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Abstract

The problem of computing shortest homotopic cycles on a surface has
various applications in computational geometry and graphics. In general,
shortest homotopic cycles are not unique, and local shortening algorithms can
become stuck in local minima. For surfaces with negative Euler characteristic
that can be given a hyperbolic uniformization metric, however, we show that
they are unique and can be found by a simple locally shortening algorithm.
We also demonstrate two applications: constructing extremal quasiconformal
mappings between surfaces with the same topology, which minimize angular
distortion, and detecting homotopy between two paths or cycles on a surface.

Keywords: Unique Shortest Homotopic Cycle, Hyperbolic Uniformization
Metric, Local Loop Shortening, Extremal Quasiconformal Mapping,
Homotopy Detection

1. Introduction

Various geometric problems directly depend on or are closely related
to the computation of shortest homotopic cycles for surfaces with complex
topology, including loop contractibility [1, 2], homotopy detection [3], op-
timal cut and pants decomposition [4, 5], shortest cut graphs [6, 7], short-
est generators for homotopy or homology groups [8, 9], shortest non-trivial
cycles [10, 11], and shortest essential cycles [12]. Applications of these ba-
sic algorithms include topology repair of 3D models [13, 14], denoising [8],
parametrization and remeshing [15], surface matching and morphing [16],
and feature recognition [17, 18].

Most of the previous works [19, 20, 21, 22, 23, 24, 25, 26, 27, 4, 5, 28]
consider the shortest homotopic cycle problem on either combinatorial sur-
faces or piecewise-linear surfaces. The best result, to our knowledge, is given
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by Colin de Verdière and Erickson [28] with time complexity O(gnk log(nk)),
where g and n are the genus and the complexity of the combinatorial surface
respectively, and k is the number of edges of the input cycle. Their com-
putation of the shortest cycle homotopic to a given cycle of complexity k is
based on the preprocessing of the surface: a tight octagonal decomposition
of the surface in O(n2 log n) time.

In general, a closed geodesic in a given homotopic type is not unique,
and local shortening algorithms can become stuck in local minima, as illus-
trated by Figure 1. Complicated global processing algorithms are required.
However, if we consider topologically non-trivial surfaces (i.e., genus > 1),
according to the Uniformization theorem [29], there exists a hyperbolic uni-
formization metric such that whose Gaussian curvature is constantly nega-
tive everywhere on the surface. It is not difficult to prove that there exists a
unique closed geodesic, a cycle with global minimal length, in each homotopy
class for surfaces with negative Gaussian curvature. With no local minima,
any simple local shortening algorithm can theoretically be adapted to find
out the shortest cycle homotopic to a given cycle on a surface with non-trivial
topology. For surfaces with a Riemannian metric, several algorithms locally
shorten curves, including Birkhoff curve shortening [30], disk flow [31], and
geodesic curvature flow [19, 20]. We adopt Birkhoff curve shortening in this
paper for its simplicity.

(a) (b) (c)

Figure 1: A local loop shortening process may become stuck at a local minima. (a) original
loop on Greek model (b) shortening the input loop after 2 iterations. (c) shortening after
5 iterations.
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The computation of the closed shortest homotopic cycle based on a sur-
face hyperbolic uniformization metric can simplify the algorithm design, and
provides different solutions of related problems. We provide two applications
in this paper.

Constructing a smooth and one-to-one mapping with the least global dis-
tortion between surfaces provides a useful tool for numerous applications in
computer graphics, geometric modeling, and visualization, where mapping
quality is largely measured by the introduced angular distortion. It is a fun-
damental but challenging problem especially for surfaces with complicated
topology. In general, there does not exist an angle preserved mapping be-
tween two arbitrary topologically equivalent surfaces, but among all possible
diffeomorphisms between the two surfaces, the extremal quasiconformal map-
ping, the one minimizing the angular distortion the most, exists. Geodesic
spectrum - sorted closed shortest homotopic cycles according to their lengths
under the measurement of surface hyperbolic uniformization metric - guides
us to approximate the extremal quasiconformal mapping between surfaces.

The other application is homotopy detection, whether two paths or cycles
are homotopic to each other. We can pick the unique geodesic under surface
hyperbolic uniformization metric in each homotopy class as its representative
and solve the problem that whether two closed cycles are homotopic to each
other by checking whether they share the same homotopy representative. For
topologically trivial cycles, they will of course shrink to points.

1.1. Related Works

In this paper, we study the problem of finding the unique shortest cycle
homotopic to a given cycle on a topological nontrivial polyhedral surface
based on surface hyperbolic uniformization metric. Previous works have
considered the related questions of finding the shortest path in a surface that
is homotopic to a given path, or the shortest cycle that is either homotopic
or homologous to a given cycle based on surface Riemannian metric. For
computing shortest paths, We refer readers to the comprehensive survey by
Mitchell [32].

Geodesic curvature flow based methods [19, 20, 21, 22, 23, 24] deform
the cycle on surface to a local minimum within the same homotopy type.
Hershberger and Snoeyink [25, 26] compute the shortest path or cycle ho-
motopic to a given path or cycle of a piecewise linear surface where all the
triangle vertices lie on the boundary. Yin et. al. [27] apply the shortest path
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algorithm to compute the shortest cycle in each homotopy class of a poly-
hedral surface with general topology by constructing the Universal Covering
Space. Colin de Verdière and Lazarus [4, 5] introduce algorithms to compute
the shortest simple loop or cycle homotopic to a given simple loop or cycle,
in time polynomial in the complexity of the surface, the complexity of the
input curve, and the ratio between the largest and smallest edge lengths.
A generalized algorithm is given by Colin de Verdière and Erickson [28] to
compute the shortest cycle (either simple or not) homotopic to a given cycle
in a combinatorial surface with genus g and complexity n in O(gnk log(nk))
time, where k is the number of edges of the input cycle.

(a) (b) (c)

Figure 2: Previous universal covering space based methods for finding the closed geodesic
[33, 34]: (a) the original loop on surface. (b) The red arc, as indicated by the arrow, is
the axis of the Fuchsian transformation of the given homotopy type (homotopic to the
original loop). The projection of the red arc from the universal covering space to the
original 3-hole surface induces the loop as illustrated in (c), the closed geodesic in the
given homotopy type. (c) Without the exact computation which greatly increases the
computational complexity, the projection is not a closed loop due to accumulation error
of the computation of universal covering space, as shown by the zoom in.

In [35], Chambers et al. prove that finding the shortest cycle (either
simple or not) in a given homology class in a surface graph is NP-hard; Chen
and Friedman [36, 37] prove that the corresponding problem in simplicial
complexes is NP-hard to approximate within any constant factor. Dey et al.
[8] propose the persistence based algorithm to compute tunnel and handle
loops which are defined via homology and apply for topological denoising.
Let G be a directed graph with weighted edges, embedded on a surface of
genus g, b boundaries, and complexity n, Erickson and Nayyeri [38] propose
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an algorithm to compute the shortest directed cycle in G in any given Z2

homology class in 2O(g+b)n log n time.
The only previous works based on surface hyperbolic uniformization met-

ric use an algebraic way to compute the closed geodesic for a given homotopy
type on surfaces with χ < 0 [33, 34], by projecting the axis of the Fuchsian
transformation corresponding to the homotopy type from universal covering
space to the original surface. The cost of the method is not only the compu-
tation of the universal covering space and its storage, but also the extremely
high requirement of computational accuracy, as illustrated in Figure 2.

The outline of the paper is as follows. In Section 2, we introduce the
concepts which are necessary to the algorithms which include the theoretical
foundation of this paper. In Section 3, we give a brief review of one local
loop shortening algorithm. We give the details of the algorithms in Section 4.
In Section 5, we give experimental results and discussions. We then further
show two applications in Section 6. In Section 7, we conclude our paper and
give future directions.

2. Uniformization Metric and Unique Closed Homotopy Geodesic

In this section, we give a brief review of the concepts which are necessary
to this paper. The details can be found from classical textbooks in algebraic
topology [39] and Riemannian geometry [40]. We also introduce the Geodesic
Uniqueness theorem that states that there exists only one unique globally
shortest geodesic and no any other locally shortest ones in each homotopy
class for surfaces with hyperbolic uniformization metrics. The theorem is
the foundation of this paper. Surface Ricci flow, a tool to compute surface
hyperbolic uniformization metric, is also introduced.

2.1. Homotopy

Two closed curves γ and γ̄ on a surface M are homotopic to each other
if there is a continuous map h : [0, 1]× S1 → M such that h(0, t) = γ(t) and
h(1, t) = γ̄(t) for all t. A loop is contractible if it is homotopic to a constant
point. In simple words, two loops are homotopic if they can deform to each
other without leaving the surface. A loop is contractible if it can shrink to a
point on the surface. So all the closed loops on the surface can be classified
by homotopy equivalence.
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2.2. Uniformization Metric

Let M be a surface embedded in R3. The total Gaussian curvature of M
is solely determined by the topology of the surface, as shown below:

Theorem 1 (Gauss-Bonnet Theorem [41]). The total Gaussian curva-
ture of a compact surface M is given by∫

M

KdA+

∫
∂M

kgds = 2πχ(M), (1)

where K is the Gaussian curvature on interior points, Kg is the geodesic
curvature on boundary points, χ(M) is the Euler characteristic number of
M .

Let g be the Riemannian metric of M induced from its Euclidean metric
in R3. Suppose u : M → R is a scalar function defined on M . Then ḡ = e2ug
is also a Riemannian metric on M and is conformal to the original one. Any
surface admits a Riemannian metric of constant Gaussian curvature, which
is conformal to the original metric. Such metric is called the uniformization
metric.

Theorem 2 (Uniformization Theorem [29]). Let (M,g) be a compact
2-dimensional Riemannian manifold with Riemannian metric g and negative
Euler characteristic χ < 0. There exists a Riemannian metric ḡ such that ḡ
induces constant −1 Gaussian curvature everywhere of M and is conformal
to g.

According to the Gauss-Bonnet theorem, the sign of the constant Gaus-
sian curvatures is determined by the Euler characteristic of the surface. So
surfaces with negative Euler characteristics (i.e., χ < 0) have hyperbolic
uniformization metric with −1 Gaussian curvature everywhere.

The geodesics are the locally shortest curves on surfaces. They are defined
closely related to metric. The geodesic lengths reflect the global information
of the surface. For general surfaces with Euclidean metric, there may be
multiple globally shortest and many locally shortest geodesics in each homo-
topy class. For surfaces with hyperbolic uniformization metric, there exists
only one unique globally shortest geodesic and no any other locally shortest
geodesics in each homotopy class, which can be directly deduced from the
following theorems:

6



Theorem 3 (Geodesic Uniqueness). Suppose (M,g) is a closed compact
surface with metric g. If Gaussian curvature is negative everywhere, then
each homotopy class has a unique globally shortest geodesic and no other
locally shortest geodesics.

Proof. Given two loops γ1 and γ2 on M homotopic to each other, suppose
both of them are closed geodesics on M , either globally or locally shortest.
If γ1 and γ2 contain no points in common, then they bound a topological
cylinder C. According to the Gauss-Bonnet theorem, the cylinder satisfies∫
C
KdA +

∫
∂C

kgds = 0 because the Euler characteristic of a cylinder is
zero. From the left side, kg = 0 on both γ1 and γ2, so

∫
∂C

kgds = 0. Then∫
C
KdA has to be zero. Considering that K is negative everywhere, the

area of the cylinder is zero, which contradicts the assumption that γ1 and
γ2 contain no points in common. Therefore γ1 and γ2 have at least one
intersection point. Suppose they bound a topological disk D. D satisfies∫
D
KdA +

∫
∂D

kgds = 2π because the Euler characteristic of a disk is one.
Since any part of γ1 or γ2 is still a geodesic, kg = 0 on the boundary of D,
and

∫
∂D

kgds = 0. Then
∫
D
KdA is larger than zero, but this contradicts the

given fact that K is negative everywhere. Therefore, γ1 and γ2 can’t be both
homotopy geodesics on M . We conclude that there exists only one closed
geodesic given a homotopy type of M and that one is globally shortest. �

Note that the above proof has assumed no self-intersection. If the ho-
motopy class of the given two loops is complicated, they may have self-
intersections. The loops are not an embedding, but an immersion on M .
We can lift the two loops to the universal covering space of M . In universal
covering space, they won’t have self-intersections. We can then apply similar
argument as the above.

For surfaces with boundaries, proof of geodesic uniqueness can be found
in [40].

Corollary 1. Each homotopy class has a unique globally shortest geodesic
and no other locally shortest geodesics for surface (χ < 0) with hyperbolic
uniformization metric.

The proof is straightforward based on the Geodesic Uniqueness theorem.

2.3. Surface Ricci Flow

In order to induce hyperbolic uniformization metric on a surface with
(χ < 0), we will use Ricci flow, which will be described in this section.
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Ricci flow on a surface deforms the surface’s Riemannian metric according
to curvature; suppose the surface M is with area A and Euler characteristic
χ, then the time-varying metric g(t) and Gaussian curvature K(t) are related
by a heat-like diffusion process,

dgij(t)

dt
= −2K(t)gij(t) +

χ(M)

A
.

The seminal work on Ricci flow, by Richard Hamilton in 1982, applies to
Riemannian manifolds in any dimension [42].

For closed surfaces with χ ≤ 0, Hamilton proved:

Theorem 4 (Hamilton 1988). For a closed surface with χ ≤ 0, if the total
area of the surface is preserved during the flow, the Ricci flow will converge
to a metric such that the induced Gaussian curvature is constant everywhere.

In discrete case, smooth surface can be approximated by simplicial com-
plex, which is easy to convert to a triangular mesh. LetM = (V,E, F ) denote
a triangulated surface embedded in R3, consisting of vertices (V ), edges (E),
and triangle faces (F ). Denote θjki the corner angle attached to vi ∈ V in
f jk
i ∈ F , and ∂M the boundary of M , discrete Gaussian curvature Ki on vi
is defined as the angle deficit:

Ki =

{
2π −

∑
fjk
i ∈F θjki , vi ̸∈ ∂M,

π −
∑

fjk
i ∈F θjki , vi ∈ ∂M.

(2)

A discrete metric onM is a function defined on the set of edges l : E → R+

satisfying triangle inequality: lij + ljk > lki for each fijk. We can define a
discrete Riemannian metric on M by taking the length of each eij as its lij.
The discrete Riemannian metric induces a hyperbolic circle packing metric,
denoted (M,Γ,Φ). Each vi associates a hyperbolic circle with radius γi. The
radius function is defined Γ : V → R+. The two circles at vi and vj of edge
eij intersect with an acute angle ϕij, denoted the weight of eij. The weight
function is defined Φ : E → [0, π

2
].

The length lij of eij can then be computed from the hyperbolic circle
packing metric based on the following hyperbolic cosine law:

coshlij = cosh γi cosh γj + sinh γi sinh γj cosϕij. (3)
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Associate M with an initial hyperbolic circle packing metric (Γ0,Φ). Let

ui = log tanh
γi
2

(4)

for each vi, denote t the time, the discrete hyperbolic surface Ricci flow is
defined as follows:

dui(t)

dt
= −Ki. (5)

Chow and Luo [43] have shown that the discrete Ricci flow of Eqn. 5 can
be interpreted as the negative gradient flow of a convex energy function with a
unique global minimum. They name this the discrete hyperbolic Ricci energy,
and use it to induce a hyperbolic uniformization metric on the surface.

3. Birkhoff Curve Shortening

In this paper we use Birkhoff curve shortening [30, 44] to find the geodesic
homotopic to the original curve. To describe it, we begin with some defini-
tions.

In continuous mathematics on a smooth manifold M , the injective radius
of a point p ∈ M is defined as the largest radius for which the exponential
map at p is a diffeomorphism. Injective radius can be defined operationally
for discrete surfaces as well: choose a tangent plane at p. For each direction
v in the plane, trace a geodesic on the surface from p in direction v to a point
at distance t, denoted qv(t). The points at distance t for all directions is a
geodesic circle, and the map from this circle to the circle centered at p and of
radius t on the tangent plane is called the exponential map. As the geodesic
circle grows and may touch itself, defining the injective radius of p where the
exponential map is no longer 1-to-1 at the touching point. The minimum
of the injective radii among all points, denoted as r, is called the injective
radius of M . Any two points p, q ∈ M with d(p, q) < r can be joined by a
unique local minimal geodesic.

Let γ0 be a closed curve in M . We divide γ0 into n segments with division
points p1, p2, ..., pn. Such subdivision is fine enough that ensures the distance
of nearby division points within distance r. We then replace each arc p̃ipi+1

with the geodesic pipi+1 connecting pi to pi+1 and update γ0 to:

γ1 = p1p2
∪

p2p3
∪

...
∪

pn−1pn.
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The length of γ1 is strictly smaller than the length of γ0 unless γ1 = γ0. Note
that the homotopy type of γ1 won’t get changed because each arc is within
distance r.

Successive midpoints of the n segments of γ1 are also within distance r
from each other. We then replace the arc connecting them with geodesics.
This produces a new loop γ2. By iterating this process, each new loop is
always homotopic to the previous one. We prove that the algorithm converges
for surfaces with hyperbolic uniformization metric, and the final loop is the
unique homotopy geodesic.

Corollary 2. For a closed compact surface M with hyperbolic uniformiza-
tion metric, a loop on M converges to the unique homotopy geodesic with the
Birkhoff curve shortening.

Proof. Denote γk the k-th iteration of the Birkhoff curve shortening pro-
cess for curve γ0 on M . Denote vk1 , v

k
2 , ... v

k
n the nodes connecting piecewise

geodesic curves of γk. The distance of vki and vki+1 is less than the injec-
tive radius r of M , that ensures the homotopy class doesn’t change during
the loop shortening process. The curve shortening process will eventually
converge because the length of γk decreases and is bounded.

Denote C = {γk|k = 1, 2, ...,∞} the curve sequence. For a compact
surface M , there is a subsequence C1 ⊂ C, such that vk1 ∈ C1 converges; a
subsequence C2 ⊂ C, such that vk2 ∈ C2 converges, etc.

Denote v1 the limit of vk1 ∈ C1, v2 the limit of vk2 ∈ C2, etc. Connect each
vi and vi+1 by geodesic, and denote γ the final loop.

We show that the intersection angle of the two geodesics connecting vi−1

and vi, and vi and vi+1 at node vi is zero. If the angle is not zero, we can
apply Birkhoff curve shortening process on γ. The length of γ will decrease
based on triangle inequality, that contradicts that the length of γ is the inf
of all curves in C.

Each segment on γ is a geodesic. Intersection angles of successive geodesic
segments are zero, so γ is a geodesic loop. Based on the Geodesic Uniqueness
theorem, γ is the only geodesic in the homotopy class. �

In this paper, the parametrization domain for us to compute the geodesics
and middle points during the Birkhoff Curve Shortening process is Poincaré
disk. We first give a brief introduction of Poincaré disk and refer the reader
to [45] for details concerning models of hyperbolic geometry. We will give
details of the algorithm later in Section 4.4.
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Poincaré Disk. The Poincaré disk is a unit disk on the complex plane with
Riemannian metric defined as

ds2 =
4dwdw̄

(1− w̄w)2
.

In the Poincaré disk, rigid motion is a Möbius transformation,

z → eiθ
z − z0
1− z̄0z

, z0 ∈ C, θ ∈ [0, 2π);

the geodesics are circular arcs which are orthogonal to the unit circle; the
hyperbolic circle with center c and radius r, denoted (c, r), coincides with
an Euclidean circle (C, R) with

C =
2− 2µ2

1− µ2|c|2
c, R2 = |C|2 − |c|2 − µ2

1− µ2|c|2
, (6)

where µ = tanh( r
2
).

4. Algorithm

4.1. Overview of the Algorithm

Given a triangular manifold M with χ < 0, we adopt discrete surface
Ricci flow method [46] to compute surface hyperbolic uniformization metric
in Sec. 4.2. Since it is the most time consuming step and we need only to
compute once for all, we store the computed metric - a positive real number -
at each edge. In Sec. 4.3, we introduce a combinatorial algorithm to quickly
approximate the injective radius r of M . In Sec. 4.4, we give the details
of the loop shortening algorithm. For a given closed cycle on M , we first
divide it into small subintervals such that each subinterval is less than r. We
then repeatedly embed a chart containing each subinterval isometrically to
Poincaré disk and compute the middle point of the geodesic connecting the
two ending points of the subinterval. After connecting the middle points of
neighboring subintervals, we construct a new cycle homotopic to and with
length less than the original one. We repeat this process such that each
iteration always generates a new loop homotopic to the previous one but with
shorter length until the cycle converges to the globally shortest geodesic in
its homotopy type. Figure 3 illustrates the algorithm.
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(a) (b) (c) (d)

Figure 3: Algorithm illustration: (a) the input loop γ is marked with red on a triangular
manifold M ; (b) loop γ is divided by points p0, p1, ..., pn−1 into n segments such that each
segment is shorter than the injective radius r of M . One chart will cover one segment with
color marked. Here we only show part of those charts which cover even number segments
for illustration. (c) One chart is isometrically parameterized into the Poincaré disk with
one of the two division points (it is p4 in this example) in the center of the disk. So the
geodesic path between p4 and p5 in the Poincaré disk coincides with an Euclidean straight
line, marked with blue. m is their middle point. (d) By connecting the n midpoints
of the segments with geodesic paths, a new closed loop γ̄ is produced, shorter than and
homotopic to γ.

4.2. Pre-computing the Hyperbolic Uniformization Metric

For a given triangle mesh M with vertex set V , edge set E, face set F ,
the algorithm to compute surface hyperbolic uniformization metric can be
summarized as the following:

1. We first initiate a hyperbolic circle packing metric from the discrete
Riemannian metric of M induced by edge length. For each vertex
vi, denote m the number of its adjacent faces, and lij, ljk, lki the edge
lengths of eij, ejk, and eki respectively, compute its initial circle radius
γi by averaging its adjacent face radius:

γi =
1

m

∑
fijk∈F

lki + lij − ljk
2

;

for each edge eij, compute its edge weight ϕij from γi, γj according to
Eqn. 3.
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2. For each vertex vi, compute its current discrete Gaussian curvature Ki

according to Eqn. 2, where the corner angle θjki in each adjacent face
fijk is computed based on the hyperbolic cosine law:

cosh lij = cosh γi cosh γj + sinh γi sinh γj cos θ
jk
i . (7)

3. For each vertex vi, set the step length ϵ no greater than 0.1, update its
ui defined in Eqn. 4 as

ui = ui + ϵ(−Ki).

Update its radius γi according to Eqn. 4 correspondingly.

4. For each edge lij, update its edge length with current vertices radii γi
and γj and the edge weight ϕij according to Eqn. 7.

5. Repeat the steps from 2 through 4, until the maximal curvature error
falls below a user-specified error tolerance threshold δ.

max |K̄i −Ki| < δ.

In our experiments, we set it to 1e− 5, which is good enough without
folding or overlapping found.

As mentioned in Section 2, discrete Ricci flow is the negative gradient flow
of the discrete Ricci energy with a unique global minimum which induces the
uniformization metric. Instead of the above gradient descent method, we
can apply Newton’s method to compute surface hyperbolic uniformization
metric. The key to Newton’s method is to compute the Hessian matrix,
which can be computed explicitly. Please refer [46] for the closed form.

4.3. Estimation of Chart Size

Birkhoff curve shortening process requires the maximal segment length no
longer than the injective radius of the manifold. While for a given loop, the
convergence speed with the curve shortening process is related to the number
of segments. In general, the more segments, the more time is needed for each
iteration, unless they are computed in a parallel way. Also, the smaller
each segment, the slower the overall convergence speed is. Considering this
dilemma, we compute an approximation of the injective radius and set as the
maximal length of each segment.

The following algorithm computes an approximation of the injective ra-
dius of a triangular surface. The basic idea is to grow a disk as big as possible
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with the center at a vertex of the surface before the boundary of the disk
meets from different directions. The difficulty is to distinguish whether the
disk meets from one direction due to the discrete structure of the surface or
different directions. We associate each edge with two directions. eij indicates
one direction from vi to vj and eji with the reverse direction. Each face fijk
has a CCW orientation indicated by its vertex sequence.

1. For each vertex vi, initialize an empty boundary list Li associated with
vi.

2. Randomly mark one face fijk which contains vertex vi, and update the
list Li to {eij, ejk, eki}. Note that the sequence and the directions of
the edges are consistent with the CCW orientation of fijk.

3. Mark the neighboring faces of fijk if they have not been marked by
vi. For example, fjil has not been marked by vi. Then mark fjil and
update the list Li by replacing eij with eil, elj. The boundary list Li is
{eil, elj, ejk, eki}.

4. Continue to grow the disk centered at vi. After each iteration of mark-
ing those non-marked faces along the current boundary of disk and cor-
respondingly updating the boundary list, the list Li needs be checked
to remove those edges which appear successive but with opposite direc-
tions, like eij, eji. The list will keep checking until no more edges can
be removed. Note that the first edge in the list is considered successive
with the last one in Li.

5. The disk will stop growing as soon as there is one edge that appears
twice in the list can’t be removed.

6. Each vertex will compute a disk with a radius following the above
method. Then we choose the smallest radius r among the computed
radii, and set as a threshold that no segment of a divided loop can be
longer than r.

The above algorithm is efficient but provides only an approximation based
on the combinatorial structure of the surface, which depends on the triangu-
lation quality of the surface and prefers a uniform one. If the triangulation is
extremely irregular, the disk can grow based on geodesic offsets with the price
of high computation cost. The algorithm proposed by [47] can be adapted by
replacing the Euclidean metric with the hyperbolic uniformization metric.
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4.4. Loop Shortening

We first divide a given loop γ on M into n segments with the length of
each segment less than the computed r, as one example given in Figure 3
(a). For a segment with two ending vertices pi and pi+1, we locally construct
a chart, denoted as C, which fully covers the segment as shown in Figure
3 (b) and isometrically embed C to the Poincaré disk based on the pre-
computed hyperbolic uniformization metric as shown in Figure 3 (c). Denote
the embedding function as uv : V → H2. The following algorithm gives the
details.

1. Start from vertex pi (vi), we randomly pick one of its neighboring tri-
angles fijk to embed to the Poincaré disk, with

uv(vi) = (0, 0), uv(vj) = (tanh
lij
2
, 0),

uv(vk) = (tanh
lik
2
cos θjk0 , tanh

lik
2
sin θjk0 ).

Here, lij is the hyperbolic uniformization metric of edge eij. Then we
put all the neighboring triangles of fijk to a queue Q.

2. Pop out the first triangle fijl from Q. Suppose except vl, vi and vj have
been embedded to the Poincaré disk with uv(vi) and uv(vj) respectively.
The coordinates of vl can be computed as one of the intersection points
of the two hyperbolic circles

(uv(vi), lil) ∩ (uv(vj), ljl),

with centers uv(vi) and uv(vj) and radii lil and ljl respectively, and
satisfying

(uv(vj)− uv(vi))× (uv(vl)− uv(vi)) > 0.

Since hyperbolic circles in the Poincaré disk coincide with Euclidean
circles, computing the intersection points between two hyperbolic cir-
cles boils down to finding intersections between two Euclidean circles
(see Eqn. 6). Then we put all the neighboring triangles of fijl to Q.

3. We keep growing and embedding the chart with such a breadth first
search, until all the neighboring triangles of vertex pi+1 have been em-
bedded to the Poincaré disk.
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Since pi is embedded in the center of the Poincaré disk, the hyperbolic
geodesic connecting pi and pi+1 coincides with the Euclidean straight line
connecting pi and pi+1, as illustrated in Figure 3 (c). We can explicitly
compute the geodesic by splitting crossing edges embedded in the Poincaré
disk with the straight line. Then we project it back to the surface. By
replacing each segment with its geodesic on surface, the new loop γ̄ is shorter
than the original γ.

For further shortening, the middle point of a segment with ending vertices
pi and pi+1 can be computed directly from the following formula on the
embedded chart containing the segment:

m =
1 + µ2

2
uv(pi+1),

where

µ = tanh(
r

2
), r =

1

2
log

1 + |uv(pi+1)|
1− |uv(pi+1)|

.

The geodesic connecting two successive middle points can be constructed
in the similar way of computing the geodesic connecting two successive subin-
terval points. By joining every two successive middle points with a geodesic,
this produce a new loop ¯̄γ, shorter than γ̄, as illustrated in Figure 3 (d).
For each iteration, we record the current length of the loop. We stop the
iteration if the difference of the lengths of the loop between two successive
iterations is less than a threshold. We set the threshold to 1e− 3.

Unless we want to visualize the deformation process, we don’t need to
explicitly compute and project each geodesic segment back to the original
surface. For each iteration, we need only a list of middle points in sequence.
Since the parameterized charts on Poincaré disk differ only by Möbius trans-
formations for overlapping parts, and cross ratio is invariant. To record the
position of the middle point on surface independent of the local chart, we
need to store the cross ratio of the point instead of its barycentric coordi-
nates. For one middle point P , located inside face fijk, its cross ratio can be
computed as

(uv(vi), uv(vj);uv(vk), uv(P )) =
(uv(vi)− uv(vk))(uv(vj)− uv(P ))

(uv(vj)− uv(vk))(uv(vi)− uv(P ))
.

If the input loop is quite long, when the loop has been shrunk much such
that the distances between neighboring subdivision points are much less than
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the approximate injective radius, we need to merge those neighboring subdi-
vision points to reduce the number of segments to improve the convergence
speed, especially for loops which are homotopic to zero.

Table 1: Computing Time. (G is the genus number. F is the face number.)

Model G F Metric Time Loop Iterations Converge Time

γ1 180 20 Sec.
Greek 4 25k 130 Sec. γ2 250 22 Sec.

γ3 150 15 Sec.
γ4 280 24 Sec.

5. Performance Evaluation and Discussions

We implement the algorithms using C++ on a Windows platform and
conduct all the experiments on a laptop with 2.5 GHz dual CPU and 4.0 GB
RAM. All testing models are triangle surfaces. We apply Newton’s method
to compute their hyperbolic uniformization metric. Table 1 summarizes the
computing time of the uniformization metric and the loop shortening on
model shown in Figure 6. Although computing the hyperbolic uniformiza-
tion metric is time consuming, the efficiency of the whole algorithm won’t
be jeopardized by this step, because we can pre-compute the hyperbolic uni-
formization metric and store with edges once for all for mesh models. Figure
4 gives the convergence speed of the length of the loops on model shown in
Figure 6.

We test our algorithms on models with different triangulation qualities.
The Birkhoff curve shortening process itself is not affected by irregular trian-
gulations, as shown by examples in Figure 5. Loops with the same homotopy
type shrink to the unique homotopy geodesic of a mesh model with different
triangulations. Irregular triangulations do affect the numerical stability and
the convergence speed to compute surface hyperbolic uniformization met-
ric, which is the biggest constraint of our algorithms. For extremely skinny
triangles, we check and perform a local edge flip.

As detailed in Sec. 4.3, we set the injective radius of a manifold as the
maximal length of each segment, but it is not necessary. A geodesic between
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(c) Loop γ3 (d) Loop γ4

Figure 4: The convergence of the lengths of the loops shown in Figure 6 after a number
of iterations.

(a) (b)

Figure 5: Loops shrink to the unique geodesic γ1 of the same homotopy type with the
same mesh model approximated by different triangulations.
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(a)Loop γ1 (b) 6 iterations (c) 9 iterations (d) 50 iterations

(f) Loop γ2 (g) 10 iterations (h) 50 iterations (i) 100 iterations

(k) Loop γ3 (l) 10 iterations (m) 50 iterations (n) 100 iterations

(p) Loop γ4 (q) 30 iterations (r) 100 iterations (s) 200 iterations

Figure 6: Visualization of loop shortening on Greek model.
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points p and q is local and can be computed exactly if it is within the injective
radius of both p and q, and a replacement of an arc connecting p and q with
the geodesic won’t change the homotopy type. We can store the injective
radius of each vertex and dynamically determine the maximum length of
each segment based on the values stored at vertices along the loop. The
convergence speed of loop shortening can improve slightly compared with a
fixed maximum segment length, although experimental results given in this
paper are all based on injective radius of a manifold.

Note that the unique geodesic homotopic to the given cycle computed in
this paper is based on surface hyperbolic uniformization metric instead of
surface Euclidean metric. It is well known that these unique closed geodesics
form a so called geodesic spectrum of the surface with χ < 0 and represent the
surface conformal structure which is invariant under conformal deformations.
Surface conformal structure is much coarser than surface geometric structure,
so theoretically the computed unique geodesic under one homotopy type
should be stable under small geometry perturbations. It is unknown to us
how the geodesic under surface hyperbolic uniformization metric relates with
the globally shortest geodesics under surface Euclidean metric with the same
homotopy type. In our experimental results, as one example given by Figure 7
with a set of geodesics (seven loops) computed on two models respectively,
some coincide perfectly, but some differ a lot.

6. Applications

6.1. Extremal Quasiconformal Mapping

Given a Riemann surfaceM , the Teichmüller shape space TM is a complex
manifold whose points represent all complex structures of Riemann surfaces
with the same topological structure of M . Teichmüller shape space provides
a theoretically sound foundation for surface classification, where surfaces are
classified based on conformal equivalence relation. Specifically, in this space,
each point represents a class of conformal equivalent surfaces where there ex-
ist conformal deformations (i.e., angle preserved deformations) among them.
A curve connecting any two points represents a quasiconformal deformation
(i.e., bounded angle distorted deformations) between two classes of confor-
mally inequivalent compact Riemann surfaces. A geodesic between the two
points represents an extremal quasiconformal deformation, the one minimiz-
ing the angular distortion among all possible diffeomorphisms between the
two classes of surfaces. Such extremal quasiconformal mapping is unique
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and always exists [48, 49, 50]. extremal quasiconformal mapping provides
not only the measurement of the geometric difference between two topolog-
ically equivalent surfaces for shape space, but also an automatic mapping
between two shapes with the least angle distortion which is highly preferred
by many graphics and modeling related applications.

There is no computational algorithm so far to directly compute extremal
quasiconformal mapping. However, given a topologically nontrivial surface,
we can sort all its unique closed geodesics - shortest homotopic cycles - ac-
cording to their lengths under the measurement of surface hyperbolic uni-
formization metric. They form a geodesic spectrum and represent the signa-
ture of the surface conformal structure. If the conformal structures of two
given surfaces are close, their geodesic spectra are also close. More explic-
itly, not only the lengths of the geodesics, but also their distribution on the
surface and the skeleton formed by them are also similar. Therefore, the
closed geodesics under the hyperbolic uniformization metric are the major
feature curves of the surface. They capture the conformal structure of the
shapes. We can use geodesic spectrum to guide us to approximate the ex-
tremal quasiconformal mapping between surfaces with similar shapes and the
same non-trivial topology to achieve less angle distortions.

Since there are infinite number of homotopy types in a general non-trivial
topology surface, we only use a partial geodesic spectrum, and allow the user
to choose. Then for surfaces with the same topology and similar geometric
shapes, they may share similar geodesic spectrums, which segment the sur-
faces into corresponding patches. The global mapping is reduced to a set of
mappings between pairs of corresponding surface patches. The mapping be-
tween pair of surface patches can be induced from a conformal map between
parameterized patches in 2D plane [46]. Figure 7 gives one example.

Texture transfer is the best way to intuitively visualize the globally least
angle distortion property of the computed map between surfaces. As shown
in Figure 8, we first compute a conformal map of the amphora model to plane
[46], and then project a planar blackboard texture back to the model based on
the inverse of the conformal map, which can be visualized by the preservation
of the right angles. We transfer the texture from the amphora model to
the vase model based on the computed extremal quasiconformal mapping
between the two models. The texture transfer from the top teapot model to
the bottom teapot model is in a similar way. Surface morphing is another
way to visualize the mapping result. Figure 9 shows the surface mapping
results by conducting linear interpolation between source and target surfaces
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(a) (b) (c) (d)

Figure 7: (a)(d) Geodesic spectra of the eight model and the vase model; (b)(c) surfaces
are segmented to a set of patches, same color for corresponding pair of patches.

to generate the morphing process. For the last two morphing examples, the
original models are genus zero surfaces. By topological surgery, adding cuts
on the hands and feet for the girl models, cuts on the tips of fingers for
the hand models, these models are converted to closed high genus surfaces
after double covering (gluing two copies of a same open surface along their
boundaries).

(a) (b)

Figure 8: Texture transfer based on surface mapping: (a) an amphora model transfers
its checkboard texture to a vase model based on the mapping between them; (c) the top
teapot model transfers its checkboard texture to the bottom teapot model based on the
mapping between them.
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Figure 9: Geodesic spectrum based surface mapping visualized by surface morphing. Red
loops on source and target surfaces are computed geodesic spectrum.
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6.2. Homotopy Detection

A basic topological problem is to determine whether two paths p1 and p2
that start and end at the same points or two cycles l1 and l2 are homotopic
to each other or not. We can apply our algorithms for homotopy detection.
If two cycles γi and γj are homotopic to each other, they can shrink to the
unique homotopy geodesic γ under the given algorithms; if two paths l1 and
l2 are homotopic to each other, the closed loop l1l

−1
2 which concatenates l1

with the reverse of l2, can shrink to a point on the surface. One example is
given on the Pegasus model in Figure 10. After 150 iterations, five different
loops γ1, γ2, γ3, γ4, γ5 on the surface as shown in Figure 10(a) shrink to three
geodesics and one point as shown in Figure 10(c), which indicates that γ2
and γ5 are homotopic to each other, and γ1 is topologically trivial.

(a) Loops on Pegasus model (b) After 10 iterations (c) After 100 iterations

Figure 10: Homotopy Detection: (a) five different loops γ1, γ2, γ3, γ4, γ5 on Pegasus model;
(b) after 10 iterations; (c) after 100 iterations.

7. Conclusion And Future Work

In this paper, we adopt a simple local shortening algorithm, Birkhoff
Curve Shortening, to compute the shortest cycle homotopic to a given cycle
on triangular surfaces with χ < 0 based on surface hyperbolic uniformization
metric. We then apply our algorithm to approximate the extremal quasi-
conformal mapping between two topologically equivalent surfaces. Such a
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mapping exists and a computational algorithm would benefit many com-
puter graphics and geometric modeling related applications. We show tex-
ture transfer and morphing as direct applications of the constructed extremal
quasiconformal mapping between surfaces. We also apply our algorithm to a
classical computational topology problem, homotopy detection of paths and
cycles on surfaces.

In the future, we plan to utilize the parallel capability of the programmable
graphics processing unit (GPU) to accelerate the algorithm, such that for
each iteration, the computation of the middle points of segments can be con-
ducted simultaneously. We also plan to apply and compare more local loop
shortening algorithms on hyperbolic space.
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