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Abstract

Systematically generalizing planar geometric algorithmshanifold domains is of fun-
damental importance in computer aided design field. Thigppmposes a novel theoretic
framework,geometric structuregto conquer this problem. In order to discover the intrinsic
geometric structures of general surfaces, we developedaadtic rigorous and practical
efficient methodDiscrete Variational Ricci flow

Different geometries study the invariants under the cpoeding transformation groups.
Same geometry can be defined on various manifolds, sameatthalfows different ge-
ometries. Geometric structures allow different geomsttéebe defined on various mani-
folds, therefore algorithms based on the correspondingngéic invariants can be applied
on the manifold domains directly.

Surfaces have natural geometric structures, such as sphstiucture, affine structure,
projective structure, hyperbolic structure and conforstalicture. Therefore planar algo-
rithms based on these geometries can be defined on surfeaigbitforwardly.

Computing the general geometric structures on surfaceddas a long lasting open
problems. We solve the problem by introducing a novel methaskd on discrete varia-
tional Ricci flow.

We thoroughly explain both theoretic and practical aspefcise computational method-
ology for geometric structures based on Ricci flow, and destrate several important ap-
plications of Geometric Structures: generalizing Vorodizigram algorithms to surfaces
via Euclidean structure, cross global parametrizatiowbeh high genus surfaces via hy-
perbolic structure, generalizing planar splines to maaéforsia affine structure. The ex-
perimental results show our method is rigorous and efficitiet framework of geometric
structures is general and powerful.
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1 Introduction

Different geometries can be defined on the pl&3eand each of them studies dif-
ferent invariants under the corresponding transformagimup of R%. The most
common geometries on the plane are

(1) Euclidean geometryThe transformation group is the rigid motion group and
each rigid motion has the forg: R — R?

@(p) =O0p+9,0 € SR, 2),q € R?, (1)

whereO is a rotation matrix with determinantl, andSQ(R, 2) represents
the 2 dimensional special real rotation matrix group. Theiants are the
distancebetween two arbitrary points, angles of corners, collittgére., all
points lying on a line initially still lie on a line after traformation) etc.

(2) Affine geometry, The transformation group is the affine transformation grou
®(p) = Ap+d,A € GL(R,2),q € R?, 2

whereA s a real matrix with a positive determinant, &8d(RR, 2) denotes the
2 dimensional real general matrix group. The invariantstiagecollinearity,
ratio between distances, and parallelism.

(3) Projective GeometryThe transformation group is the real projective transfor-
mation,® € PGL(R,2), PGL(R,2) represents 2 dimensional real projective
matrix group,

apy
ax+By+y nx+0y+«k
¢(X’y>:(5X+£y—i—Z’5X—i—8y+Z)’neK 7&07 (3)
0¢e(

The invariants are the colinearity and the cross ratio anfiomgpoints on the
line.

Different algorithms in computer graphics, computatiog@bmetry, solid model-
ing, and visualization are based on different geometriée. fbllowing are some
examples:

(1) Voronoi DiagramGiven a set of point§py} C R?, the whole plane is parti-
tioned to cells{Cy}. A pointp belongs taC, wherek = min; |p — pj|. There-
fore, the Voronoi diagram is based on planar Euclidean géynvehere dis-
tance plays vital role.
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Luo), gu@cs. sunysb.edu (Xianfeng David Gu).



Fig. 1. Atlas: surface is covered by a set of chalds, @, ), whereqy, : Uy — R2. If two
charts(Uq, @) and (Ug, @) overlap, the transition functiog, : R — R? is defined as

Pap = Ppo Py

(2) Point locationGiven a triangulation of the plane and an arbitrary ppinte
point location algorithm will find the unique triangle whiclontainsp. Sup-
posep is contained in a triangl&pop1p2, then every element of the barycen-
tric coordinates op (a, 3, y) must be positive, where

p = apo+ Bp1+ Yp2.

It is obvious that barycentric coordinates are affine irarats. Therefore, the
point location algorithm solely depends on the affine geoyratthe plane.

(3) Line segments intersectidrhe sweep line algorithm computes all the inter-
sections among a set of line segments on the plane. coliyead intersec-
tion relations are invariant under projective transfoirorat Therefore, line
segment intersection algorithms are based on the progeggometry of the
plane.

One of thefundamental problems in graphics, geometric modeling, computa-
tional geometry and visualization is

To find feasible ways to define different geometries on sesfasuch that the al-
gorithms designed for planar domains can be systematieaidystraightforwardly
generalized to the surface domains.

Geometric structures offer theoretic rigorous and practical efficient solutidas
this central problem.

1.1 Geometric Structures

Suppose is a surface ifR3 as shown in Figure 1. A family of open sélg covers
the surface such tha C (JUq. @y is @ homeomorphism and mapsg onto the



plane:

@ :Ug — R?.
The pair(Uq, ¢ ) is called docal chart Suppose two open sédlg andUp intersect
each other, then thehart transition maps defined as

Gap  a(UaNUp) — @5(Ug NUp), @up = @0 @

The union of all local chart$(Uq, @y)} form anatlas denoted agy. If all chart
transition mapsp, g of </ belong to the rigid motion group with the form in equa-
tion 1, thene is aEuclidean atlasSimilarly, if ¢,5 belongs to the affine transfor-
mation group with the form of equation 2 or projective tramsiation group with
the form of equation 3, thern/ is called anaffine atlasor projective atlas Two
Euclidean (affine or projective) atlases ammpatible if their union is still a Eu-
clidean (affine or projective) atlas. Afuclidean(affineor projectiveg structureof

a surface is the union of its all compatible Euclidean (affine or proipe) atlases.

Euclidean (affine or projective) geometrycan be defined on the surfaZevia
Euclidean (affine or projective ) structure. Suppose serialsas a Euclidean atlas
</, we want to measure the distance between two p@irisdq, which are close
enough to be covered by a ch8,, @, ). Then we measure the distance between
@ (p) and @y (q) on the parameter domaim (Uy ). If p, g are also covered by an-
other chart(Ug, ¢g), we can similarly measure the distance betweg(p), ¢z (q)

on the parameter domaig (U, ). Because the transition magg is a rigid motion

on R?, it preserves distance. Therefore, the two measuremeatsomsistent. In
this way, we can define the distances between two arbitrantponz, therefore
Euclidean geometry is defined ardirectly.

General(X,G) geometric structures can be defined in a similar way on a gener
surfaceZ, whereX is a topological space ar@ is the transformation group of.

An (X,G) atlas« of Z is with chart transition mapg, s in G and local parameters
@x(Ug) in X. Two (X, G) atlases areompatible if their union is still an(X,G)
atlas. The union of all compatibleX, G)-atlases o forms its (X,G) structure
The common(X, G) structures on surfaces are summarized in table 1.1.

The existence of a specific geometric structure on a givedaselirs determined by
the surface topology. Surfaces with positive Euler numb#osv a spherical struc-
ture; surfaces with zero Euler numbers allow an affine [Rern£1959),Milnor(1958)]
and Euclidean structure; surfaces with negative Euler rumbllow hyperbolic
structure [Thurston(1997)].

Conventional polar form splines are constructed from afiimvariants, therefore,
manifold splines are based on the affine structure of theaseriBecause of topo-
logical obstruction, general surfaces do not admit affinecstire. Projective struc-
ture exists for all oriented surfaces. If a spline schemaset on projective invari-
ants, it can be defined on all surfaces directly.

It is a very challenging problem to design rigorous and pcatimethodology to



Geometric Structures on Surfaces

(X,G) Structure| Parameter domaiX | Trans. groupG | Oriented Metric Surfaces
Spherical S? Sphere RotationSQ(3) | Genus zero closed, open
Euclidean R? Plane Rigid motion Genus one closed, oper
Hyperbolic H? Hyperbolic Space Mobius High genus closed, open
Affine R? Plane Affine GL(R,2) | Genus one closed, open
Projective RP? Projective space Projective all oriented surfaces

compute general geometric structures on surfaces. Rigcisldeveloped recently
in geometric analysis field for the purpose of proving Poiaaanjecture. It offers
a powerful tool to conquer this problem. To the best of ounkiedge, we are the
first group to design discrete algorithm for computing hygedic structure and real
projective structure on general surfaces, based on Risti flo

1.2 Ricci Flow

Surface Ricci flow was first introduced by Hamilton in [Haroi{1988)], and re-

cently used to prove Poincaré conjecture [Perelman(2Bé23Iman(2003a),Perelman(2003b)].
Ricci flow was generalized to the combinational setting ihg®(2003)]. The main

idea is to conformally deform the Riemannian metric of thefase driven by

its curvature, such that the curvature evolves like a hd&isibn and becomes

a constant everywhere eventually. The metric with constaniature is called uni-

formization metric. Ricci flow will deform the metric to theniiormization metric.

Suppose is a surface with the metric tensge= (gjj), andK is the current Gaus-
sian curvature, then Ricci flow is defined as

Jij
ot
It is proven that the Ricci flow with normalized total surfarea will flow the met-

ric such that the Gaussian curvature on the surface is adnsamely the Gaussian
curvature function lim..., K(t, p) converges to a constant function.

= —2Kgj. (4)

In our paper, we use Ricci flow to compute uniformization mestfor surfaces with
non-positive Euler numbers, from which we construct s@fagperbolic structure,
real projective structure, and affine structure.

1.3 Contribution

This paper introduces a novel framework for geometric afllgor design: general
geometric structures, such as affine structure, hyperistiicture and real pro-



jective structure. Geometric structures allow differeabignetries to be defined on
surfaces directly, and planar algorithms to be generaliaesurfaces straightfor-
wardly.

Compared to other structures, the hyperbolic structure@adorojective structure
have not been fully studied. This paper emphasizes on intiad novel and prac-
tical algorithms to compute hyperbolic structure and reajgztive structure for
general surfaces. The algorithm is based on a recently alg»@ltheoretical tool
in differential geometry field- Ricci flow. To the best of ourdwledge, we are the
first group to practically compute hyperbolic structurengsRicci flow, and also
the first one to introduce a practical method to compute regeptive structure.
Therefore, the major contributions of this paper are:

e Introduce a novel theoretical framework : Geometric Stitet, which enable
algorithms defined on planar domains to be systematicalheigdized to sur-
faces.

e Design and implement a novel geometric tool : discrete Yianal Ricci flow.

e Design and implement a practical and efficient algorithmeldasn Ricci flow to
compute hyperbolic structures for surfaces with negativieEnumber.

e Design and implement a practical and efficient algorithmeldasn Ricci flow to
compute Real projective structures for arbitrary surfaces

2 Previous Work

Geometric structures have been implicitly and explicippked in geometric mod-
eling, computer graphics and medical imaging. For the geauscase, the spheri-
cal structure was studied for texture mapping in [Gotsm@d82,Praun(2003)] and
for conformal brain mappings in [Gu(2004),Haker(2000)]géyithms for comput-
ing conformal structures were introduced in [Gu(2003j204)], and the method
is based on computing holomorphic differentials on suace

Affine structure has been applied for constructing spliméases on general man-
ifolds in [GUHQ(2006)], where the affine structures are icelh by holomorphic
differentials computed using the algorithms in [Gu(200i8),2004)].

Hyperbolic structure was applied in [Ferguson(1992)] fue topological design
of surfaces, where the high genus surfaces were represastqdotient spaces
of the Poincaré disk over Fuchsian group actions. In [Gr{2083)], Grimm and
Hughes defined parameterizations for high genus surfact€@mstructed func-
tions on them. Wallner and Pottmann introduced the concepplne orbifold
in [Wallner(1997)], which defined splines on three canonpeaameter domains:
the sphere, the plane, and the Poincaré disk. Hyperbolimgey was visualized
in [Gunn(2004)]. The key difference between these works @udcurrent one is
that our method computes the hyperbolic metric which is@onél to the original



metric on the surface, but their works only consider the logypand ignore the ge-
ometry of the surface. For many real applications, suchxdaremapping, shape
analysis and spline constructions, conformality betwéenariginal and the final
metrics is highly desirable.

Recently, [Goldman(2003)] examines some possible altemmathematical foun-

dations for computer graphics, such as Grassmann spaceseods. General geo-
metric structures on manifolds contribute to the theoatfmundations for graphics
and geometric modeling.

Ricci flow on surfaces was first introduced by Hamilton [Haon(1988)]. Ricci
flow on 3-manifolds has been applied for the proof of Poiacanhjecture. Theo-
retical results of combinatorial Ricci flow have been sumireatin [Chow(2003)].
Conventional Ricci flow can be formulated as the gradienteiesmethod for op-
timizing a special energy form, and the deficiency of its spemkes Ricci flow
impractical. Practical algorithms are given in [Jin(20@6) computing hyperbolic
structures and real projective structures on surfacesuinwmrk, we improved
the theoretical results in [Chow(2003)] by consideringate Riemannian metric
induced fromR? instead of from the combinational structure. We replacedjtta-
dient descent method with Newton’s method to speed up Rmwidbmpletion by
tens of times. We named this novel algorithm thscrete variational Ricci flow
A practical system for computing hyperbolic and real proyecstructures for real
surfaces has been developed based on discrete variatimeaflBw.

Circle packing was first introduced by Thurston in the seesnh [Thurston(1976)].

A practical software system for circle packing with imprdvalgorithm can be

found in [Stephenson(2005)], which considers the combnmltstructure of the
triangulation only. Recently, circle packing has been galimed to circle patterns
[Bobenko(2004),Bobenko(2005)] and used for surface patanzation in [Kharevych(2005)],
which focuses on Euclidean geometry. Circle packing, eipattern and discrete

Ricci flow can be unified using the derivative cosine law [L2Q4{6)].

Our work is based on a novel theoretical tool - discrete tianal Ricci flow and
focuses on hyperbolic structure and real projective stinecinstead of Euclidean
structure. Furthermore the hyperbolic metrics computé&tusur method are con-
formal to the original metrics. The conformal hyperbolictries convey much ge-
ometric information of the surfaces, which are valuabletfa purposes of shape
analysis.

3 Theoretical Background

In this section we briefly introduce the major concepts frdgehraic topology,

differential geometry, Riemann surface to explain geommstructures on surfaces,
and review discrete Ricci flow needed in current work. Wetliouirselves to those
concepts that are directly relevant to our work. For detladeplanations, we refer
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Fig. 2. Uniformization Theorem: all surfaces with Riemanetric can be conformally
embedded into three canonical spaces: the unit spherelathe and the hyperbolic space.
X represents the Euler number of the surface.

readers to [Thurston(1997)] and [Chow(2003)].

3.1 Uniformization Theorem

Suppos€ is an oriented surface RS2, with induced Euclidean metrig, andu:
¥ — Ris a function defined oM, thene?!g is another metric foE, which is called
a metric conformal to g

The uniformization theorem claims that there exists a uaigenctionu, such that
under the metri@®g, the Gaussian curvatures of the interior points are cohstan
and the boundaries become geodesiédy is called theuniformization metric
Surfaces with positive Euler numbers have spherical umifoation metrics with
+1 curvature; surfaces with zero Euler number has flat unifzation metric with

0 curvature; surfaces with negative Euler numbers haverbgfie uniformization
metric with —1 curvature. The uniformization metrics will induce the spbal,
Euclidean, and hyperbolic structures respectively, sgarEi2.



3.2 Fundamental Group and Universal Cover

Two curves arédnomotopicto each other, if they can deform to each other on the
surface. Closed loops are classified to homotopy classe®imptopic relation.
Two closed curves sharing common points can be concatetatedm another
loop. This operation defines the multiplication of homotogasses. Therefore, all
the base pointed homotopy classes form the so c#ledirst fundamental group
of %, and are denoted ag ().

The fundamental group is finitely generated. Suppose a&fes with g handles,
and there are two distinct generatard on each handle. If they intersect once, but
disjoint with generators on other handles, therggbairs of generators form a set
of canonical fundamental group basisenoted agay, by, ap,by, -+ ,ag,bg}.

Suppose thaf and= are surfaces, thefZ, ) is said to be @overing spacef < if
mis surjective and locally homeomorphic. Furthermore, if simply connected,
(2, m) is theuniversal covering spaoef X.

A transformation of the universal covering spares — ¥ is adeck transformation
if 7= 110 0. All deck transformations form a group. It is also called th&uchsian
groupof X if the transformation is hyperbolic isometry.

The deck transformation group is isomorphic to the fundaalegroup. Suppose
p € 3 is an arbitrary point of, its pre-images are1(p) = {po, P1, P2, -, Pn, -+ }
onZ. Suppose a deck transformatigre G mapspg to pk, then a curve on the uni-
versal covering space

y:10,1] — Z,y(0) = po, ¥(1) = px,

connectspg and py and its projectiorr(y) is a loop onx. The homotopy class of
r(y) is solely determined by andpy, independent of the choice gf By this way,
we get a bijective map from deck transformations to the fustihmental group of
2.

A fundamental domain ks a subset ok, such that the universal covering space is
the union of conjugates &f, and any two conjugates have no interior point in com-
mon. Given a canonical fundamental group generatagsby,az,by,--- ,ag,bg},

we can slicez along the curves and get a fundamental domain with boundary
a1hia; 'by taghoa, 'by T - agbgag thy L.

For any surface, its uniformization metric is also a metric for its univelrsaver
>. The universal cover can be isometrically embedded in otiesathree canonical
spaces: sphere, plane and hyperbolic space.



3.3 Hyperbolic Space Models

One of the anomalies of hyperbolic geometry was the readizahat it has no
isometric embedding in Euclidean space. Here are two commapsisometric em-
beddings for hyperbolic geometry, one is the Poincaré madeer other is the
Klein model.

3.3.1 Poincae Model

The Poincaré model is a unit digk in the complex plane with the Riemannian

metricds? = (f"j%zz.

The geodesics are circular arcs perpendicular to the boyodthe unit diskdD?.
The isometric transformation in this model is the so calleabis transformation

with the form —
—df = = 6  [0,2m).
®(2) 1_Zoz,z,zoeC, € [0,2nm)
The above Mobius transformation magdo the center of the disk, and rotates the
whole disk by anglé. Hyperbolic circles are also Euclidean circles.

The Poincaré model is a conformal model, whereas the Kleidehis a real pro-
jective model.

3.3.2 Klein Model

The Klein model is another model of the hyperbolic space défmed on the unit
diskD?. Any geodesic in the Klein model is a chord of the unit cirdéh@ bound-
ary of D?. The map from the Poincaré model to the Klein moded isH? — D?,

2z Bz = 1-— _1—2_22. 5)

7) = —
A2 1427 7z
Any Mobius transformation in the Poincaré modgelbecomes a real projective
transformation in the Klein modg o go 1.

3.4 Discrete Surface Ricci Flow

Ricci flow is a powerful tool to compute the uniformizationtmes. It is a process
to deform the metrig(t) according to its induced Gauss curvatire), wheret is
the time parameter

dgj(t)

— 4 = K (0). (6)
The following theorem postulates that Ricci flow defined inoB\verges, and the
metric g(t) is conformal to the original one at any timeEventually, the Gauss
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curvature will become a constant. The corresponding mgtrg is the desired
uniformization metric.

Theorem 1 (Hamilton 1982) For a closed surface of non-positive Euler charac-
teristic, if the total area of the surface is preserved dgrthe flow, the Ricci flow
will converge to a metric such that the Gaussian curvatueoisstant everywhere.

The spherical case is shown in the following theorem,

Theorem 2 (Chow) For a closed surface of positive Euler characteristic, iéth
total area of the surface is preserved during the flow, theiRlow will converge
to a metric such that the Gaussian curvature is constantyewdiere.

Recently, Ricci flow on 3-manifolds has been applied for theop of Poincaré
conjecture [Perelman(2002),Perelman(2003a),Pereiagp)].

But in engineering fields, smooth surfaces are often appratad by discrete sur-
faces with triangulations. In the following, we discuss thgcrete Ricci flow the-
ory, which considers triangular me&hwith vertex sel, edge sek and face set
F.

Discrete Riemannian Metric The Riemannian metric on an Euclidean or hyper-
bolic meshS(we say a mesh is Euclidean or hyperbolic if all its faces ardiBean

or hyperbolic.) is determined by its edge lengths. Theeetoe define the discrete
Riemannian metric on a mesh as its edge lendthg,— R*, such that for a face
{i, j,k}, the edge lengths satisfy the triangle inequalifys- | jx > lii.. Because the
above triangle inequality is linear, it is easy to verifytthl the discrete Rieman-
nian metrics for a given mesh form a convex polytop&ihwheren is the number

of edges.

A weighton the mesh is a functioh : E — [0, 7], on each edge;. A radiuson the
mesh is a functior : V — R*, on each vertex; by assigning a positive number
yi. They realize each edgg joining v; to v; by a Euclidean segment of length

lj =\/Vi2+vjz+2V|Vj cosd(&;). (7)

And for each face{lij,l |} satisfy triangle inequality. In the hyperbolic case,
the length can be deduced from the hyperbolic cosine law:

lij = cosh *(coshy coshy; + sinhy sinhy; cos®(e;)). (8)

Definition 3 (Circle Packing Metric) The pair of the vertex radius function and
edge weight function on a meZh{I", ®} is called a circle packing metric &.

Intuitively, circle packing metric can be interpreted ir tlollowing way: we asso-
ciate each vertey with a cone of radiug. For each edge;j, two cones orv; and

vj intersect each other with an angi®;. In the smooth case, a conformal defor-
mation will map an infinitesimal circle to an infinitesimaldie with intersection

11



angles preserved. Therefore, we can define two circle pgeketrics on the same
mesh which are conformally equivalent to each other.

Definition 4 (Conformal Circle Packing Metrics) Two circle packing metricél 1, @4}
and{l,, ®,} are conformally equivalent, ib; = ®».

Therefore, a conformal deformation of a circle packing metnly modifies the
vertex radii.

Discrete Gauss CurvatureDiscrete Gauss curvature is defined as the angle deficit
on a mesh. For an interior vertex the discrete Gauss curvature is

Kj = 2m— Z al¥, 9)

[
fiJKGF

Whereorijk represents the corner angle attached to ventéx the facef;jc. Simi-
larly, for a boundary vertex, the discrete Gauss curvasure i

fijkEF

(10)

Continuous Ricci flow is the conformal deformation of the iR@nian metric,
such that the deformation is proportional to the Gaussiavature. Similarly, we
can define discrete Ricci flow in the following

Definition 5 (Discrete Ricci Flow) On a Euclidean triangle mesh with circle pack-
ing metric, the Euclidean Ricci flow is

dy(t) _ o
5 = ~Kin(. (11)

A Hyperbolic triangle mesh with circle packing metric, thisalete Hyperbolic
Ricci flow is
dy(t)

T —K;sinhy(t) (12)

The following theoretic results guarantee the convergehtiee discrete Ricci flow.

Theorem 6 (Discrete Ricci Flow) The discrete Ricci flows 11 and 12 are conver-
gent to the uniformization metric and the convergence exponential.

More theoretic details can be found in [Chow(2003)].

Discrete Ricci flows can be treated as the gradient flows oimiang special
energies.

Definition 7 (Discrete Ricci Energy) Lety =Iny in Euclidean case,ju= Intanh%
in hyperbolic case, then the Euclidean Ricci energy and tglie Ricci energy are

defined as
un
f(u :/ Kidu, 13
W= [ 3K (13)

12



whereu = (ug, Uz, ,Un), Up = (0,0,---,0).

The energy is defined on the space formed by all conformdegoacking metrics,
which is simply connected. The integration path frogto u can be arbitrarily
chosen, while the energy is consistent. The Hessian mairilkdth the Euclidean
Ricci energy and hyperbolic Ricci energy are positive dedjrtherefore their en-
ergies are convex, existing a unique global minimal poimgtdad of using discrete
Ricci flow 11 and 12, we can directly minimize the Ricci eneuging Newton’s
method, which is much more efficient in practice.

4 Algorithms to Compute Geometric Structures on Surfaces

For any surface with boundaries, we can convert it to a cleyeunetric surface
using the double covering method [Gu(2003)]. First we maledopies of the sur-
face, then we reverse the orientation of one of them and gkiéno copies along
their corresponding boundaries. The double covered siddmits a uniformiza-
tion metric conformal to its original metric and the origifeundary curves be-
come geodesics under this metric. The real projectivetstres of the original sur-
face and its double covering can be induced by this unifcation metric. There-
fore, in the following discussion, we only focus on closedates.

4.1 Genus Zero Surface

Closed genus zero surfaces have spherical structures @mutogective structures.
The universal covering space of a closed genus zero sudaself. Therefore, the
surface can be conformally mapped to the unit sphere.

A method based on non-linear heat flow to construct confomreghs between a
closed genus zero surface and the unit spBéiie introduced in [Gu(2004)]. The
spherical uniformization metrics are induced by these @onél maps.

The real projective structure can be deduced from the spiesiructure directly.
We set six tangent planes at the intersection points bettheaumnit sphere and the
axes, then project the sphere onto these tangent plangsaesitral projection. This
procedure produces the real projective atlas for the seurfaigure 4 demonstrates
the spherical structure and real projective structure dbset! genus zero surface.

4.2 Genus One Surface

Closed genus one surfaces have affine structures which caedied as special
cases of real projective structures, and can be induced $uniaces’ flat uni-
formization metrics where Gaussian curvatures are zenyewere. The universal
covering space of a closed genus one surface can be embedtlexiEuclidean

13



plane. Each fundamental domain is a parallelogram, andeble lansformations
are translations on the plane. There are two methods to dertipriflat uniformiza-
tion metrics for closed genus one surfaces.

4.2.1 Holomorphic 1-form Method

The flat uniformization metric on a closed genus one surfacebe induced by the
holomorphic 1-forms on it. A holomorphic 1-form can be teghais a pair of vector
fields with zero divergence and curl, and orthogonal to edlcbroThe algorithms
for computing holomorphic 1-forms are introduced in [GU§3RJin(2004)]. By
integrating one of its holomorphic 1-forms, the universalaring space of a closed
genus one surface can be conformally mapped to the planehwiduces an affine
atlas for the surface.

4.2.2 Discrete Euclidean Ricci Flow Method

The flat uniformization metric on a closed genus one surfaceatso be computed
using thediscrete Euclidean Ricci flow methotihis method is particularly good
for surfaces with boundaries compared with the holomorpHmrm method which
has to produce singularities on genus one surfaces withdzoias.

Given a triangular mesh, we first compute a circle packingiméf, ®} (see Eqgn.
7) to approximate its induced Euclidean metric. Then we useithin’s method
to minimize the Euclidean Ricci energy, see Eqn. 13. The ideswatrix of the
energy is
22 f B oK; B oK; _

duide N de N 0I‘j is
The Hessian matrix is positive definite, therefore the eneygtrictly convex, with
a unigque global minimum. Newton’s method can be used to fiaartimimum with
stable convergence.

4.3 High Genus Surface

High genus surfaces have hyperbolic structures and regqgtree structures. Both
of them can be induced from hyperbolic uniformization nestron surfaces. The
following algorithms are designed to compute the hypedoatiiformization met-
ric, hyperbolic structure and real projective structure dogiven surface with
genugg greater than one.

(1) Compute a canonical homology basis and canonical fuedtahdomain of
the surface.

(2) Compute hyperbolic uniformization metric of the sudac using Discrete
hyperbolic Ricci flow method.

14



(3) Compute its Fuchsian group generators in the Poindakénaodel.
(4) Construct a hyperbolic atlas.
(5) Convert the hyperbolic atlas to the real projectivesatla

The algorithm in the first step, computing canonical homglbgsis and canoni-
cal fundamental domain, has been studied in computatiopaldgy and computer
graphics literature [Verdiere(2002)] [Erickson(2008)Je adopted the methods in-
troduced in [Carner(2005)]. The following discussion v@kplain other steps in
detail.

4.3.1 Compute Hyperbolic Uniformization Metric

The discrete hyperbolic Ricci flonnethod is simple and powerful for computing
the uniformization metrics of high genus surfaces. Cormganith Euclidean Ricci
flow, there are two major differences

(1) Suppose a triangular face on the mesh with edge lengtbtedd of treating
it as a triangle in the Euclidean space, we treat it as a tieainghyperbolic
space. Then all the angles in the triangle can be calculaied the hyperbolic
cosine law 8.

(2) In the energy form in equation 13, lat= Intanh¥, therefore the Hessian
matrix of the energy is

2 _ oK
ou;duj N or

sinhr;.

The other parts of the algorithm are identical to those offhelidean Ricci flow.
The hyperbolic Ricci energy is strictly convex, with a ureqglobal minimum,
which gives us the desired hyperbolic uniformization neetri

4.3.2 Compute Fuchsian Group Generators in the Poiadaisk Model

This step aims to compute the canonical Fuchsian group gemsrused for com-
puting the universal covering space and hyperbolic stredtuthe next step.

4.3.2.1 Compute Fundamental Group Generators We first compute a set
of canonical fundamental group generatfas, by, az, by, - ,ag,bg}. Assume the
base point i, thena;’s andbj’s are closed loops through the base point. The sur-
faceSis sliced open along the fundamental group generators o éotopological
disk F called the canonical fundamental domain. The boundafy bés the form

OF = arhya; 'by tazhpa, byt - - aghgag thy L.
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4.3.2.2 Isometric Embed in Hyperbolic Disk We isometrically embed the uni-
versal covering spack onto the Poincaré disk using the uniformization metric
computed from Section 4.3.1, and gt = — H? denote the isometric embedding.

We first select a facé&; o from Z arbitrarily. Suppose three edge lengthsfse, 112,120},
and the corner angles afé3?, 62°, 691} under the uniform hyperbolic metric. We
simply embed the triangle as

gor 1 e'02—1e!912‘

(Vo) =0, ¢(v1) = 5o +l,co<V) doo 1

Then we can embed all the faces which share an edge with therfiteedded face.
Suppose a facdjx is adjacent to the first face, and vertiogsy; have been em-
bedded. A hyperbolic circle is denoted @sr ), wherec is the center, andis the
radius. Thenp(vk) should be one of the two intersection points of the two hyper-
bolic circles(@(vi), lik) and(@(vj),ljk). Also, the orientation ofp(vi), @(vj), ¢(Vk)
should be counter-clockwise. In the Poincaré model, a e circle (c,r) co-
incides with an Euclidean circleC, R), satisfying

2—2p? 2 lcP—p
=117 |2cR2 [

whereu = er +1 So the intersection points between two hyperbolic circkas be
found by intersecting the two corresponding EuclideanlescThe orientation of
triangles can also be determined using Euclidean geomettlyeoPoincaré disk.

We can continuously embed faces which share edges with etetiddces in the
same manner, until we embed enough portion of the whobtmto the Poincaré
disk.

4.3.2.3 Compute Fuchsian Group Generators Given two pairs of pointspo, qo)
and (p1,q1) in the Poincaré disk, such that the geodesic distance figrto qo
equals that fronp; to 1. Then there exists a unique Mobius transformatign
such thatp; = @(po) andgs = @(go). ¢ can be constructed in the following way:
construct a Mobius transformatiagp mappingpp to the origin andjg to a positive
real number, with

_ —ig Z—Po ar To— Po

Po g, = “Po
1—poz ° 1— podo

Similarly, we can define another Mobius transformat@nwhich mapsp; to the
origin, g; to a real number, angy(g:1) equal tog(do). Then the desired Mobius
transformaionp is: @ = @ * o @.

Let ak,alzl C JF are two boundary curve segments with their starting and end-
ing verticesday = o — po and da;l = p1 — (1, then the Mobius transformation
(Po,do) — (p1,01) is the Fuchsian generat@ corresponding tdo. In fact, B«
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mapsay to a;l. Similarly, we can computey which mapsblz1 to bx. Therefore, we

can compute a set of canonical Fuchsian group generater$y, az, B, - - , g, By}
corresponding to the set of canonical fundamental grouprgeéors{a, by, az, by, - - -, ag,bg}
computed from Section 4.3.2.1.

4.3.3 Construct Hyperbolic Structure

With the computed universal covering space and the Fuchigiamp generators,
now we can construct the hyperbolic structure of the givefasa now. First we
construct a family of open sef{dJ,}, such that the union of the open sets covers
the surfacez, = C JUqy. Then we locate a pre-image of eddh in the universal
covering space, asm 1(Uy). The embedding of the pre-image (Uy) in the
Poincaré disk gives the local coordinatedJgf, namely

Qo = Qo .

where @ is the embedding map for the universal covering space to tlec&ré
disk. If one pointp € X on the surface is covered by two chartfJy, @) and
(Ug, @), suppose, € Uq andpg € Ug, and a curve connectingy, pg is denoted
asy. The homotopy class afi(y) is determined bypg, pg, denoted aspq, pg]-

Assumelpq, Pg] = Y1Y2¥3- - - Yh, Wherey is one of theay’s or by’s, we replaceg; in

[Pa, Pg] by ai, bj by B in y to get the chart transition mag,g with the form

Yap = Pro@o@s---h,

where @; is one of theaij’s or B's. Therefore we construct a hyperbolic atlas
{(Uq, @)} which induces the hyperbolic structure of the surface.

4.3.4 Construct Real Projective Structure

For a closed surfacE with genusg > 1, its real projective atlas can be deduced
from its hyperbolic structure ( but the reverse is not tr@&)ppose{ (Uq, @) } IS

a hyperbolic atlas oE, then a real projective atldgUq, 74)} can be straightfor-
wardly constructed. Let

Ta =Bo@yandtys =PBo@yp 0B,
wheref3 is the map from the Poincaré model to the Klein model defindgign. 5.

Supposeap, has the form
_46f"%
% - e' 1_ 2—027
wherezy = X + iyp, we use homogenous coordinatesy yw,w) to parameterize
the points(x,y) on the Klein model, then the transition mags has the following
form: 1,5 = $OT, whereA = x§+Yy3 — 1, andO is the rotation matrixO and T
are:
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cosf —sin6 0 1+ X5 — Y2 2XoYo —2X0
O=|sinB cosB O |.T=| 2%y 1-X3+Yy3 —2yo #0,
0 0 1 2Xo 2Yo —1-

3%
|
Sk

5 Applications

We apply geometric structures for various applicationsctvdemonstrate the gen-
erality and the simplicity of this methodology. The expegimtal results also show
the feasibility and the piratical value of Discrete Vamaual Ricci Flow.

5.1 \Visualize Geometric Structures on Surfaces

Although geometric structures are natural structures ofases, due to their ab-
stract and intricate nature, they are difficult to perceind anderstand. Further-
more, because of the lack of a feasible way to compute theometic structures
are still not broadly appreciated and applied. In this papervisualize common
geometric structures on general surfaces by using modephis and visualiza-
tion techniques. Figure 3(a)-(d) shows the fact that palisth can be defined on
surfaces coherently via their affine structures. While l(e¥trates a projective in-
variant, collinearity, can be defined on a surface via ptojecstructure. Figure
4 shows the closed genus zero David head model with its shetructure and
the induced projective structure. Figure 5(a)-(c) illagts the closed genus one
kitten model with its affine structure. Figure 6 shows thedmnppolic structures of
two genus zero surfaces with three boundaries. Figuresd7,1® and 11 visualize
hyperbolic structures and real projective structures tofages with genus greater
than one.

5.2 Generalize Voronoi Diagram Algorithm to Surfaces

Closed genus one surfaces equip Euclidean uniformizatietnies, which can in-
duce flat embeddings of the original surfaces onto the plsune) that the planar
Voronoi Diagram algorithm can be directly generalized tofates. Figure 5(d)
shows the Voronoi diagram algorithm generalized to thenitteodel via its Eu-
clidean structure, where the Voronoi diagram is depicted @nite portion of the
universal covering space.
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(a)

Fig. 3. Visualization of Affine and Real Projective Invarign(a) Genus one hyper-sheet
surface with three boundaries (b) Its affine structure: aefiportion of its universal cov-
ering space embedded on the plane (c) Parallel lines varthe affine structure on the
hyper-sheet surface (d) Parallel lines on one chart of tfeeadtructure (e) Two overlap-
ping real projective charts of the eight model. In the oyaplag part, a straight line on one
chart is still a straight line on the other chart.

Fig. 4. Genus Zero David Head Model: (a) David Head model (ffeSical structure
(c)Projective structure: six charts.

(a) (b) Ic : (d)

Fig. 5. Genus One Kitten Model: (a) Kitten model (b) One cluartthe plane (c) Its Eu-

clidean (affine) structure: a finite portion of its universalvering space on the plane (d)
The Voronoi diagram algorithm generalized on the the serfaa its Euclidean structure,

four fundamental domains are shown.

5.3 Cross Parameterizations

The cross parameterization between two different surfaiisidentical topology
has many useful applications, including surface metanusigh texture transfer,
registration, shape comparison and so on [Schreiner(2084yvever, when the
given two surfaces have complicated topologies, it is vérgllenging to get the
cross parameterization between them [Kraevoy(2004)e8un(2004)].
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(d) (o)

(a) {b)

Fig. 6. Hyperbolic Structure of Genus Zero Surfaces witheEhBoundaries: (a) Skull
model (b) One fundamental domain embedded in the Poindsk&d) Its universal cov-
ering space embedded in the Poincaré disk (d) David heactInfeyl One fundamental
domain embedded in the Poincaré disk (f) Its universal kogespace embedded in the
Poincaré disk.

Fig. 7. Hyperbolic Structure of World Cup Model and David Mbdda) Genus two World
Cup model (b) Hyperbolic structure induced from isometritbedding of Universal cover-
ing space in Poincaré model (c) Genus Three David Model yhebolic structure induced
from isometric embedding of Universal covering space imPaié model.

Fig. 8. Hyperbolic Structure and Real Projective Structofdnotty Model. (a) Genus
two knotty model (b) Hyperbolic structure induced from istnt embedding of Universal
covering space in the Poincaré model (¢) Real projectivecstre induced from isometric
embedding of Universal covering space in the Klein model.

Using the uniformization metrics and Ricci flow, the crossapaeterization be-
tween two different surface&,) can be easily carried out. First, we compute
their canonical fundamental domaiRz,F,); then we compute their uniformiza-
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Fig. 9. Hyperbolic Structure and Real Projective Structofdnotty Model. (a) Genus
two knotty model (b) Hyperbolic structure induced from istnt embedding of Universal
covering space in the Poincaré model (¢) Real projectivestre induced from isometric
embedding of Universal covering space in the Klein model.

Fig. 10. Hyperbolic Structure and Real Projective StrietfrSculpture Model. (a) Genus
three Sculpture model (b) Hyperbolic structure inducedhfisometric embedding of Uni-
versal covering space in the Poincaré model (c) Real piegestructure induced from
isometric embedding of Universal covering space in therkieodel.

tion metric and embed the fundamental domains onto the fjooreling canonical
space; Finally, we construct a harmonic map which maps theedded fundamen-
tal domains to each other. The harmonic map induces a magbetiwo surfaces.
Fig 12 shows the cross parameterization between two highsggirfaces. The left
most and right most are the two surfaces’ conformal embepaino the Poincaré
disk derived from the discrete hyperbolic Ricci flow.

5.4 Manifold Splines

Conventional splines are defined on planar domains. Howgvsrnatural to de-
fine splines directly on surfaces with general topologidse Toncept of manifold
splines was first introduced in [GUHQ(2006)], where therssiare defined on
manifold domains and the evaluations of the splines arep@a@ent of the choice
of the local charts. The significant advantage of the madhigglines is that it is
defined globally, and locally on each chart, it is similar toaaventional planar
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Fig. 11. Hyperbolic Structure and Real Projective Struetaf Greek Sculpture Model.
(a) Genus four Greek Sculpture model (b) Hyperbolic stmecinduced from isometric
embedding of Universal covering space in the Poincaré ir{oYi®eal projective structure
induced from isometric embedding of Universal coveringcgpa the Klein model.

(a) (b) () (d)

Fig. 13. Manifold T-spline: constructing T-spline surfatem an affine atlas computed
using Euclidean Ricci Flow. (a) David Head Model (b) Flat reeinduces affine structure
(c) Manifold T-spline surface with knots structure.(d) @ohNet.

spline.

It has been proved that defining splines over arbitrary nodédsfis equivalent to
the existence of an affine atlas of the underlying manifaldhe key to construct a
manifold spline is to construct the affine structure on théese. The affine struc-
tures derived from Ricci flow are applied for constructingmfald T-Splines and
triangular B-Splines shown in Figures 13, 14 and 15.
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(d) (e) ()

Fig. 14. More examples of Manifold T-spline: (a) Kitten mo@® Manifold T-spline kitten
(c) Control net (d) Bird model (e) Manifold T-spline bird @ontrol net.

ia) [L:1]

Fig. 15. Manifold Triangle B-spline: (a) Hyper-sheet mo(®lManifold Triangle B-spline
hyper-sheet (c) Control net (d) Bunny model (e) Manifoldahdle B-spline bunny (f)
Control net.

6 Conclusion

This work proposes a novel theoretic framework, geometrigctures on general
surfaces, which has fundamental importance in geometridefimg fields. Geo-
metric structures allow different geometries to be definedsorfaces, therefore
planar algorithms can be systematically generalized tafimldrdomains.

In order to compute geometric structures on arbitrary sedawe design and im-
plement a powerful geometric tool, discrete Variationatdrflow, which can ma-
nipulate the Riemannian metrics on surfaces. So far, Rioai i the only way to
compute hyperbolic and real projective structures.

Theoretic rigorous and practically efficient algorithms éomputing affine struc-
ture, hyperbolic structure and real projective structuesthoroughly explained.

Extensive experiments are performed, which verify theds@ss and feasibility of
the algorithms. Geometric structures and Ricci flow areiaddbr several impor-
tant applications, such as cross parameterizations, oldsiplines etc.

Several important problems remain open. The real proestiucture computed in
this work is derived from hyperbolic structure. In theohgte exist real projective
structures which are intrinsically different from the hypalic structure. We will
explore alternative algorithm to compute them.

Conventional polar form splines are based on affine stractuhich doesn’t exist
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for general surfaces. Instead, projective structure €fwstall surfaces. In order to
define manifold splines based on projective structure, Ingpine scheme based
on projective invariants should be invented. We will invgate along this direction
in the future.
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