.93

MDS is a non-linear dimension reduction and data projection technique that transforms distance matrix into94

a geometric embedding (e.g., a planar embedding for 2D sensor network localization). MDS-based localization is95

originally proposed in [1]. It constructs a proximity matrix based on the shortest path distance (approximated by96

hop counts) between all pairs of nodes in the network. The singular value decomposition (SVD) is employed to97

produce the coordinates matrix that minimizes the least square distance error. Finally, it retains the first 2 (or 3)98

largest eigenvalues and eigenvectors as 2D (or 3D) coordinates. Subsequent improvements on MDS are made by99

dividing the graph into patches to enable distributed calculation [2,3]. In addition [7] proposes to apply SVD to the100

matrix based on a set of beacon nodes only and thus reduces complexity. A similar idea is adopted in [8], with the101

simplex method (instead of SVD) for error minimization.102

The second method is based on neural networks [4,5], where non-linear mapping techniques and neural network103

models such as self-organizing map (SOM) are employed for dimension reduction of multidimensional data sets,104

yielding coordinates of sensor nodes that preserve the distances (also approximated by hop counts) between the data105

points of the input space and the output space (i.e., a 2D plane) as much as possible.106

The localization algorithms based on rigid graph embedding theory [9–11] aim to create a well-spread and107

fold-free graph that resembles the given network. They focus on finding a globally rigid graph which can be embedded108

without ambiguity in plane. While with mere globally rigid structure, like a topological disk triangulation in [9], there109

exist infinite number of flat metrics that induce different planar embedding as long as the total Gaussian curvatures110

satisfy the discrete Gauss-Bonnet Theorem as discussed in Sec. 3. A brute-force way is applied to find one planar111

embedding of the extracted global structure, which in general can not be easily guaranteed. So compared with112

MDS and neural network-based approaches, the graph rigidity-based methods exhibit lower localization accuracy in113

general.114

A special graph embedding problem is unit disk graph embedding. Assuming the transmission model of a115

sensor network is unit disk graph (UDG) model with transmission range 1; there exists an edge between two nodes in116
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the connectivity graph of the network if and only if the Euclidean distance between the two nodes is no more than 1.117

Embedding such a unit disk graph into plane is NP-hard. Kuhn et al. in [12] proved a non-approximability result for118

the problem of embedding a given unit disk graph. Later, Moscibroda et al. in [13] introduced a polynomial algorithm119

to embed a unit disk graph into plane. The quality of the embedding, measured as the ratio of the maximum edge120

length to the minimum distance between two non-neighboring nodes, is O(log2.5 n
√

log logn) with n the size of the121

network. Note that the unit disk graph embedding achieves a different goal compared with the discussed localization122

algorithms. Given a network modeled by UDG, a unit disk graph embedding minimizes the violation of the unit123

disk constraints, but not necessarily the localization error that is in general measured as the ratio of the average node124

distance error and the average one-hop communication radio range.125

Localization with noisy distance and angle information is discussed and distributed localization methods are126

proposed in [14]. If only distance measurement information is available, both the multi-dimensional scaling (MDS)127

and neural network based methods are flexible to incorporate distance information to improve localization accuracy.128

Previous research assumes a given network has not only a small fraction of sensors with a priori coordinate knowledge129

but also distance measurement between pairs of nodes with long distances. One representative work is the distributed130

weighted-multidimensional scaling (dwMDS) algorithm proposed to give more weight on range measurements that131

are believed to be more accurate and select neighbors adaptively [15]. While in this paper, we limit the discussion to132

localization based on distance measurement within one-hop communication radio range to limit the communication133

cost of a large-scale sensor network.134

3. Optimal Flat Metric135

Before giving the details of the proposed optimal flat metric based localization algorithms in Sec. 4 and136

Sec. 5, we introduce briefly the concepts of metric and Gaussian curvature in Sec. 3.1, which provide the necessary137

background knowledge of the algorithms. Specifically, we introduce discrete surface Ricci flow in Sec. 3.2, a tool we138

apply to compute the optimal flat metric that induces a planar localization of a given sensor network with a minimal139

localization error. We then discuss the condition to find the optimal flat metric and give the Optimal Flat Metric140

Theorem that serves as the foundation of the proposed algorithms in Sec. 3.3. Table 1 summaries the symbols we use141

in the paper.142

3.1. Discrete Metric and Gaussian Curvature143

In discrete setting, we denote M = (V ,E,F) a triangulated surface (or mesh in short) embedded in R3, consisting144

of vertices (V ), edges (E), and triangle faces (F). Specifically, we denote vi ∈V a vertex with id i; ei j ∈ E an edge145

with two ending vertices vi and v j; fi jk ∈ F a triangle face with vertices vi, v j, and vk.146

Definition 1 (Discrete Metric). A discrete metric on M is a function l : E → R+ on the set of edges, assigning to147

each edge ei j ∈ E a positive number li j such that all triangles satisfy the triangle inequalities fi jk ∈ F: li j + l jk > lki.148

Edge lengths of M define a discrete metric. If M can be embedded in the Euclidean plane R2, we call its metric149

a flat metric.150

Definition 2 (Discrete Gaussian Curvature). Denote θ
jk
i the corner angle attached to Vertex vi in Face fi jk, and ∂M

the boundary of M, the discrete Gaussian curvature Ki on vi ∈V is defined as the angle deficit at vi:

Ki =

{
2π−∑ fi jk∈F θ

i j
i , vi 6∈ ∂M,

π−∑ fi jk∈F θ
jk
i , vi ∈ ∂M.

(1)
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Figure 1. Circle Packing Metric. (a) Flat circle packing metric on a triangular mesh (b) Circle packing metric on a
triangle.

We can compute corner angles directly from edge lengths, so the discrete metric solely determines the discrete151

Gaussian curvature of M. If M can be embedded in plane, it is intuitive and also obvious from Eqn. 1 that the flat152

metric induces zero Gaussian curvatures for all non-boundary vertices.153

The well-known Gauss-Bonnet Theorem says that the total Gaussian curvature of M is solely determined by its154

topology:155

Theorem 1 (Discrete Gauss-Bonnet Theorem). Denote b the number of boundaries. Denote χ(M) the Euler
characteristic number of M and χ(M) = 2−b. The total Gaussian curvature of M is a topological invariant. It holds
as follows:

∑
vi∈V

Ki = 2πχ(M). (2)

3.2. Discrete Surface Ricci Flow156

Ricci flow was first introduced by Richard Hamilton in his seminal work [6] in 1982. Suppose S is a smooth
surface with a Riemannian metric g. The Ricci flow deforms the metric g(t) according to the Gaussian curvature
K(t) (induced by itself), where t is the time parameter

dgi j(t)
dt

= −2K(t)gi j(t). (3)

If we replace the metric in Eqn. 3 with g(t) = e2u(t)g(0), then the Ricci flow can be simplified as

du(t)
dt

= −2K(t), (4)

which states that the metric should change according to the curvature.157

The Ricci flow can be easily modified to compute a metric with a user-defined curvature K̄ as the following,

du(t)
dt

= 2(K̄−K). (5)

With this modification, the solution metric g(∞) can be computed, which induces the curvature K̄.158

Conformal metric deformation preserves infinitesimal circles and the intersection angles among them. Ricci159

flow defined in Eqn.3 is proved in [27,28] convergent. The final metric is conformal to the original one. Moreover, at160

any time t, the metric g(t) is conformal to the original one g(0).161
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Later, Chow and Luo [23] proved a general existence and convergence theorem for discrete Ricci flow on162

surfaces.163

To briefly introduce the concept of discrete surface Ricci flow, we start from the concept of circle packing metric164

given by Thurston in [24] as shown in Fig. 1. We assign each vi a circle and denote γi its radius. The radius function165

is Γ : V → R+. The two circles at vi and v j of edge ei j intersect with an acute angle, denoted as φi j and called the166

weight of ei j. The edge weight function is then Φ : E→ [0, π

2 ].167

The length li j of ei j can be computed from the circle radii of its two ending vertices γi,γ j and its weight φi j from
the cosine law:

li j
2 = γi

2 + γ j
2 + 2γiγ j cosφi j. (6)

Definition 3 (Circle Packing Metric). A circle packing metric of a mesh M includes the circle radius function and168

the edge weight function.169

Given a discrete surface, we use circles with finite radii to approximate the infinitesimal circles; conformal170

deformation of a circle packing metric to approximate continuous metric deformation. Since two circle packing171

metrics (Γ1,Φ1) and (Γ2,Φ2) on the same mesh are conformally equivalent if Φ1 ≡Φ2, a conformal deformation of172

a circle packing metric only modifies the vertex radii and preserves the intersection angles on the edges.173

Denote ui = logγi, K̄i and Ki the target and current Gaussian curvatures of vi respectively, and t the time. The
discrete Ricci flow is defined as follows:

dui(t)
dt

= (K̄i−Ki(t)). (7)

Discrete Ricci flow continuously deforms the circle packing metric according to the difference between the174

current and target Gaussian curvatures in a heat-like diffusion process. Convergence of discrete surface Ricci flow is175

proved in [23]. The final circle packing metric induces the one that satisfies the target Gaussian curvatures.176

Discrete Ricci flow can be formulated in a variational setting, namely, it is a negative gradient flow of a special
energy form. We define a mesh M with edge weight Φ a weighted mesh, denote as (M,Φ). We represent a circle
packing metric on (M,Φ) by a vector u = (u1,u2, · · · ,un)T , and Gaussian curvatures at vertices by the curvature
vector K = (K1,K2, · · · ,Kn)T , where n is the number of verices. For two arbitrary vertices vi and v j, the following
symmetric relation holds:

∂Ki

∂u j
=

∂K j

∂ui
.

Let ω = ∑
n
i=1 Kidui be a differential one-form [29]. The symmetric relation guarantees that the one-form is closed

(curl free) in the metric space.

dω = ∑
i, j
(

∂Ki

∂u j
−

∂K j

∂ui
)dui∧du j = 0.

177

By Stokes theorem, the following integration is path independent and called discrete Ricci energy.

f (u) =
∫ u

u0

n

∑
i=1

(K̄i−Ki)dui, (8)

where u0 is an initial circle packing metric that induces the surface original metric. The discrete Ricci energy has178

been proven to be strictly convex in [23]. The global minimum uniquely exists, corresponding to the desired metric ū179

that induces user-defined curvature k̄. The discrete Ricci flow is a negative gradient flow of the discrete Ricci energy,180

converging to the global minimum.181

Furthermore, the speed of convergence can be estimated by the following formula [23]:

|Ki(t)− K̄i|< c1e−c2t ,c1,c2 > 0,
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where c1 and c2 are constant, namely the convergence is exponentially fast.182

3.3. Optimal Flat Metric183

Analytically, the distortion of the metric at each vertex is given by ui. This motivates us to define the total
distortion energy as

E(K) =
∫ K̄

K0

n

∑
i=1

uidKi,

where K and K0 represent the set of target and initial vertex Gaussian curvatures, respectively. The integration is184

along an arbitrary path from K0 to the target curvature K. This energy is the Legendre dual to the Ricci energy given185

in Eqn. 8. Therefore it is also convex, and it has a unique global minimum for a given K.186

All the possible u’s form the admissible metric space, and all the possible K’s form the admissible curvature187

space. According to the Gauss-Bonnet theory (Eq. 2), the total Gaussian curvatures of M must be 2πχ(M). A188

curvature vector K is admissible if there exists a metric vector u on M, which induces K.189

Define

Ω = {K |
n

∑
i=1

Ki = 2πχ(M) and Ki = 0 ∀vi 6∈ ∂M}

the set of K’s such that the sum of Gaussian curvatures of vertices satisfies the Gauss-Bonnet Theorem and the190

Gaussian curvature of all interior vertices is zero. Ω induces the set of all possible flat metrics of M.191

We formulate our problem as:
min
K∈Ω

E(K). (9)

Among all possible flat metrics of M induced from the set of K’s, we want to find the one introducing the least192

distortion from the initially estimated curved metric of M.193

Theorem 2 (Optimal Flat Metric Theorem). The solution to the optimization problem 9 is unique, and satisfies

u j = const,∀v j ∈ ∂M. (10)

Proof. The distortion energy E(K) is convex. The domain Ω is a linear subspace of the original domain {K|∑i Ki =194

2πχ(M)}. Therefore the restriction of E(K) on Ω is still convex, it has a unique global optimum at an interior195

point. The gradient of the energy is ∇E(K) = (u1,u2, · · · ,un). At the optimal point, the gradient is orthogonal to Ω.196

Assume vi ∈ ∂M,1≤ i≤ m, then the normal vector to Ω is given by (1,1, · · ·1,0, · · · ,0). Therefore the gradient is197

along the normal vector. So Eqn. 10 holds.198

We set the constant in Equation 10 as 1. We also set the following two conditions for the target metric of199

discrete Ricci flow: set the target Gaussian curvatures of all interior vertices to zero so that the final metric is a flat200

one; deform only the metrics of interior vertices during the process of deforming the estimated metric so that the201

final flat metric is an optimal flat one. We apply discrete Ricci flow to find the target metric. Since discrete Ricci202

flow is proved in [23] negative gradient flow of a convex shape energy, it is guaranteed to find the optimal flat metric203

regardless of the step length or initial values.204

4. Localization with Mere Connectivity205

We explain the proposed localization algorithm with mere network connectivity in this section. Specifically,206

the input of algorithm is a connectivity graph of a network. Vertices represent the sensor nodes. Edges represent207

the communication links. Each sensor node knows a set of neighboring nodes within its one-hop communication208

range without the knowledge of distance or angle. The output of algorithm is a set of planar coordinates of the209

whole network nodes that may differ the set of GPS positions of the network a scaling, translation, and rotation. We210
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Figure 2. (a) Dangling vertex: Vertex v1 belongs to two disconnected boundaries with boundary edges marked with
red color. After vertex split, the two boundaries are merged to one. Now a boundary vertex belongs to one boundary
only. (b) Dangling edge: Edge e01 belongs to two disconnected boundaries with boundary edges marked with red
color. After edge removal, the two boundaries are merged to one. Now a boundary edge belongs to one boundary and
is adjacent with one triangle.

first extract a triangular mesh from the connectivity graph and then apply discrete surface Ricci flow to compute211

an optimal flat metric as introduced in Sec. 4.1. We then isometric embed the network to 2D plane based on the212

computed flat metric in Sec. 4.2. We analyze the time complexity and communication cost of the algorithm in Sec. 4.3213

and provide discussions in Sec. 4.4.214

4.1. Computing Optimal Flat Metric with Mere Connectivity215

Given a large-scale sensor network with mere connectivity, we apply a simple distributed scheme as discussed216

in [16–18] to uniformly select a set of landmark nodes. Any two neighboring landmarks are a fixed k hops away (k = 4217

in our tests) in the connectivity graph of the network. Landmarks initiate local flooding to build a landmark-based218

Voronoi diagram of the network such that any non-landmark node is within k hops of some landmark. The adjacency219

of these Voronoi cells give rise to a dual combinatorial Delaunay complex (CDC). CDC is not necessarily planar220

because there may exist some crossing edges. We then apply the method introduced in [18] to remove crossing edges221

from the CDC. Vertices of the resulting planar graph are the set of landmarks. An edge connecting two neighboring222

vertices is a shortest path between the two landmarks in the network. A face of the planar graph is an n-polygon223

with n≤ 3. We can simply consider all n-polygons with n > 3 as inner holes of the network. In practice, we add one224

virtual edge (i.e., a shortest path) connecting a pair of non-neighboring vertices of a 4-polygon. A 4-polygon is then225

split to two triangles.226

A landmark node-based graph may exist dangling vertices or edges as shown in Figure 2. A dangling vertex is a227

vertex belonging to more than one boundaries. We remove dangling vertices by vertex split operation. As shown in228

Figure 2 (a), v1 is connected with boundary vertices v2, v4, v5, and v7 that belong to two disconnected boundaries229

with boundary edges marked with red color. We find a sensor node closest to v1 and mark it as a landmark node too.230

Denote the newly added landmark as v′1. v1 is connected with v5 and v7, and v′1 is connected with v2 and v4. The231

previously disconnected boundaries are merged to one. Similarly, a dangling edge is an edge belonging to more than232

one boundaries. We remove dangling edges by edge removal operation. As shown in Figure 2 (b), e01 belongs to two233

disconnected boundaries. We remove this edge such that the previously disconnected boundaries are merged to one.234

The graph now is a triangular mesh with each face a triangle, a boundary vertex or edge belonging to exactly one235

boundary.236
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Denote the constructed triangular mesh M, we assume each edge of M with unit edge length. We then construct237

an initial circle packing metric (Γ0,Φ) of M. We assign each vertex vi a circle with initial circle radius γi = 1, so238

initially ui = logγi = 0. The intersection angle of the two unit circles at vi and v j is the edge weight of ei j. Since a239

boundary edge of M is adjacent with only one triangle face, we can easily detect them and then mark their vertices.240

For those non-marked vertices (i.e., non-boundary vertices), we set their target Gaussian curvatures K̄ to zero.241

In each iteration of discrete Ricci flow, only non-marked vertices are involved. Specifically, each non-marked
vi collects the u values from its direct neighbors and updates its adjacent edge length with li j = e(ui+u j). For each
triangle fi jk adjacent with vi, vi can easily compute the corner angle θ

jk
i based on the inverse cos law:

θ
jk
i = cos−1 l2

ki + l2
i j− l2

jk

2l2
kil

2
i j

.

Then vi computes its current discrete Gaussian curvature Ki as the excess of the total angle sum at vi as Eqn. 1. If for242

every non-marked vi, the difference between its target Gaussian curvature K̄i that is set to zero and current Gaussian243

curvature Ki is less than a threshold (we set it to 1×10−5 in our tests), the discrete Ricci flow converges. Otherwise,244

each non-marked vi updates its ui: ui = ui + δ(K̄i−Ki), where δ is the step length (we set it to 0.1 in our tests).245

When the algorithm stops, all the interior vertices have zero Gaussian curvature, which induces a flat metric246

of M. Since in each step of the algorithm, there is always no deformation of circle radii for boundary vertices (e.g.,247

ui−u0
i = 0,vi ∈ ∂M). According to Theorem 1, the computed flat metric introduces the least distortion to the initially248

estimated metric.249

4.2. Isometric Embedding250

Isometric embedding is a propagation process, starting from one vertex, embedding the whole triangular mesh251

into plane with computed optimal flat metric (i.e., edge length) preserved. For simplicity, we let the vertex with252

the smallest ID (denoted as v1) initiate the embedding process. Its planar coordinates are set to (0,0), denoted253

as uv(v1). Then it arbitrarily selects one of its direct neighbors, e.g., v j, and sets the coordinates of v j to (0, li j).254

For vertex vk, adjacent to both vi and v j, it calculates the intersection points of the two circles with centers at255

vi and v j, and radii of lik and l jk, respectively. Then, v j chooses one of the intersection points that satisfies256

(uv(v j)−uv(vi))× (uv(vk)−uv(vi)) > 0 as the coordinates of vk. The procedure continues until all vertices of M257

have their planar coordinates.258

If a triangular network has multiple boundaries (e.g., inner holes), we need to slice holes open to change the259

topology of the triangular network to a disk before embedding. For each boundary, an initiator with the smallest260

ID is elected. Since a boundary forms a closed loop, a boundary node always has exactly two boundary neighbors.261

The initiator will send out a message to a randomly chosen one of its boundary neighbors. The message contains262

a counter recording the size of the boundary that is initialized to one. When the neighbor receives the message, it263

will increase the counter by one and then forward the message to its boundary neighbor that is not the sender of the264

message. Eventually, the message will come back to the initiator. The initiator will then advertise the size of the265

boundary via a simple flooding on the triangular network. As a result, each initiator learns the sizes of boundaries of266

the network. Denote Bi a boundary and B0 the longest one. For each Bi (i > 0), through a local flooding, its initiator267

finds a shortest path Li to B0. Then holes are “sliced” open along the set of shortest paths (L1,L2, ...), where each268

vertex on Li is split to two virtual vertices with one on each side. Such spliced vertex will have two sets of coordinates269

after embedding and it will use the average as its planar coordinates.270

For planar embedding of non-landmark nodes, each node ni finds its three nearest landmarks, denoted as v1,
v2, v3 with planar coordinates (x1,y1),(x2,y2), and (x3,y3) respectively. Let d1, d2, and d3 be the shortest distances
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(hop counts) of ni to v1, v2, v3 respectively. Then ni computes its planar coordinates (xi,yi) simply by minimizing the
mean square error among the distances:

3

∑
j=1

(
√
(xi− x j)2 +(yi− y j)2−d j)

2. (11)

It is worth to note that the step of the isometric embedding of the proposed approach is fundamentally different271

with graph rigidity based localization methods [9]. For an extracted global planar structure, our algorithm computes272

first the optimal flat metric with discrete Gaussian curvature equals to zero for all interior vertices, which guarantees273

that the embedding process can be determined at each step for every single edge. While in [9], the extracted structure274

is embedded to plane by minimizing a least square energy which can’t guarantee a global planar embedding and the275

embedded network can still curve around and self intersect.276

4.3. Time Complexity and Communication Cost277

The algorithm of extracting a triangular structure M from a network is completely local, so both its time278

complexity and communication cost are linear to the size of the network, denoted as n (the number of sensor nodes).279

We then apply discrete Ricci flow to compute the optimal flat metric of M. The time complexity (the number of280

iterations) of discrete Ricci flow is given by −C logε

δ
, where C is a constant, ε is a threshold of curvature error, and δ281

is the step length of each iteration [23]. Denote m the size of M. Since each vertex only needs to exchange u values282

with its direct neighbors, the communication cost is given by O(−C logε

δ
gm), where g is the average vertex degree of283

M. Note that m << n for a general network, and g is six for a triangular mesh.284

During the isometric embedding step, two rounds of flooding are involved to slice holes of M open with285

communication cost O(m). The embedding of M is a propagation process, with both the time complexity and286

communication cost O(m).287

4.4. Discussions288

As indicated in [18], a large k to select landmarks decreases the number of crossing edges of a CDC. In practice,289

we prefer a small k such that the extracted planar graph can resemble the geometry of the underlying domain of290

a network better. In our simulations, k = 4 introduces only very few crossing edges on the CDCs of the testing291

networks. For the resulting non-triangular face of a planar graph with the removal of the detected crossing edges, we292

add virtual edges (i.e., shortest paths) connecting pair of non-neighboring vertices of a non-triangular face to split it293

to triangle faces.294

We apply the method introduced in [18] to remove crossing edges of a CDC. The method is proved to produce a295

planar graph if the transmission model of a given network is either unit disk graph (UDG) or quasi-unit disk graph296

(Quasi-UDG). In Sec. 6.2, we apply the same network to evaluate the performance of the proposed localization297

method with mere connectivity under different transmission models including UDG model, Quasi-UDG model,298

Log-Norm model, and Probability model. We assume sensor nodes of the network have identical transmission range.299

Legal triangular meshes can still be generated for the network with different transmission models, although the300

localization accuracy is lower for the network with Log-Norm model or Probability model.301

5. Localization with Distance Measurement302

It is possible for some network to estimate the Euclidean distance between adjacent sensor nodes that are303

within the one-hop transmission range of each other. Two basic approaches are Received Signal Strength (RSS)304

and Time-Differential-of-Arrival (TDoA). RSS measures the power of the signal at the receiver and calculates the305

distance according to the propagation loss model. TDoA measures the differential propagation time of the received306

signal to determine the distance. Multiple measurements can be averaged to obtain more accurate results. RSS is307
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Figure 3. Short edge collapse: the operation of short edge collapse combines va and vb to va and removes faces fabc

and fabd .

easier to implement, while TDoA may achieve higher accuracy, but in general a measurement error is unavoidable.308

In our previous experiments [19], we let each sensor periodically broadcasts a beacon message containing its node309

ID to its neighbors in a sensor network formed with Crossbow motes. Based on received beacon messages, a node310

builds a neighbor list with the RSSI (received signal strength indicator) of corresponding links. The node applies311

RSSI to estimate the length of links by looking up an RSSI-distance table established by experimental training data.312

Our preliminary tests show that, under low transmission power, such estimation has an error rate around 20%.313

When distance information is available, we extend the proposed localization algorithm to incorporate it to314

achieve higher localization accuracy than with mere network connectivity. We give the implementation details of315

the algorithm in Sec. 5.1 and 5.2. We then discuss time complexity and communication cost of the algorithm in316

Sec. 5.3. In Sec. 5.4, we show how distance measurement error at a single node of a network affects the localization317

performance of the whole network.318

5.1. Constructing Triangulation319

Given a sensor network with distance measurement within one-hop transmission range, we apply our previously320

proposed algorithm [21] to generate a refined triangular mesh M such that vertices of M are the set of sensor nodes.321

An edge between two neighboring vertices indicates the communication link between the two sensors, and the edge322

length is the measured distance. The triangulation algorithm is distributed with no constraints on communication323

model.324

However such triangular mesh may have unavoidable skinny triangles especially when the node distribution is325

non-uniform. Note that a triangular mesh constructed based on mere network connectivity has all equilateral triangles326

because we assume a unit edge length for each edge and the assumption is independent of the node density and327

distribution. As discussed in our previous work [20], solving discrete surface Ricci flow can be considered as solving328

a linear equation of discrete Lapalce-Beltrami operator defined on a triangular mesh. Skinny triangles increase the329

condition number of the linear equation, so a triangular mesh M with many skinny triangles may affect the numerical330

stability and the convergence speed of surface Ricci flow. So we need the following post-processing on a constructed331

triangular mesh with skinny triangles.332

For each fi jk, we compute a ratio between the longest and shortest edge lengths of fi jk and denote it as r fi jk .333

Triangles with extremely high r f represent those skinny ones. To remove them, we define one operation, called short334

edge collapse as illustrated in Fig. 3. fabc and fabd have very high r f values. Both share the short edge eab. The335

short edge collapse operation combines the two vertices va and vb to one of them and removes faces fabc and fabd . In336

practice, we choose the vertex which results in smaller r f values than the other one after short edge collapse. As337

in the example shown in Fig. 3, va is chosen as the combined vertex. If the operation of one short edge collapse338

generates a larger r f than previous ones, we won’t collapse the edge.339
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(a) (b)

Figure 4. (a) A triangular mesh with too many skinny triangles is constructed from a network based on algorithm
proposed in [21]. Its maximal r f value is close to 27. (b) After a series of short edge collapse operations, the maximal
r f value of the triangular mesh is less than 4.

We first set a threshold of r f . The algorithm computes the r f value for each triangle, and then sort these r f340

values and put them into a queue. Each time the algorithm picks one triangle with currently the highest r f value and341

apply the short edge collapse operation. The algorithm stops when the highest r f value is below the threshold. Fig. 4342

gives one example. A triangular mesh constructed from a network with extremely non-uniform node distribution has343

a maximal r f value close to 27, as shown in Fig. 4 (a). After a series of short edge collapse operations, its maximal r f344

value is below 4, as shown in Fig. 4 (b).345

5.2. Computing Optimal Flat Metric with Distance Measurement346

We construct an initial circle packing metric (Γ0,Φ) of M from provided distance measurements with the347

following procedures:348

1. For each corner θ
jk
i attached to Vertex vi in Face fi jk, we compute a corner radius γ

jk
i for vi with respect to fi jk:349

γ
jk
i =

lki + li j− l jk

2
,

where li j, l jk, lki represent the distance measurements of edges ei j,e jk,eki, respectively.350

2. For each vi, we compute its initial circle radius γi by averaging its attached corner radii computed from the351

previous step:352

γi =
1
m ∑

fi jk∈F
γ

jk
i ,

where m is the number of the adjacent faces to vi (i.e., the vertex degree of vi).353

3. For each edge ei j, we compute its edge weight φi j (the intersection angle of the two circles centered at vi and354

v j) based on the Euclidean cosine law:355

cosφi j =
γ2

i + γ2
j − l2

i j

2γiγ j
.

With the constructed initial circle packing metric (Γ0,Φ), we apply the algorithm introduced in Sec. 4.1 to356

compute the optimal flat metric, and then the isometric embedding algorithm introduced in Sec. 4.2 to embed the357

given network to a plane.358
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5.3. Time Complexity and Communication Cost359

To incorporate distance information into the localization algorithm introduced in Sec. 4, we need to spend some360

extra costs.361

The method to initialize circle packing metric is local. The time complexity and communication cost are both362

linear to the size of the network n, the number of sensor nodes.363

The algorithm to extract a triangulation from the network connectivity graph based on distance measurement is364

also local and fully distributed. Both the time complexity and communication cost are linear to n [21].365

The time complexity and communication cost of post-processing a triangulation are bounded by the number366

of edges of the triangular mesh. Denote vn the number of vertices, en the number of edges, and fn the number of367

triangle faces of a triangular mesh M, the well known Euler-Poincaré theorem relates vn, en, and fn [22].368

Theorem 3 (Euler-Poincaré Theorem). Denote b the number of boundaries of a triangular mesh M. The following
equation holds:

vn− en + fn = 2−b.1 (12)

Based on Euler-Poincaré theorem, the following theorem shows that en ≈ 3vn.369

Theorem 4. Denote b the number of boundaries of a triangular mesh M, vn the number of vertices, and en the
number of edges. The following equation holds:

en = 3vn +(3b−6). (13)

Proof. Denote fn the number of triangle faces of M, e 6∈∂M the number of non-boundary edges, and e∈∂M the number
of boundary edges. Considering the two facts that each non-boundary edge is shared by two triangle faces and each
triangle face has three edges, the following equation holds:

2e6∈∂M + e∈∂M = 3 fn,

which gives

fn =
2
3

en, (14)

by ignoring boundary edges if
e∈∂M << e 6∈∂M .

According to Euler-Poincaré Theorem 12, the following equation also holds:

vn− en + fn = 2−b. (15)

Plug Eqn. 14 into Eqn. 15, we have:

vn− en +
2
3

en = 2−b.

Then we have:
en = 3vn +(3b−6).

1 Note that we assume the number of handles of M is zero.
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370

So the time complexity and communication cost of post-processing a triangulation are O(n).371

5.4. Error Propagation372

If distance measurement error is introduced only by one single node, we show that the error propagation of the373

proposed localization algorithms decreases with the distance to the node.374

According to the discrete Ricci curvature theory, the differential discrete curvature dK and discrete scaling
factor du satisfies the discrete Poisson equation:

dK = ∆du,

where ∆ is the discrete Laplace-Beltrami operator.375

Specifically, suppose vi is an interior vertex, and v j is one of its neighboring vertices. fi jk and f jil are the two
faces adjacent to ei j. The power circle of fi jk is defined as a circle orthogonal to all three circles centered at vi,v j

and vk with radii γi, γ j, and γk respectively. Similarly, one can define the power circle of f jil . Denote di j the distance
between the two power circles, li j the length of ei j. For each ei j, we define a weight:

wi j =
di j

li j
.

Then we have

dKi =
g

∑
j=1

wi j(du j−dui),

where g is the vertex degree of vi.376

Suppose a small perturbation of the curvature happens at vi, modeled as δ(v− vi). Such perturbation is due377

to the measurement error of neighboring distances around vi. Then the influence of the perturbation to the entire378

network can be estimated by the Green’s function, G(v,vi), such that ∆G(v,vi) = δ(v− vi). Roughly speaking, the379

Green’s function on the plane is 1
2π

log 1
|v−vi| . Therefore, the influence of the perturbation at one node is Sublinear to380

others. The influence of wrong measurements at one node to others decreases proportionally with their distances.381

6. Simulations and Comparison382

We carry out extensive simulations under various scenarios to evaluate the performance of our algorithm383

on networks with different topologies and how the performance is affected by different factors such as node384

density, communication model (UDG, quasi-UDG, log-Norm model, and probability model), and non-uniform node385

distribution. We compare our algorithm with those state-of-the-art localization methods, including the centralized386

MDS approach (MDS-MAP) [1], the distributed MDS approach (MDS-MAP(P)) [2], the centralized (C-CCA) neural387

network, and the distributed (D-CCA) neural network approaches [5].388

We apply the proposed optimal flat metric based method to localize the landmark nodes (points marked with389

red in Figs. 5, 6, 7, and 8). Those non-landmark nodes (points marked with grey in Figs. 5, 6, 7, and 8) in the390

network find their 3 nearest landmarks and compute their own coordinates. We then compute the difference of each391

node-pair distances in the original and localized networks. We calculate the localization error as the ratio of the392

average difference of node-pair distances and the one-hop communication radio range.393

6.1. Networks with Variant Nodal Densities394

In general, connectivity based localization methods favor high nodal density, because hop counts approximates395

well the true shortest distance. Figs. 5 (a)-(d) gives a series of reversed C-shape networks with mere connectivity396
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Networks with variant nodal density: (a)-(d) the original network with increased nodal density; (e)-(h)
the localization results of our algorithm. All the networks share the same communication radio range and under
the same transmission model. We compute the difference of each node-pair distances in the original and localized
networks. Then we calculate the localization error as the ratio of the average difference of node-pair distances
and the one-hop communication radio range. Specifically, the average nodal degrees for networks shown in (a)-(d)
increase with d = 9.4,d = 12.6,d = 15.2,d = 18.5, respectively. The localization errors of networks shown in (a)-(d)
decrease with 0.514,0.322,0.28,0.246, respectively. Figures (e)-(h) show the corresponding localization results. The
localization error decreases with the increase of nodal density.
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information. All the networks have the same communication radio range and under the same transmission model,397

but the average nodal degree increases from 9 to 18. Figs. 5 (e)-(h) shows the localization results correspondingly.398

The localization error decreases from 0.514 to 0.246. The trend is clear that the localization error decreases with the399

increase of nodal density.400

6.2. Networks with Different Transmission Models401

We still apply the same reversed C-shape network to evaluate the performance of the proposed localization402

algorithm with mere connectivity under different transmission models, with average nodal degree d = 16.5 (under403

UDG model). For a network with identical communication radio range of sensor nodes, different transmission models404

induce different sets of landmarks because each node has different neighborhoods. We generate different triangular405

meshes accordingly. In our simulations, the transmission range of a UDG model is 1. Two nodes are definitely406

connected when their distance is less than 1. Under the Quasi-UDG model, two nodes are definitely connected when407

their distance is less than α = 0.75, definitely not connected when their distance is larger than 1, while they have a408

probability of ρ = 0.5 to be connected when the distance is between α and 1. Under the Log-Norm model [25], since409

the receiving power is log-normally distributed, we simplify it as when the distance between two nodes is larger than410

1, they are not connected; when the distance is less than 1, they have a probability P(d) to be connected, where d is411

the distance and P(d) satisfies the log-normal distribution with α = 2 and σ = 4. Under the Probability model, when412

the distance of two nodes are less then 1, they have a probability equal to a constant set to 0.65 to be connected. Fig. 6413

shows the localization results of the reversed C-shape network with mere connectivity under different transmission414

models.415

Among all the transmission models, UDG model achieves the smallest localization error.416

6.3. Networks with Non-uniform Nodal Distribution417

We also test the proposed optimal flat metric based method with mere connectivity on network with non-uniform418

node distribution. The nodal density of the reversed C-shape network shown in Fig. 7 (a) increases from the bottom419

to the top. Specifically, the nodal degree increases from 11.3 to 18.7. Fig. 7 (b) shows the localization result with a420

slightly higher localization error 0.46. The proposed algorithm can tolerate networks with a moderately non-uniform421

nodal distribution.422

6.4. Comparison with Other Methods on Networks With Mere Connectivity423

Fig. 8 lists a set of representative networks with various shapes and different topologies. These networks have424

only connectivity information available. For these networks, we only show the original coordinates of landmark425

nodes marked with red color. Grey points represent the computed coordinates of sensor nodes of the networks,426

including landmark and non-landmark nodes, after a least square alignment with the original networks. we associate427

each landmark node with a red line segment, starting from its original coordinates marked with red and ending at the428

computed coordinates marked with grey. Clearly, the length of the line segment indicates the localization error of that429

node. Overall, the more and the longer the red lines are, the worse the localization performance is.430

As can be observed in Figs. 8 a(1) and c(1), C-CCA and MDS-MAP both yield large distortions for nodes on431

the two branches. This is because the approximated distances based on hop counts among those nodes are much432

longer than their actual Euclidean distances due to the reversed C shape. On the contrary, MDS-MAP(P) and D-CCA433

compute local maps first, and then merge them to a global map. Since local maps are “smooth” and do not have434

large “tentacles” in general, the shortest paths are free of significant distortions. Therefore, both methods achieve435

better performance (i.e. less distortion and lower errors) than the centralized approaches for networks with irregular436

boundary conditions. This can be clearly seen in Figs. 8 b(1) and d(1). However, if a network has smooth boundary437

(e.g., Figs. 8 a(2)-e(2)), the shortest paths are not seriously distorted and thus the centralized schemes perform better438

since they utilize more constraints to localize the network nodes.439
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Networks with different transmission models: (a)-(d) the original networks with different transmission
models that result in different nodal degrees and constructed triangular meshes; (e)-(h) the embedding results of our
algorithm. All the networks have the same number of nodes and the same communication range. (a) UDG model
with transmission range 1, and localization error 0.25 in (e); (b) QUASI-UDG model with α = 0.75 and ρ = 0.5,
and localization error 0.34 in (f); (c) Log-Norm model with µ = 0.5 and ρ = 4, and localization error 0.42 in (g); (d)
Probability model with p = 0.65, and localization error 0.43 in (h).

(a) (b)

Figure 7. Network with non-uniform node distribution: (a) The original network with non-uniform node
distribution. The nodal degrees rang from 11.3 to 18.7. (b) The localization result of our algorithm with the
localization error 0.46.
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a(1) b(1) c(1) d(1) e(1)

a(2) b(2) c(2) d(2) e(2)

a(3) b(3) c(3) d(3) e(3)

a(4) b(4) c(4) d(4) e(4)

a(5) b(5) c(5) d(5) e(5)

Figure 8. Comparison with other methods on networks with mere connectivity. a(1)-a(5): C-CCA scheme; b(1)-b(5):
D-CCA scheme; c(1)-c(5): MDS-MAP scheme; d(1)-d(5): MDS-MAP(P) scheme; e(1)-e(5): Ricci scheme. A red
line segment is drawn for each node, starting from the real coordinates marked with red and ending at the computed
coordinates marked with grey.
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Figure 9. (a) Comparison of average localization errors of different methods on networks shown in Figs. 8 with mere
connectivity information: Network 1 shown in Fig. 8 a(1)-e(1), Network 2 shown in Fig. 8 a(2)-e(2), Network 3 shown
in Fig. 8 a(3)-e(3), Network 4 shown in Fig. 8 a(4)-e(4), and Network 5 shown in Fig. 8 a(5)-e(5). (b) The distribution
of connectivity-based localization errors on the reversed C-shape network with different approaches: C-CCA, D-CCA,
MDS-MAP, MDS-MAP(P), and Ricci.

For networks with holes, similarly as the reversed C-shape network, MDS-MAP(P) and D-CCA perform better440

(shown in Figs. 8 b(4) and d(4), b(5) and d(5)) compared with their centralized counterparts MDS-MAP and C-CCA441

(shown in Figs. 8 a(4) and c(4), a(5) and c(5)). But they have to pay the cost to merge different subnetworks together.442

The proposed optimal flat metric based approach, on the contrary, achieves the least overall localization errors443

in all simulated scenarios as demonstrated in Figs. 8 e(1), e(2), e(3), e(4) and e(5). Fig. 9 (a) summarizes the average444

localization errors with different approaches on models shown in Figs. 8.445

Fig. 9 (b) illustrates the distribution of localization errors on the reversed C-shape network with different446

localization approaches. Since the results under other networks show similar statistics, we omitted them here. As can447

be seen, the localization errors of the optimal flat metric based approach are nicely distributed at the lower range.448

6.5. Comparison with Other Methods on Networks With Range Distance Measurements449

Fig. 10 summarizes the average localization errors of the proposed optimal flat metric based approach and other450

methods on networks shown in Fig. 4 and Fig. 8 with one-hop communication radio range distance information.451

Specifically, the one-hop communication radio range distance measurement error increases from 0% to 100% of the452

actual distance.453

Fig. 10 shows that when the measurement error is less than 10%, a localized network based on the proposed454

algorithm is very close to the original one. When the measurement error is less than 40% shown in Figs. 10 (b) and455

(d), 30% shown in Figs. 10 (a) and (c), and 25% shown in Figs. 10 (e) and (f), the proposed algorithm achieves the456

highest localization accuracy compared with other methods. But from the other side, the proposed algorithm is more457

sensitive to measurement error than other localization methods. Its performance decreases with the increase of the458

measurement error. When the measurement error is more than 50%, many triangles formed by three sensor nodes459

within their mutual communication radio range degenerate and the measured one-hop communication radio range460

distances even don’t satisfy triangle inequality. We can’t take the measured distances as a legal and initial metric461

of the constructed mesh any more, so we have to take an average of the measured one-hop communication radio462

range distance as an initial metric of the mesh, which means each edge is assigned a uniform length. Such averaged463

distance is robust to random errors, which explains that the performance of the proposed algorithms keeps stable464

When the measurement error is more than 50%.465

C-CCA and MDS-MAP, the centralized neural network based and MDS based approaches, on the contrary,466

are least sensitive to measurement error. Such random error directly affect the measured distances of pairs of nodes467
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(a) Network (shown in Fig. 4) (b) Network 1 (shown in Fig. 8 a(1)-e(1))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Distance measurement error

A
v
e

ra
g
e
 l
o

c
a
liz

a
ti
o

n
 e

rr
o
r

 

 
C−CCA

D−CCA

MDS−MAP

MDS−MAP(P)

Ricci

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Distance measurement error

A
v
e

ra
g
e
 l
o

c
a
liz

a
ti
o

n
 e

rr
o
r

 

 
C−CCA

D−CCA

MDS−MAP

MDS−MAP(P)

Ricci

(c) Network 2 (shown in Fig. 8 a(2)-e(2)) (d) Network 3 (shown in Fig. 8 a(3)-e(3))
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(e) Network 4 (shown in Fig. 8 a(4)-e(4)) (f) Network 5 (shown in Fig. 8 a(5)-e(5))

Figure 10. Comparison of average localization errors of different methods on networks shown in Fig. 4 and Fig. 8
with one-hop communication radio range distance measurement errors increased from 0% to 100%.
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within one-hop communication radio range, which is only a small portion of the distance matrix of a network. But for468

a pair of nodes not within one-hop communication radio range, the longer their distance is, the smaller the random469

error accumulated along their path is. So we don’t observe noticeable performance decline of C-CCA when the470

measurement error is small. The performance of C-CCA starts to decrease when the measurement error is over 40%471

shown in Figs. 10 (c) and (d), 50% shown in Figs. 10 (a) and (e), and 70% shown in Figs. 10 (b) and (f). Similarly472

as C-CCA, there is no noticeable performance decline of MDS-MAP When the measurement error is small. The473

performance of MDS-MAP starts to decrease when the measurement error is over 30% shown in Figs. 10 (a), (c) and474

(d), 50% shown in Figs. 10 (b) and (f), and 60% shown in Fig. 10 (e).475

D-CCA and MDS-MAP(P), the distributed neural network based and MDS based approaches, can achieve a476

higher localization accuracy than their centralized counterparts when the measurement error is small. But they are477

also more sensitive to measurement error than their centralized counterparts.478

Combining Fig. 8 and Fig. 10, it is obvious that when the measurement error is more than 50% of the actual479

distance, such measured one-hop communication radio range distance won’t help improve localization accuracy for480

any of the compared localization methods including the proposed one in this paper.481

6.6. Error Propagation on Networks With One-hop Communication Radio Range Distance Measurements482

We conduct the following experiments to test the propagation rate of measurement error resulting from bad483

estimation or wrong measurement. Two networks with constructed triangular mesh structure are shown in the right484

top of Figs. 11 (a) and (b). If the given one-hop communication radio range distance is free of measurement error,485

the discrete Ricci flow based method localizes the two networks with localization errors 1.4×10−5 and 1.5×10−5
486

, respectively. While if the distance measurement around one node is wrong, for example, much slower response487

of a node to its neighboring nodes’ signals will result in a much longer distance approximation. The measurement488

error around the node will affect not just localization of this node, but also other nodes in the network (e.g., error489

will propagate). We introduce such measurement error at one selected node (marked with red in the two triangular490

networks shown in Figs. 11 (a) and (b)) by multiplying some constant K (K = 2.0 for case 1, K = 1.5 for case 2)491

with the lengths of its neighboring edges, such that the node is no longer planar based on the wrong measurement.492

We measure the effect of the "one node measurement error" by comparing the change of the computed flat metric493

(edge length) with the original one. Figs. 11 (a) and (b) shows the distribution of the average errors of edge lengths of494

the two testing networks with respect to the distance to the selected node respectively. The closer the two ending495

nodes of one edge are to the selected node, the bigger the distortion of the computed edge length is. It is obvious that496

the error propagation decreases dramatically with the increase of the distance to the distorted node. The localization497

error of the two networks with distorted vertices are 0.0018 and 0.0020 respectively.498

6.7. Computing Time499

In our experiments, we set the step length of running discrete Ricci flow to 0.1, and the error threshold to500

1× 10−5 . Fig. 12 gives the convergence rate and time using discrete Ricci flow to compute optimal flat metric501

for part of our simulation networks. Specifically, for the reversed C-shape network with 3k sensor nodes and 424502

landmarks chosen, the convergence time of discrete Ricci slow is 2 seconds. The curvature error is less than 0.1 and503

0.0004 after 5 and 82 iterations, respectively. For the network with one hole and 2k sensor nodes and 283 landmarks504

chosen, the convergence time is 1 second. The curvature error is less than 0.1 and 0.0004 after 4 and 55 iterations,505

respectively. For the network with two holes and 2k sensor nodes and 297 landmarks chosen, the convergence time is506

1 second. The curvature error is less than 0.1 and 0.0004 after 4 and 48 iterations, respectively. The time of isometric507

embedding of each network is no more than a few seconds. So the total computing time of a network including508

choosing the landmark nodes, building a triangular structure, computing optimal flat metric and isometric embedding509

the network is no more than 10 seconds on a Dell Latitude e6420 laptop. Note that the computation is fully distributed510

that each vertex node computes and exchanges information with only its neighboring vertex nodes.511
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Figure 11. The error of the computed edge length decreases dramatically with its distance to the distorted node
marked with red.
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Figure 12. Convergence rate of discrete surface Ricci flow applied to compute optimal flat metric of networks, with
step length 0.1 and error threshold 1×10−5 . (a) A reversed C-shape network with 424 landmarks: the convergence
time is 2 seconds; (b) A network with one hole and 283 landmarks: the convergence time is 1 second; (c) A network
with two holes and 297 landmarks: the convergence time is 1 second.

We can also apply centralized method to compute optimal flat metric using discrete Ricci flow. Each vertex512

node sends its connectivity information and distance measurement within one-hop transmission range if available to a513

central server. The central server can apply Newton’s method as discussed in our previous paper [26] to compute514

the optimal flat metric with discrete Ricci flow. Compared with the distributed method introduced in this paper, the515

centralized method converges in less than 5 iterations with the total computing time less than 1 second for all the516

testing networks.517

7. Conclusion518

This work proposes a novel optimal flat metric based localization method suitable for large-scale sensor519

networks. The method can be proved to generate an optimal flat metric that introduces the least distortion from520

the initially estimated edge length. The computation is fully distributed and highly scalable with its computation521

time and communication cost linear to the size of the network. Extensive simulations and comparison with other522

methods under various representative network settings are carried out, showing superior performance of the proposed523

algorithms.524
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Table 1. Table of Notation

Symbol Explanation

B0 the longest boundary of M

Bi the i-th boundary of M

b the number of boundaries of M

E edges of M

ei j an edge belonging to E with two ending vertices vi and v j

en the number of edges of M

F triangle faces of M

fi jk a triangle face belonging to F with vertices vi, v j, and vk

fn the number of triangle faces of M

Ki the discrete Gaussian curvature of vi ∈V

K̄i the target Gaussian curvature of vi ∈V

Li a shortest path between the initiator of Bi and B0

li j length of ei j

M a triangulated surface (or mesh in short) embedded in R3

∂M the boundary of M

r fi jk a ratio between the longest and shortest edge lengths of fi jk

t the time

ui the logarithm of γi of vi

V vertices of M

vn the number of vertices of M

vi a vertex belonging to V with id i

θ
jk
i the corner angle attached to Vertex vi in Face fi jk

γi the radius of a circle associated with vi

Γ the radius function assigned at M

φi j weight of ei j (the intersection angle of two circles centered at

vi and v j

Φ the weight function assigned at M

(Γ,Φ) circle packing metric of M

χ(M) the Euler characteristic number of M

δ the step length computing optimal flat metric

ε the threshold of curvature error computing optimal flat metric
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