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Abstract

This paper develops a novel computational technique to define and construct manifold splines with only one singular point by employing
the rigorous mathematical theory of Ricci flow. The central idea and new computational paradigm of manifold splines are to systematically
extend the algorithmic pipeline of spline surface construction from any planar domain to arbitrary topology. As a result, manifold splines
can unify planar spline representations as their special cases. Despite its earlier success, the existing manifold spline framework is plagued
by the topology-dependent, large number of singular points (i.e., |2g− 2| for any genus-g surface), where the analysis of surface behaviors
such as continuity remains extremely difficult. The unique theoretical contribution of this paper is that we devise new mathematical tools so
that manifold splines can now be constructed with only one singular point, reaching their theoretic lower bound of singularity for real-world
applications. Our new algorithm is founded upon the concept of discrete Ricci flow and associated techniques. First, Ricci flow is employed
to compute a special metric of any manifold domain (serving as a parametric domain for manifold splines), such that the metric becomes
flat everywhere except at one point. Then, the metric naturally induces an affine atlas covering the entire manifold except this singular point.
Finally, manifold splines are defined over this affine atlas. The Ricci flow method is theoretically sound, and practically simple and efficient.
We conduct various shape experiments and our new theoretical and algorithmic results alleviate the modeling difficulty of manifold splines,
and hence, promote the widespread use of manifold splines in surface and solid modeling, geometric design, and reverse engineering.
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1. Introduction and Motivation

1.1. Problem Statement

Despite many algorithmic and theoretical advances in solid
modeling and shape computing in most recent years, one fun-
damental objective of our research community is always striv-
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ing to develop novel modeling, design, and simulation schemes
that are capable of accurately representing complicated real-
world objects in a compact manner, and facilitating rapid com-
putation of their desirable properties both globally and locally
such as differential properties, smoothness requirements, and
topological validity. Strongly inspired by the recent develop-
ment of subdivision surfaces and manifold splines, our current
research goal in this paper is to further advance the state of the
knowledge in manifold splines. At the theoretic level, we de-
vise manifold splines with only one singular point through the
mathematical rigor of Ricci flow and relevant computational
techniques. At the application level, we design a brand new al-
gorithmic pipeline that enables all the computational elements
towards the widespread use of manifold splines (especially the
new, improved scheme with single extraordinary point) in solid
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modeling, shape design, and reverse engineering.

1.2. Manifold Splines

For the perspectives of solid modeling, engineering design,
finite element simulation, and scientific computation, elegant
geometric properties such as high-order continuity and the
ease of computing all the desirable properties rapidly are al-
ways mandatary for the development of novel shape repre-
sentations. Therefore, it is not surprising to see that spline-
centric polar forms [31] are becoming the most popular com-
putational tools in geometric modeling and shape design. Es-
sentially, the methodology of polar forms naturally gives rise to
parameterization-centered, piecewise polynomials defined on
any planar parameter domain for the effective modeling and
accurate computing of smooth spline surfaces.

However, examining all the real-world applications, we observe
that the most natural shapes are manifolds with complicated
topologies and arbitrarily detailed geometric configurations,
which can not be completely covered by a single open surface
defined in one coordinate system (note that, it does not matter
if the parametric surface is a polynomial or a non-polynomial,
this fundamental principle remains the same). Instead, a man-
ifold might be covered by a family of coordinate charts, each
coordinate chart covers only a portion of the manifold. Differ-
ent charts may overlap with each other, a coordinate transition
function transforms from one coordinate system to the other. If
we follow the algorithmic procedure of polar forms and other
relevant computational techniques in a principled way, we can
easily realize that conventional splines (defined over any open
domain) can not be transferred over the manifold directly.

In order to model a manifold using piecewise polynomials, cur-
rent approaches will segment the manifold to many patches, de-
fine a single coordinate system over each patch, such that each
patch can be modelled by a spline patch. Finally, any generic
approach will glue/abut all the spline patches together by ad-
justing the control points and the knots along their common
boundaries. This whole process is mainly performed manually,
and it requires the users’ skill and mathematical sophistication,
and is tedious and error-prone.

It is highly desirable to design splines defined over manifolds
directly, such that different spline patches can be automatically
glued together with high continuity, and the modelling process
requires neither segmentation nor patching. Pioneering work
has been done by Grimm and Hughes [7], which can model
splines on arbitrary surfaces. Recently, Ying and Zorin [37] in-
troduced a general method by constructing a conformal atlas.
In both methods, smooth functions are defined on each chart
and blended together to form a function coherently defined over
the entire manifold. The methods are flexible for all manifolds
with arbitrary topologies. The functions are with any degree of
desirable continuity without any singularity. The primary draw-
backs of these methods are that surfaces constructed this way

are no-longer polynomials and their computation expenses are
relatively high in comparison with conventional spline surfaces.

Most recently, the manifold splines proposed by Gu, He, and
Qin [11] offer a different approach to manifold domain con-
struction. The main advantage for manifold splines is that on
each local chart, the functions are all piecewise polynomials in
common use, currently available spline surfaces in commercial
software packages can easily serve as building blocks towards
the effective design of complicated models of arbitrary topol-
ogy, and hence, the evaluation and all the necessary computa-
tional procedures are both efficient and robust. Furthermore, ex-
isting algorithms and softwares for conventional spline surfaces
can all be easily adopted for use in applications of manifold sur-
faces. Nevertheless, certain drawbacks still remain: there must
be singularities for general manifolds except tori. In [11], they
discovered that the existence of the manifold splines is equiv-
alent to the existence of a special atlas of the underlying man-
ifold domain, whose transition functions are all affine among
themselves, denoted as affine atlas. Unfortunately, it is impos-
sible to find an affine atlas to cover arbitrary closed surfaces
except tori. There must be singularities for the atlas which can
not be covered by any chart within its collection set. Moreover,
they proved that the minimal number of singularities equals
to one without developing any practical algorithm. So, how to
lower the number of singular points remains elusive, and how
to devise new algorithms with a minimum number of singular
points for practical applications remains extremely technically
challenging.

Using existing popular techniques of polar forms and Euclidean
metrics, the manifold splines in the neighborhood of singulari-
ties appear to be extremely difficult to construct, unstable, and
error-prone. In addition, the mapping distortion from the sur-
face to the affine atlas significantly affects the quality of the
final spline surface. The distortions are intrinsically determined
by the singularities for the affine atlas. Therefore, it is highly
desirable for users to be able to control the position and the
number of the singularities. For open surface cases, however,
it is ideal to push the singularities away from the surfaces. In
this paper, we demonstrate that Discrete Ricci flow is a pow-
erful theoretic and computational tool for constructing affine
atlas with full control of singularities, and specifically, being
capable of minimizing the number of singularities to its theo-
retical lower bound (which is at most one for closed surfaces
and zero for all open surfaces).

1.3. Intrinsic Shape Space

In reality, surfaces are typically acquired via modern scanning
devices, and they are initially approximated by a set of points
and/or triangular meshes. We shall consider the triangle-mesh
approximation of domain manifolds first. In order to find an
affine atlas of a triangle mesh, it is sufficient to find a con-
figuration of edge lengths, such that the one-ring neighbor of
each vertex is flat. So, any parameterization problem can be
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formulated as:

Finding a configuration of edge lengths, such that each vertex
has zero discrete Gaussian curvature 1

One could naturally raise the following much broader ques-
tions: given a mesh,

(i) What are the all possible configurations of edge lengths?

(ii) What are the all possible configurations of curvatures on
vertices?

(iii) What is the relation between edge length configurations
and curvature configurations? It is obvious that edge
lengths determine curvatures. Can curvatures determine
edge lengths?

The entire space of all possible configurations of edge lengths
is denoted as the metric space. The entire space of all possible
configurations of vertex curvatures is denoted as the curvature
space. Metric space and curvature space are intrinsic shape
spaces of the mesh.

The answer to the admissible edge lengths is straightforward:
any configuration satisfying triangle inequality is admissible.
For admissible curvature configuration, the answer is much
more complicated. There are mainly two constraints: topolog-
ical constraint and combinatorial constraint. The topological
constraint is represented as the Gauss-Bonnet formula, the to-
tal curvature equals to the 2πχ , where χ is the Euler number
of the mesh. The combinatorial constraint ensures that all an-
gles are between 0 and π , and represented solely by inequali-
ties of curvature and connectivity. The technical details will be
discussed in the next Section.

The answer to the third question has fundamental importance,
it is the main focus of this research work. It is easy to com-
pute curvature using edge lengths, but the inverse is much more
complicated. Intuitively speaking, the Gaussian curvature is a
map from the metric space to the curvature space, the mapping
in general is not injective. However, one can select a subspace
of the whole metric space, such that any two metrics in the sub-
space are conformally equivalent. Restricted on this subspace,
Gauss curvature map is a homeomorphism, namely, any curva-
ture configuration uniquely determines an edge length config-
uration in this subspace.

In practice, one can specify the target curvature and deform
the edge length according to the difference between the current
curvature and the target curvature. It is guaranteed that the cur-
vature configuration of the final mesh will reach the target one.
This kind of deformation process driven by Gaussian curvature
is the so called Ricci flow.

1 Discrete Gaussian curvature is defined as the difference between 2π and
the summation of all angles adjacent to the vertex (see Section 3.2).

1.4. Ricci Flow

Ricci flow was first introduced in differential geometry by
Hamilton in [13]. It has solid theoretic foundations. By nature, it
is a constructive geometric tool and can be easily implemented,
therefore, it has a great potential for real-world applications.

The fundamental idea of Ricci flow is rather simple. We can
deform the surface driven by its curvature to the desired shape.
Suppose S is a closed surface with Riemannian metric g, and u
is a function on S, then e2ug is another metric on S conformal
to g. Ricci flow is explicitly defined as

du(t)
dt

= K̄−K(t), (1)

where the area preserving constraint is explicitly formulated as,∫
S
dA =

∫
S
e2udA, (2)

and K(t) is the Gaussian curvature induced by the metric e2u(t)g,
and K̄ is a constant

K̄ =
2πχ(S)∫

S dA
.

It has been proven that Ricci flow converges to the uniform
metric that induces constant Gaussian curvature K̄ on the sur-
face, K(∞)→ K̄. Furthermore, Ricci flow converges to the final
stable solution exponentially fast, for a given surface S, there
exist two positive constants c1,c2 determined by the geometry
of S, such that,

|K(t)−K(∞)| < c1e−c2t .

Ricci flow has many promising properties, which make it very
valuable for real-world applications,

– Ricci flow offers the freedom to traverse the intrinsic shape
space (all the admissible configurations of edge lengths) by
driving the surface to deform to all possible shapes as long
as the Gaussian curvature of the target shape is known.

– The deformation induced by Ricci flow is conformal.

– Ricci flow deforms the surface to a single solution and con-
verges to the solution exponentially fast.

– Ricci flow can be formulated as a variational problem. The
energy is a convex function, therefore has a single global
optimum. Ricci flow is the negative gradient flow of the
energy, and can be further speed up using Newton’s method.

In our current research, the fundamental motivation for us to use
Ricci flow is its computational power to compute the affine atlas
of a mesh with any desired number of singularities, especially
with only one singularity.

1.5. Contributions

In this paper, we devise a novel algorithm to construct manifold
splines with only one singular point for closed surfaces and no
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singular point for open surfaces, reaching its lower bound in
theory. The algorithm is uniquely founded up on a mathemati-
cally rigorous tool in differential geometry, namely, Ricci flow.
Key contributions of this paper include:

(i) We formulate the intrinsic space of a mesh: the metric
space (i.e., all admissible configurations of edge lengths)
and the curvature space (i.e., all admissible configura-
tions of vertex curvatures). We point out the topologi-
cal constraints and the combinatorial constraints for the
metric spaces. We re-define the general surface parame-
terization problem as equivalence to finding flat metrics
with any user-assigned singularities.

(ii) We articulate our new computational method to construct
an affine atlas with any pre-determined singularities using
Ricci flow. The affine atlases serve as the key and nec-
essary elements for constructing manifold splines, espe-
cially, for manifold splines with only one singular point.

(iii) We offer a theoretically rigorous, practically simple and
computationally efficient tool, Ricci flow, to solve geo-
metric and solid modeling problems. In its discrete set-
ting, given the Gaussian curvature on each vertex, Ricci
flow will be employed to compute the configuration of
edge lengths.

2. Background Review

This section briefly reviews previous work on splines, Ricci
flow, parameterization, and circle packing.

Manifold Splines. Pioneering work has been done earlier by
Grimm and Hughes [7], which can model splines on arbitrary
surfaces. Recently, Ying and Zorin [37] introduced a general
method by constructing a conformal atlas. The function ba-
sis in their constructions are smooth and without singularities,
however, they are not polynomials, requiring the necessary data
exchange between polynomial-based spline surfaces and their
special-purpose functions for surface design.

Manifold splines defined by piecewise polynomials over man-
ifold domains of arbitrary topology were first rigorously for-
mulated in [11], which unifies the conventional spline surfaces
based on polar forms and the subdivision surfaces of arbitrary
topology. In their work, it is proven that a manifold admits a
manifold splines based on polar forms if and only if it has an
affine atlas. The topological obstruction for the existence of the
affine atlas is the Euler class. By removing only one point, any
oriented surface has an affine atlas.

Ricci Flow. Ricci flow on surface is introduced by Hamilton in
[13], which will conformally deform the metric of a surface to a
canonical metric with constant Gaussian curvature. For a closed
genus-zero surface, Ricci flow will change the metric to the
spherical metric with constant positive Gaussian curvature; for a
genus-one closed surface, the solution to Ricci flow is the planar
metric with zero Gaussian curvature; for a high genus closed

surface, the solution to Ricci flow is the hyperbolic metric with
constant negative Gaussian curvature. The analogue of Ricci
flow in the discrete, combinatorial setting is first studied in [3].
It is proven that combinatorial Ricci flow will deform the metric
of a triangle mesh to metrics with constant vertex curvatures.
Recently, Jin et al. applied discrete Ricci flow to compute the
hyperbolic and real projective structure of surfaces [21].

Circle Packing and Circle Pattern. Circle packing and cir-
cle pattern are used for approximating conformal deformations.
Circle packing is first introduced by Thurston in [36], where he
designed an algorithm to find the circle packing of a graph by
adjusting the radii at vertices one at a time. Stephenson et al.
developed practical algorithms in [35]. Circle pattern is intro-
duced in [1] and applied for surface parameterizations in [22],
which is closely related to circle packing. Instead of using cir-
cles centered at each vertex, this method uses the circum-circles
of triangles. Comparing with circle pattern, the theoretic frame-
work of Ricci flow is much simpler and clearer. Furthermore,
the implementation of the Ricci flow is much easier in practice.

Global Surface Parametrization. Affine atlas can be com-
puted using surface parametrization algorithms. In the litera-
ture, there exist many parameterization methods using a variety
of distortion metrics. For a thorough survey, we refer the read-
ers to the excellent work of Floater and Hormann [5,34]. We
shall focus on the most related work, especially global param-
eterization methods.

Gu and Yau computed the conformal structure based on Hodge
theory in [9]. The method computes the holomorphic 1-form
basis, and induces a flat metric with 2g− 2 singularities. Ni
et al. extracted the topological structure using harmonic morse
function, the vector fields are holomorphic 1-forms, and in-
duced a flat metric with more singularities [24]. Recently, Ray
et al. [29] computed the global conformal parameterization also
using holomorphic 1-form, but specifically tailored the param-
eterization to follow the principle curvature lines.

It may be note that, all current parameterization methods will
introduce multiple singularities due to the topological obstruc-
tion. The method to be developed in this paper is capable
of reducing the number of singularity points to its theoretic
lower bound (which is one).

3. Global Surface Parameterization Using Discrete Ricci
Flow

Conventional local surface parameterization refers to the pro-
cess of mapping a simply connected surface patch to a planar
region. In contrast, a global surface parameterization maps the
whole surface to the plane R

2, the unit sphere S
2 or the hyper-

bolic space H
2 periodically. The global surface parameteriza-

tion problem could be formulated in a precise and general way
as deforming the given surface to satisfy the prescribed curva-
tures. By deforming the surface, we mean finding a different
Riemannian metric (the first fundamental form). If conformal-
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ity is required, then the new metric should be conformal to the
original metric. Mathematically, suppose g is the original met-
ric, then the metric conformal to g has the form e2ug, where u is
the function defined on the surface. Then global surface param-
eterization is to solve function u by the prescribed curvature.

In the following, we assume the surface is an oriented 2-
manifold, represented by a two dimensional simplicial complex
(i.e., triangular mesh) M = (V,E,F), where V is the set of all
vertices, E is the set of all non-oriented edges, and F the set of
all faces. We use vi, i = 1,2, · · · ,n to denote its vertices, ei j to
denote an oriented edge from vi to v j, fi jk to denote an oriented
face, vi,v j,vk are sorted counterclock-wisely.

(a). front side (b). back side

Fig. 2. Affine atlas induced by a global conformal surface parameteri-
zation. The affine atlas is illustrated by texture mapping of a checkerboard
pattern. There are 2g−2 singularities centered at the white octagons.

3.1. Discrete Conformal Metrics

The central task is to approximate Ricci flow (1) in the discrete
mesh setting. Continuous Ricci flow conformally deforms a
surface.

Figure 1 illustrates an important observation for continuous
conformal mappings: they transform infinitesimal circles to in-
finitesimal circles, and preserve the intersection angles among
the circles. Based on this property, Thurston introduced the cir-
cle packing metric in early eighties [36]: a circle with the ra-
dius γi is associated with each vertex vi. For an each edge ei j,
two circles intersect at the angle Φi j , called edge weight. The
edge length of ei j is determined by γi,γ j and Φi j ,

li j =
√

γ2
i + γ2

j + 2γiγ j cosΦi j. (3)

It can be shown that for any face fi jk with vertex radii {γi,γ j,γk}
and edge weights {Φi j,Φ jk,Φki}, if edge weights are acute
angles, then the edge lengths {li j, l jk, lki} satisfy the triangle
inequality,

li j + l jk > lki.

We use Γ : V → R
+ to denote the vertex radii, Φ : E → [0, π

2 ]
for the edge weights, then a circle packing metric is represented
as (M,Γ,Φ).

(a) Closed surface (b) Flat circle packing metric

(c) Open surface (d) Flat metric

(e) Universal covering space

Fig. 3. Computing the affine structures for genus one surfaces using
discrete Ricci flow. The right column (b) and (d) shows the embedded
fundamental domain. The last row shows the universal covering space.

Two circle packing metrics (M,Γ1,Φ1) and (M,Γ2,Φ2) are
conformal to each other, if Φ1 ≡ Φ2. Namely, a discrete con-
formal mapping will change the vertex radii only and preserve
the intersection angles. Figure 4 and Figure 5 illustrate the cir-
cle packing metric.
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Fig. 1. Circle packing for a surface. Conformal mappings transform the infinitesimal circles on the texture plane to the infinitesimal circles on the surface.

Fig. 4. Close-up view of the flat circle packing metric using Ricci flow.

v1

v2 v3

e12
e23

e31

γ1

γ2

γ3
φ12

φ23

φ31

Fig. 5. Circle packing metric for a triangle. Triangle [v1,v2,v3 ] has vertices
v1, v2 and v3, edges e12, e23 and e31. Three circles centered at v1,v2, v3, with
radii γ1,γ2 and γ3 intersect one another, the intersection angles are Φ12,Φ23

and Φ31, which are the weights associated with the edges. The edge lengths
of the triangle are determined by γi and Φi j by the cosine law.

3.2. Discrete Curvature

Given a discrete metric (M,Φ,Γ), suppose fi jk is a face, the

angle of vertex vi in fi jk is denoted as θ jk
i , then the discrete

l

rK0

K1

K2

V0

V1

V2

V3

Fig. 6. Circle packing metric and curvature. For a canonical tetrahedron,
the edges lengths equal to l = 1.0, the radii on all the vertices equal to
r = 0.5. The curvature on each vertex equals to Ki = π. The weights of all
edges Φ equals to 0.

γ0

γ∞

Π

K0

K∞

Circle packing metric space, Curvature Space

Fig. 7. Gaussian curvature is a homeomorphism between the circle pack-
ing metric space based on (M,Φ) and the curvature space, the inverse
map can be computed using Ricci flow. We start from the known metric γ0

and the known curvature k0, then flow to the target curvature K∞ using Ricci
flow, then the metric will flow to the corresponding metric γ∞ = Π−1(K∞).

Gaussian curvature Ki at an interior vertex vi is defined as

Ki = 2π − ∑
fi jk∈F

θ jk
i ,vi �∈ ∂M, (4)

the discrete Gaussian curvature for an boundary vertex vi is
defined as

Ki = π − ∑
fi jk∈F

θ jk
i ,vi ∈ ∂M. (5)

Figure 6 demonstrates the circle packing metric for a tetrahe-
dron surface, where all the edge weights are zeros, all the vertex
radii are 0.5, and all the vertex curvatures are π .

The Gaussian curvature at each vertex could be arbitrary, but
the total curvature is confined by the topology of the surface.
This is indicated by the Gauss-Bonnet theorem.
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Theorem 1 (Gauss-Bonnet) Suppose M is a mesh, the total
discrete Gaussian curvature equals the product of 2π and its
Euler number,

∑Ki = 2πχ . (6)

Furthermore, for any discrete metric (M,Φ,Γ), Φ : E → [0, φ
2 ]

and any proper subset I of vertices V ,

∑
i∈I

Ki(v) > − ∑
(e,v)∈Lk(I)

(π −Φ(e))+ 2πχ(FI), (7)

where FI is the set of all faces in M whose vertices are in I,
Lk(I) is the link of I being the set of pairs (e,v) of an edge e
and a vertex v so that (1) the end points of e are not in I and
(2) the vertex v is in I and (3) e and v form a triangle.

The following theorem is fundamental that the map between
the vertex radii Γ and the discrete curvature K is a homeomor-
phism, detailed proof can be found in [3].

Theorem 2 If a discrete metric (M,Γ,Φ) induces discrete cur-
vature K, then K satisfies the Gauss-Bonnet Equation (6) and
the set of all linear inequalities (7). If M and Φ are given, K
satisfies (6) and the set of all linear inequalities (7), then there
exists a Γ unique up to scaling, such that K is induced by the
metric (M,Γ,Φ).

Global surface parameterization problem can be re-formulated
as follows:

Global surface parameterization is to find a special metric,
such that the curvatures are zero almost everywhere except at
several singularities.

For example, conventional global conformal surface parame-
terization is to compute a special metric on the mesh, such that
at |2g−2| singularities, the curvatures equal to −2π . The sin-
gularities are determined by the geometry of the surface, as
shown in Figure 2. Ricci flow method allows the user to freely
assign singularities for global parameterizations, as long as the
target curvature satisfies the conditions in Theorem 2. Figure 7
illustrates the relation between circle packing metric space and
curvature space.

3.3. Discrete Ricci Flow

One can assign discrete Gaussian curvature K̄ for a weighted
mesh (M,Φ) as long as K̄ satisfies the conditions in Theo-
rem 2. Discrete Ricci flow is able to solve the vertex radii Γ.
We use euΓ to denote the conformal metric with vertex radius
euiγi at vertex i. Similar to the continuous Ricci flow (1),

Definition 3 (Discrete Ricci flow) The discrete Ricci flow is
defined as

dui

dt
= (K̄i −Ki), (8)

where K̄i is the desired discrete Gaussian curvature at vertex vi,
under the constraint ∑ui = 0 (equivalent to the area-preserving
constraint).

Similar to continuous Ricci flow, it is proven that discrete Ricci
flow also converges to this stable solution exponentially fast.

Definition 4 (convergence) The solution to (8) is called con-
vergent if

(i) limt→∞ Ki(t) = K̄i exists for all i,

(ii) limt→∞ γi(t) = γ̄i ∈ R
+ exists for all i.

A convergent solution is called convergent exponentially fast if
there are positive constants c1,c2, so that for all time t ≥ 0,

|Ki(t)− K̄i| ≤ c1e−c2t ,

and
|γi(t)− γ̄i| ≤ c1e−c2t .

The following theorem states that discrete Ricci flow is guar-
anteed to converge exponentially [3].

Theorem 5 Suppose (M,Φ) is a closed weighted mesh. Given
any initial circle-packing metric based on the weighted mesh,
the solution to the discrete Ricci flow (8) in the Euclidean ge-
ometry with the given initial value exists all the time and con-
verges exponentially fast. The solution converges to the metric
Π−1(K̄).

3.4. Conformality

In practice, it is highly desirable for the deformation to be con-
formal, namely, angle preserving. A conformal map transforms
an infinitesimal circle to an infinitesimal circle, as shown in
Figure 1. Therefore conformal mapping only changes the radii
γ in the circle packing metric (M,Φ,Γ), and preserves the in-
tersection angles Φ among the circles. It can be proven that
continuous conformal mapping can be approximated with ar-
bitrary accuracy by discrete maps using circle packing [30].

In graphics applications, the meshes are embedded in R
3, the

metrics are induced from that of R
3. We can find the optimal

weight Φ with initial circle radii Γ, such that the circle packing
metric (M,Φ,Γ) is as close as possible to the Euclidean metric
in the least square sense. Namely, we want to find (M,Φ,Γ) by
minimizing the following functional

minΓ,Φ ∑
ei j∈E

|li j − l̄i j|
2, (9)

where l̄i j is the edge length of ei j in R
3.

4. Affine Atlas Construction

In this section, we detail our algorithm of constructing the
affine atlas by employing Ricci flow. The entire pipeline of the
algorithm is illustrated in Figure 9.
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(a) Canonical homology basis (b) Flat circle (c) One ring neighbor (d) Central chart and the one ring

passing the singular vertex packing metric of the singularity neighbor of the singularity

(e) Open Covering (f) Open covering (g) The central chart (h) Other charts

front view back view covering the cut graph

Fig. 8. Affine atlas automatically acquired by using Ricci Flow. First, the user selects one singular point as shown in (a). Then a cut graph is labelled either
manually or automatically as the dark curves in (a), where the cut graph is a set of canonical homology basis curves passing through the singular vertex.
Second, the flat circle packing metric is computed using Ricci flow, illustrated in (b). The flat metric induces an planar embedding. The entire surface is sliced
open along the cut graph to form a topological disk (i.e. fundamental domain). The interior of the fundamental domain is bijectively mapped to the plane.
The mapping of the one-ring neighbor of the singular vertex is not 1 to 1, but 2g−1 to 1 shown in (d). Other charts covering the cut graph are constructed
as shown in (e) and (f), and their overlapping relation with the central chart is shown in (g) and (h) by encoded colors, respectively.

Singularity Selection Connectivity Modification Ricci Flow Mesh Segmentation Isometric Embedding

Fig. 9. The pipeline to compute the affine atlas using discrete Ricci flow.

Step 1: Selecting Singularities

We can select the singular vertices {v1,v2, · · · ,vk},k ≥ 0 any-
where on the mesh arbitrarily, then we assign the target curva-
ture of the singular vertices such that

k

∑
i=1

K̄(vi) = 2πχ ,

where χ is the Euler number of the surface; the target curvature
of other vertices are zero. Note that, there are several special
cases that must be addressed.

– If the surface is a closed genus one mesh, then no singular
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Fig. 10. (a) The distribution of the area distortion is color encoded.
(b) The path of the arrow illustrate the rough behavior of the error
distribution for the eight model.

vertex is needed.

– For a high genus mesh, we can select only one singular vertex
and concentrate all curvatures on it.

– If the mesh is open, we can assign the target curvatures for all
the interior vertices to be zero and assign the target curvatures
for boundary vertices such that the total boundary curvatures
equal to 2πχ . By this way, all the non-zero curvature will
be pushed to the boundary.

Ricci flow only changes the vertex radii, therefore, the resulting
metric is conformal to the original one, and no angle distortion
will be introduced. But the area distortion is unavoidable. The
uniformity of the parameterization varies drastically depending
on the choice of singularities. Our selection is based on the
minimal area distortion among all possible cases. For each case,
we set one vertex as the single singularity.

The area distortion error is measured with the following equa-
tion:

∑n
i=1(− log(Si)− log(si))

2

n
where Si is the i-th triangle area in surface, si is its area in
parametrization domain, and n is the total number of triangles.
Figure 10(a) shows the distribution of the area distortion, blue
area with low distortion, and red area with high distortion. In
figure 10(b), the path of the arrow illustrates the rough behavior
of the error distribution for the eight model.

When we sort the vertices with the area distortion errors, we
may find the best position to put the singularity. Figure 11
gives five different cases of setting singularity. From the left to
the right, the area distortion is increasing, with the left most
being the best parameterized and the right most being the worst
parameterized.

Step 2: Modify Local Connectivity around the Singular Vertex

In order to determine the desired flat metric, the combinatorial
constraints for the curvature (7) have to be satisfied. If both the
initial curvature configuration and the target curvature config-
uration satisfy the constraints, any intermediate curvature con-
figuration during Ricci flow will satisfy the constraints. Thus,

it is enough to only consider the target curvature. If some sin-
gularities have high target curvature concentration, we need to
modify the local connectivity in their neighborhoods.

In practice, we replace the combinatorial constraints Eq. 7 by
a stronger one which is independent of the edge weight Φ,

∑
i∈I

Ki(v) > − ∑
(e,v)∈Lk(I)

π + 2πχ(FI).

We modify the connectivity around the extraordinary point and
make the sampling in the neighborhood of the singularity much
denser. We increase the connectivity of the singularity no less
than four times of genus, and vertices in the neighborhood have
valence of about 6. This can be summarized as follows:

(i) The valence of a singular vertex v is no less than 4− 2K̄(v)
π .

(ii) For all the vertices in the first n ring neighbor of the
singular vertex, their valences are no less than 6, n is a
small integer. We set n = 3 in our experiments in this
paper.

Figure 15 demonstrates the step of the connectivity modification
around the extraordinary point. This step can be easily done
using the edge split operation in half edge data structure.

Step 3: Ricci Flow

In order to compute the flat metric, we use Ricci flow to drive
the mesh to deform in this order:

(i) Set the initial value ui = 0 for each vertex.

(ii) Assign the weight for each edge and the radii for each
vertex by minimizing the energy,

minΓ,Φ ∑
ei j∈E

|li j − l̄i j|
2, (10)

where l̄i j is the edge length of ei j in R
3. Namely, the

discrete metric (M,Φ,Γ) is consistent with the induced
Euclidean metric on M.

(iii) Update the vertex radius γi by euiγi. Compute current
edge length li j’s using Equation (3), corner angles, and
discrete curvatures for each vertex using Equation (4) or
(5).

(iv) Update vertex radii,

ui+ = ε × (K̄i −Ki), (11)

where ε is a carefully selected step length. Note that if
the step length is too small, the convergence is very slow.
ε = 0.1 is used in the experiments in this paper.

(v) Normalize ui, such that the summation of all ui’s equals
to zero.

(vi) Check the deviation between Ki and K̄i, if the error is less
than a predetermined threshold, the algorithm terminates.
Otherwise, goto Step 2.

9



Fig. 11. The first row gives the different positions of singularities on the same model; The second row shows their corresponding flat metric. From
left to right, the area distortion increases.

The algorithm will converge exponentially fast. In practice,
the step length might be time-varying in order to improve the
efficiency.

Step 4: Segmentation

Next, in order to construct the affine atlas, an open covering of
the mesh needs to be built. The basic idea is to find a set of
curves G such that the mesh M can be sliced open along the
curves and form a topological disk. Such kind of curves form
the cut graph as introduced in the work on geometry images
[11].

a1

b1

a2

b2

p p2

a1

b1

a2

b2

p0

p1

a−1
1

b−1
1

a−1
2

b−1
2

Fig. 12. A genus two surface with a set of canonical fundamental group
generators {a1,b1,a2,b2} is shown on the left. A finite portion of its
universal covering space is shown on the right. Different fundamental
domains are drawn in different colors. The boundary of each fundamental
domain is the preimage of a1b1a−1

1 b−1
1 a2b2a−1

2 b−1
2 . The points {p0, p1, p2}

are the primages of p on the surface.

If there is only one singularity p0, the cut graph can be
constructed using a set of canonical homology basis passing
through the singularity as introduced in [2]. The cut graph
has one node and 2g edges. The edges can be labelled as
a1,b1,a2,b2, · · · ,ag,bg (see Figure 12).

Then the mesh is cut open along the cut graph to form a big
chart M̄. The boundary of M̄ has canonical form

∂M̄ = a1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 · · ·agbga−1
g b−1

g .

Each edge starts and ends at the singularity p0. We cover each
edge sk by a chart

Uk = ∪vi∈skNi,vi �= p0,Ni = ∪ fi jk,

where Ni represents the one ring neighbor of vertex vi. The
algorithm for computing an open covering of M is as follows:

(i) Compute a cut graph G using a canonical homology basis.

(ii) Slice the mesh along the cut graph to form a topological
disk M̄.

(iii) For edges of the cut graph, compute the union of one
ring neighbors of all its interior vertices.

(iv) The open covering of M is formed by M̄ and Uk,

M/{p0} ⊂ M̄∪k Uk.

Step 5: Planar Embedding

Because the curvature for each vertex is zero, the faces can
be flattened one by one on the plane. The following algorithm
describes the details on how to flatten an open set U ⊂M/{p0}.
Let the desired parameterization is τ : U → R

2,

(i) Label all faces in U as non-processed ones. Meanwhile,
label all vertices in U as non-processed.

(ii) Select randomly a face f0 = [V0,V1,V2] from U , label f0

as processed, label all its vertices as processed. Assign
τ(v0) = (0,0) and τ(v1) = (l01,0). Compute τ(v2) such
that

|τ(v2)− τ(v0)| = l01, |τ(v2)− τ(v1)| = l12, (12)

and

(τ(v1)− τ(v0))× (τ(v2)− τ(v0)) ·n > 0, (13)

10



(iii) Find all faces in U sharing an edge with f0, insert them
to a face queue Q.

(iv) If Q is empty, simply terminate. Otherwise, fetch the first
face f = [v0,v1,v2] from Q, label f as processed.

(v) If all vertices of f have been processed, go to Step 3.
Otherwise, there must be only one vertex which has not
been processed, assume it is v2, label v2 as processed.

(vi) Compute τ(v2), such that both distance condition (12)
and orientation condition (13) are satisfied.

(vii) Find all neighboring faces sharing an edge with f and
they are not yet to be processed, add them to Q. Go to
Step (iii).

In order to reduce the accumulation error, the parameterization
can be further improved by minimizing the following func-
tional,

min
τ ∑

ei j

(|τ(vi)− τ(v j)|
2 − l2

i j)
2.

The purpose of the above functional is to find a valid embed-
ding such that the distortion between the edge length in the
parametric domain and the Ricci flow output is minimal. In
practice, this step is usually unnecessary if singularities are
carefully chosen to spread out the surface and the curvatures
for each of them is not extremely high.

Figure 3, 8, and 16 demonstrate the affine atlas for surfaces
from genus one, two and three, respectively.

5. Manifold Spline Construction

After the affine atlas are constructed in the previous section, this
section first briefly summarizes the theory of manifold splines,
then presents our experimental results.

Suppose M is a mesh with the one ring neighbors of the singular
vertices removed. {(Ui,τi)} is an affine atlas, where Ui is a
topological disk comprised by a set of faces of M, τi : Ui → R

2

mapsUi onto the plane, namely, (Ui,τi) forms a local coordinate
chart. The chart transition functions τi j : τi(Ui ∩Uj) → τ j(Ui ∩
Uj) is a rigid-body motion in R

2.

A manifold spline is defined on the mesh F : M →R
3, such that

– The local representations of manifold splines, F ◦ τ−1
i :

τi(Ui)→R
3, are commonly used spline schemes with planar

parameter domain.

– The evaluation of manifold splines is independent of the
choice of local parameter charts,

F◦ τ−1
i = F◦ τ−1

j ◦ τi j

In our current implementation for this paper, we use triangular
B-splines [?], because it has no restrictions on the connectivity
of the mesh and it can represent any polynomials defined over
planar [14], spherical [?] and manifold domain [11]. We have
implemented our own version based on a generic half edge mesh

library as in [20], while adding the edge lengths, vertex radii,
and curvature as the new attributes for the underlying mesh.

In our prototype software system, we have tested several meshes
of genus from zero to three. In this paper, we choose manifold
triangular B-spline because of its flexibility in domain construc-
tion. This method can be also applied to other manifold splines,
such as T-splines [18] and Powell-Sabin splines [16].

Given a domain manifold M, a manifold triangular B-spline
surface is defined as follows:

F(u) = ∑
I

∑
|β |=n

cI,β NI,β (τI(u)), u ∈ M,

where I is the triangle index and β = (β0,β1,β2) is the 3-
tuple to label the control points and knots. The algorithm for
constructing manifold triangular B-spline is as follows:

(i) The initial control points cI,β are chosen by uniformly
subdivided the domain manifold M according to the user-
specified degree n. Each domain triangle is associated
with (n+ 1)(n+ 2)/2 control points.

(ii) To compute the optimal control points c̃I,β , we solve the
following linear constrained least square problem:

min
c̃

∑
I

∑
|β |=n

‖c̃I,β − cI,β‖
2 (14)

subject to c̃I,β = f J(V I
β ),∀I,∀β , |β | = n,β2 ≤ r

where I = �(v0,v1,v2) and J = �(v3,v1,v0) are ad-
jacent triangles with common edge {v0,v1}, V I

β =

{tI
0,0, . . . , t

I
0,β0−1, . . . , t

I
2,0, . . . , t

I
2,β2−1} and tI

i, j are the
knots for triangle I.

Fig. 13. The linear constraints in the least square problem Eq 14 for
a cubic manifold triangular B-spline. (a) shows two adjacent triangles
I = �(v0,v1,v2) and J = �(v3,v1,v0) and the knot configurations. (b) high-
lights six control points, three for each triangle. Note that the constraint for
case r = 0 is equivalent to the shared control points, i.e., cJ

β0+1,β1 ,0 = cI
β0+1,β1 ,0

and cJ
β0 ,β1+1,0 = cI

β0 ,β1+1,0. The constraint for case r = 1 requires that the
highlighted six control points to be coplanar.

Note that the initial manifold triangular B-spline surfaces ac-
quired by step 1 usually have very bad curvature distribution,
especially along the edges of the domain triangles. The pur-
pose of step 2 is to fair the spline surface by modifying the
control points. In the objective function Eq (14), we minimize
the squared distance between the control points of the origi-
nal and the new spline surface, which implies that the minimal
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change of the shape. In the constraints, we use an integer r,
0 ≤ r ≤ n−1, to control the fairness of the spline surface. The
bigger the value r, the more faired surface we obtain. In our
experiments, we can get visually pleasing surfaces with r = 1
for cubic splines or r = 2 for splines of degree 5 or above. Fig-
ure 13 illustrates the case r = 1. For the detailed information
about spline fairing, please refer to [17].

Fig. 14. Examples of manifold splines with various extraordinary points.
Rabbit: genus zero, two boundaries, no singularity; Vase: genus two, one
singularity; Cup: genus two, one boundary, no singularity.

Figure 8 shows the flat circle packing metric of a genus two
surface and its affine atlas. Figure 9 demonstrates the process
of using Ricci flow on how to compute the affine atlas. The
sculpture surfaces in Figure 16 is of genus three with different
resolutions. The singular vertex and the cut graph are explicitly
shown in this figure. The affine atlas are also highlighted in the
figure.

All the examples of manifold triangular B-splines are shown in
Figure 14, 17 and 18. Table 1 shows the statistics of the test
cases. As shown in this table, our algorithms for constructing
the affine atlas and manifold triangular B-splines are extremely
fast, i.e., within only a few seconds.

Note that genus 1 surfaces, such as Rockerarm (closed) and
Hypersheet (open), do not have singularities. There is no sin-
gularity for the cup model (genus 2 open surface) as all the
non-zero curvatures are pushed to the boundary. For the Rabbit
model, we introduce two cuts, one on the top, the other on the
bottom, and then apply the double covering to convert it into
a closed genus one surface. Thus, no singularity exists for the
Rabbit model. For the Bunny model, we specify the singular-
ity on the head. For other genus 0 surfaces with large extrusion

parts, such as Horse and Camel, we choose multiple singulari-
ties on their legs to reduce the area distortion of the affine atlas.
For the high genus closed models, such as Eight, Vase and 3-
hole torus, only a single extraordinary point is specified. As we
remove the extraordinary points and their one-ring neighbors
in spline construction, there are holes in the resulted splines.
In the postprocessing step, we use planar triangular B-splines
to fill these holes with G1 continuity along the boundaries.

6. Discussion

This section discusses several implementation related issues.

Conformal structure vs affine structure. It is proven that con-
formal structure induces affine but not vice versa [11]. There-
fore, conformal structure is in some sense stronger than affine
structure. In [11], Gu et al. showed a method to construct man-
ifold triangular B-splines using conformal structure. In fact,
manifold splines are solely defined using affine structure, since
all the popular planar splines such as NURBS, Bèzier splines,
triangular B-splines are parametric affine invariant. Thus, from
the spline construction point of view, one can totally ignore
the conformal constraints. The affine atlas shown in Figure 9 is
computed by ignoring the conformal constraints, i.e., we sim-
ply skip Step 3 (ii) and assign the initial radius of each vertex
to be 1. Therefore, the angle Φi j in the circle packing metric is
zero for each edge ei j. Since discrete Ricci flow preserves the
Φi j, the triangles in the isometric embedding tend to be equi-
lateral triangles. We should also point out that remeshing of the
input domain mesh is not necessary except the valance of the
singular point needs to be increased.

Number of singularities. The intrinsic connection between
manifold splines and polar forms results from affine structure
and affine atlas. To make these geometric structures computa-
tional tractable in shape modeling applications, we resort to the
powerful tool of global parameterization over arbitrary man-
ifold domain. It is known that global parameterization often
suffers from severe area distortion. The quality of the global
parameterization is determined by many factors, such as the
connectivity of the mesh, the weights on edges, the positions
and curvatures of the singularities. It is technically challenging
on how to optimize these factors towards the quality improve-
ment of global parameterization.

Section 4 presents a brutal force method to locate the singular-
ity such that the area distortion of the affine atlas is minimal.
Usually, the more number of singularities, the less area distor-
tion in the affine atlas. In practice, the singular points should be
chosen on parts with large extrusion, e.g., the feet of the horse
model in 17.

Besides this work which minimizes the number of singularities,
we developed polycube T-splines which aims to minimizes the
area distortion in affine atlas [38]. However, the price to pay
for the lower area distortion is the significantly larger number
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Table 1
Statistics of test examples. g, genus of domain manifold M; Nf , # of faces in M; Nb , # of boundaries in M; Ns , # of singularities; Nc, # of control points;
Tricci , time for computing the discrete Ricci flow and isometric embedding (Step 3 and 5 in Section 4); Tspline, time for the spline construction; n, degree of
splines. Note that time measures in seconds.

Object g Nf Nb Ns Nc Tricci Tspline n Continuity

Bunny 0 621 3 1 2827 6s 3s 3 C2

Rabbit 0 1038 2 0 4698 12s 8s 3 C2

Horse 0 4002 5 2 18074 26s 18s 3 C2

Camel 0 2958 5 1 13380 18s 12s 3 C2

Rockerarm 1 614 0 0 7675 2s 5s 3 C2

Hypersheet 1 300 3 0 1446 5s 2s 3 C2

Eight 2 806 0 1 3644 4s 3s 3 C2

Vase 2 1480 0 1 6666 15s 10s 3 C2

Cup 2 1929 1 0 15515 20s 18s 4 C3

3-hole torus 3 878 0 1 3955 8s 4s 3 C2

of extraordinary points. Therefore, in real applications, it is the
user’s call to make the balance

7. Conclusion and Future Work

This paper has developed an efficient and rigorous algorithm for
constructing a manifold spline surface of complicated topology
and complex geometry with single extraordinary point, which
has already reached the theoretic lower bound of the number
of singularities. The uniqueness of this construction algorithm
for manifold splines is that, it is solely based on a simple and
powerful computational tool: Ricci flow. From the mathemat-
ical point of view, Ricci flow has substantial relevance to the
curvature flow method in differential geometry. For example,
Ricci flow can conformally deform the metric to induce any
prescribed curvature.

Current manifold splines are essentially founded upon the natu-
ral integration of the affine atlas for domain manifold and polar
forms used to define conventional spline surfaces over any pla-
nar domain. Due to their topological obstruction, general high
genus surfaces admit neither a flat metric nor an affine atlas.
Therefore, ideally the most natural spline solutions for high
genus manifolds should not depend on the affine structure. In
the future, we shall investigate different spline schemes which
are not based on the affine structure of the underlying surface
domain.
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to the Rescue: Mitigating Area Distortion in Discrete Conformal Map.
ACM SIGGRAPH/Eurographics Symposium on Geometry Processing,
2005.

[23] Andrei Khodakovsky, Nathan Litke, Peter Schröder. Globally smooth
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Fig. 17. Multiple singularities. Within our framework, the user can also specify multiple singularities on the models. The horse model has five boundaries
(four on the feet and one on the mouth) and two singularities. The camel model has five boundaries and one singularity. The target geodesic curvature of the
boundary vertices is zero. The holes and singularities are filled using minimal surfaces.
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(a) Parametric domain (b) The central chart (c) Manifold splines (d) Spline patchwork(e) Control point distribution

Fig. 18. Examples of manifold triangular B-splines. The affine atlas are computed using Ricci flow under free boundary condition. The transition function
is a combination of translation and rotation. The red curves on the spline surfaces (see (d)) highlight the triangular patchwork.
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