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Abstract

In geometric modeling and processing, computer graphics and computer vision, smooth surfaces are approximated by discrete triangular
meshes reconstructed from sample points on the surfaces. A fundamental problem is to design rigorous algorithms to guarantee the geometric
approximation accuracy by controlling the sampling density. This paper gives explicit formulae to the bounds of Hausdorff distance, normal
distance and Riemannian metric distortion between the smooth surface and the discrete mesh in terms of principle curvature and the radii of
geodesic circum-circle of the triangles. These formulae can be directly applied to design sampling density for data acquisitions and surface
reconstructions. Furthermore, we prove that the meshes induced from the Delaunay triangulations of the dense samples on a smooth surface
are convergent to the smooth surface under both Hausdorff distance and normal fields. The Riemannian metrics and the Laplace-Beltrami
operators on the meshes are also convergent to those on the smooth surfaces. These theoretical results lay down the foundation for a broad
class of reconstruction and approximation algorithms in geometric modeling and processing.

Practical algorithms for approximating surface Delaunay triangulations are introduced based on global conformal surface parameterizations
and planar Delaunay triangulations. Thorough experiments are conducted to support the theoretical results.

Key words: Riemannian metric, Hausdorff distance, normal distance, Delaunay triangulation, principle curvature, discrete mesh

1. Introduction surface by the zero set of a signed distance function. Amenta
et. al developed a series of algorithms based on Voronoi dia-
gram in [3-5]. Bernardini and Bajaj used o shapes for mani-
fold sampling and reconstruction [6,7]. Recently Ju et. al intro-
duced the dual contour method for reconstruction [8]. Floater
and Reimers reconstructed surfaces based on parameterizations
[9]. Surface reconstruction has been applied to reverse engi-

neering [10], geometric modelling [11], mesh optimization and

In geometric modeling and processing, computer graphics
and computer vision, smooth surfaces are often approximated
by polygonal surfaces, which are reconstructed from a set of
sample points. One of the fundamental problems is to measure
the approximation accuracy in terms of position, normal fields
and Riemannian metrics. It is highly desirable to design prac-

tical reconstruction algorithms with approximation errors fully
controlled by the sampling density and triangulation method.
This work accomplishes this goal by establishing the relation
between the Hausdorff distance, normal field distance and the
sampling density.

Different surface reconstruction algorithms have been dis-
cussed by many researchers. Hoppe et al. [1,2] represented the
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simplification [12] and many other important applications.

It is a common belief that by increasing the sampling density,
the reconstructed discrete mesh will approximate the smooth
surface with any desired accuracy. This work aims at precisely
formulating this common belief and rigorously prove it in an ap-
propriate setting. This result will offer the theoretical guarantee
for the general algorithms in geometric modelling and process-
ing, where the measurements on smooth surface are calculated
on its discrete approximations and the physical phenomena on
original surface are simulated on the discrete counterpart.
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1.1. Geometric Accuracy

There are different levels of accuracy when approximating a
smooth surface by discrete meshes,

(i) Topological consistency, it requires the surface and the

mesh are homeomorphic to each other;

(ii) Positional consistency, measured by Hausdorff distance

between the surface and the mesh;
(iii) Normal consistency, it requires the normal fields on the
surface and on the mesh are close to each other.

Many previous works address the theoretical guarantee of
topological consistency. Leibon et al. proved in [13] that if the
sampling density is high enough, the smooth surface and the
triangle mesh induced by the Delaunay triangulation is home-
omorphic. Amenta et al. proved a similar result in [5].

In terms of positional consistency, Amenta et al. invented a
series of algorithms which reconstruct the meshes from sample
points based on Voronoi diagrams. Assume the bound of the
diameters of the face circum-circles is € and the normal error is
small enough, the Hausdorff distance between the mesh and the
surface is bounded by the €2 in [5]. In [14], Elber introduced an
algorithm to approximate freeform surfaces by discrete meshes
with bounded Hausdorff distance.

Positional consistency does not guarantee the normal con-
sistency. It is very easy to find a sequence of meshes, which
converge to a smooth surface under the Hausdorff distance, but
the normal field does not converge. In [15] and [16], Morvan
and Thibert established theoretical results to estimate the nor-
mal error and area difference in terms of Hausdorff distance
and angles on the triangulation.

The convergence of discrete Laplace-Beltrami operators over
surfaces has been studied by Xu et al. in [17] and [18], where
rigorous theoretical results are given. A statistical analysis of
discrete laplace-Beltrami operators and their convergence prop-
erties is given by Hein, Audibert and Luxburg in [19].

In geometric modelling and processing, many algorithms
require calculating the geodesics [20]. Many parametrization
works require accurately approximating the Riemannian met-
rics [21]. Spectrum compression also needs good approxima-
tion of Laplace-Beltrami operators [22]. These important appli-
cations demand the theoretical guarantee for accurate approxi-
mation for Riemannian metric and differential operators. It has
been shown in [23], Hausdorff convergence and normal field
convergence guarantee the convergence of area, Riemannian
metric tensor and Laplace-Beltrami operator.

Therefore, our work focuses on estimating both Hausdorff
distance and normal field distance with the only assumption of
the sampling density.

1.2. Triangulations

Triangulations play vital roles in surface reconstruction.
There are different ways to measure the refinement of a trian-
gulation,

(1) The bound [ of the longest lengths of the edges of trian-

gles in the mesh.

Fig. 1. Hausdorff convergence doesn’t guarantee normal convergence and

length convergence. The black curve is a half circle with radius r, the blue

curve is composed by two half circles with radii 5; the red curve is composed

by 4 half circles with radii 7. A sequence of curves can be constructed, they

converge to the diameter PQ under the Hausdorff distance. But the length
of each of them equals to mr, which do not converge to the length of the
diameter 2r.

(i1) The bound d of the diameters of the circum-circles of
triangles in the mesh.

It is obvious that the diameter bounds the edge length, but the
edge length does not bound the diameter(See Figure 2). In the
following discussion, we will demonstrate that the Hausdorff
distance is bounded by the square of the edge length, whereas
the normal error is bounded by the diameter of the circum-
circle.

In Figure 1, we demonstrate a one dimensional example,
where a family of curves converge to a straight line segment
under Hausdorff distance, but the lengths and normals do not
converge.

In Figure 2, we demonstrate an example, where for the same
sets of sample points, the bounds of edge lengths go to zero, but
the bounds of the diameters of circum-circles remain constant.
Therefore, neither the area nor the metric on the mesh converges
to those on the smooth surface.

Given a dense set of sample points, it is highly desirable to
find a triangulation such that the circum-circles are as small as
possible. For sample points on the plane, Delaunay triangula-
tion is a good candidate for such a triangulation. Leibon gen-
eralizes Delaunay triangulation to arbitrary Riemannian mani-
folds [13]. In the following discussion, we use Delaunay trian-
gulation to refer Delaunay triangulation on surfaces. The De-
launay triangulation is determined solely by the sample points.
In the following discussion, we will show that the meshes in-
duced by the Delaunay triangulations are convergent both un-
der Hausdorff distance and normal distance.

In practice, there is no prior knowledge of the smooth sur-
face, only the dense sample points are available. The connec-
tivity induced by the surface Delaunay triangulation can be
best approximated using Voronoi diagram in R as described
in [3,5]. We have not fully proven the consistency between the
two triangulations.

1.3. Factors Affecting Geometric Accuracy

In order to achieve bounded Hausdorff error and normal er-
ror, the following factors play crucial rules, the sampling den-
sity should be carefully designed. The major factors determin-
ing the sampling density are as follows,



()

Fig. 2. Hausdorff convergence vs. normal convergence. In the left frame,
the center is the north pole (0,0,1) of the unit hemisphere. C is the equator

¥ +y> =1, C, is the intersection circle between the sphere with the plane

=1 All the arcs 0:Q; and P;Q; are geodesics, the arcs P;P; are arcs along

C,. The right frame shows one step subdivision: insert the middle points of
all the arcs in the left frame, split each triangle to 4 smaller ones, such that
if an edge connecting two points on C,, the edge is the arc on C,, otherwise
the edge is a geodesic segment. Repeating this subdivision process to get a
sequence of triangulations {7}, and a sequences meshes M, induced by the
triangulations. The longest edge length of 7, goes to zero, M, converge to
the hemi-sphere under Hausdorff distance. For any M, there is one triangles
fo adjacent to Py and contained in the curved triangle P;PyP;. Because all
three vertices of fy are on C, its circumscribe circle is Cp, the normal of
fo is constant which differs from the normal at Py to the sphere. Therefore,
{M,} doesn’t converge to the sphere under normal distance.

— Principle curvature For regions with higher principle cur-
vature, the samples should be denser.

— Distance to medial axis For regions closer to the medial
axis, the samples should be denser to avoid topological am-
biguity during the reconstruction process. It is also called
local feature size.

— Injectivity radius Each point p on the surface M has a largest
radius r, for which the geodesic disk B(p,r) is an embed-
ding disk. The injectivity radius of M is the infimum of the
injectivity radii at each point. Each geodesic triangle on the
surface should be contained in a geodesic disk with radius
less than the injectivity radius.

These factors are not independent, but closely related. Sup-
pose k is the bound of principle curvature on the surface, then
the distance to the medial axis is no greater than % as proved
in [24].

1.4. Comparisons to previous theoretical results

Hildebrandt et.al’s work [23] focuses on the equivalence of
convergence of polyhedral meshes under different metrics, such
as Hausdorff, normal, area and Laplace-Beltrami. Assuming
the Hausdorff convergence and the homeomorphism between
the surface and the mesh, all the error estimations are based on
the homeomorphism.

Leibon et al’s work [13] focuses on the existence of Delau-
nay triangulation for dense sample set. It only estimates the
Riemannian metric error without considering Hausdorff error
and normal error.

Amenta et al’s work [5] only demonstrates the estimation of
Hausdorff error under the two assumptions: first the sampling
density is sufficiently high; second the normal field error is
given and bounded.

Morvan and Thibert [15] [16] estimate the normal error and
area difference in terms of Hausdorff distance and angles on
the triangulation. In practice, in order to control both the Haus-
dorff distance and angles of triangulation, Chew’s algorithm is
applied to progressively add samples to reduce the Hausdorff
distance and improve the triangulation.

Previous works either assume the normal error is bounded
and estimate the Hausdorff distance or assume the Hausdorff
distance is given and estimate the normal field error. In contrast,
our work shows that solely the radii of geodesic circum-circles
of faces on the triangulations are enough to guarantee the con-
vergence of both Hausdorff distance and the normal fields. To
the best of our knowledge, our work is the first one to bound
both the Hausdorff error and the normal error (therefore the
Riemannian metric distortion) only by the sampling density.

The main theorem of the work is that if the sampling density
is €, then the Hausdorff distance is no greater than 4ke?, and the
normal error is no greater than 9ke, where k is the upper bound
of the principle curvature on the smooth surface to be approx-
imated. The metric distortion is measured by the infinitesimal

length ratio, which is bounded by 1 —4k?€? and %

The paper is organized as the following, section 2 intro-
duces the preliminary concepts and theorems proven in previ-
ous works; our new theoretical results are explained in details
in section 3, which is the most technical part of the work, focus-
ing on the proofs of three major theorems; practical algorithms
for approximating surface Delaunay triangulation is introduced
in section 4; experimental results are demonstrated in section
5; finally the paper is concluded in section 6, where the future
works are briefly discussed.

2. Definitions and Preliminaries

In this section, we review the preliminary concepts necessary
for our further theoretical arguments. We adopt the definitions
from [13],[23], [3] and [5].

We assume that the surface S is closed without any boundary,
at least C? smooth with bounded principle curvature, embedded
in R3.

2.1. Medial axis, e-sampling and Delaunay triangulation

The medical axis of a surface S embedded in R? is the closure
of the set of points with more than one nearest neighbor in S.
The local feature size f(p) at point p € S is the least distance
of p to the medial axis.

A geodesic disk B(p,r) centered at p with radius r is the
point sets

B(p,r) ={q € Sld(p,q) <r},

d is the geodesic distance on the surface. The injectivity radius
atapoint p € S is the largest radius T(p), for which the geodesic
disk B(p,t(p)) is an embedding on S.

Suppose € : § — R is a positive function defined on the sur-
face S, a point set X C S is an e-sample, if for any point p € S,
there is at least one sample inside the geodesic disk B(p,&(p)).



The definition of Delaunay triangulations of X on § is the
same as it is in R2. They are defined as having the empty cir-
cumscribing circle property: the circum-circle for each geodesic
triangle contains no vertices of the triangulation in its interior.
In order to guarantee the uniqueness and embedding of the
circum-circles, X should be dense enough.

Leibon et al. proved in [13] that, suppose X is a generic &-
sample, € satisfies the following conditions:

2t(p) 2=m

5 am}a (D

where k(p) is the upper bound of the principle curvature, k(p) =
max,ep(p.(p)) |k(¢)], then the Delaunay triangulation of X ex-
ists and is unique.

e(p) < min{

2.2. Hausdorff Distance, Normal Distance and Shortest
Distance Map

Let M;,M, C R? be non empty point sets, the Hausdorff
distance between M| and M, is defined as

dH(Ml,Mz) = inf{s > 0|M1 C Ug(MZ),MZ C Ug(M])}, )

where Ug (M) = {x € R*|3y € M : d(x,y) < &}.

Suppose S and M are two surfaces embedded in R3, the
shortest distance map g: M — S is defined to map p € M to its
nearest point g(p) on S. It is proved that the line connecting p
to g(p) is along the normal direction at g(p) on S. It has been
proven in [13], if the sampling density € satisfies the Delaunay
triangulation condition equation 1 and the following

f(p)

e(p) < T4 3)

where f(p) is the local feature size at p, then the g is a homeo-
morphism between the mesh M and S induced by the Delaunay
triangulation. Then we denote the inverse of g as @ = g~ ! :

S — M and call it the inverse shortest distance map, then

®(p)=p+o(pn(p),pes “4)

where n(p) is the normal vector at p on S, ¢(p) measures the
distance from p to ®(p) on the mesh. The normal distance
between S and M is defined as

dn($,M) = max n(p) —no®(p)|.
pES

Suppose y:t — S is a curve on S, then ®oy:r — M is a curve
on M. It is proven in [23], the infinitesimal distortion of length
satisfies

dl 1 — Ok;

. M
m 1 — < —<max —+———
in(l =0k < =5 < P < nnod > ©)

where dl = \/< dy,dy> is the length element on S, dlyy =

\/<dyo®,dyod > is the corresponding length element on

M, k; is the principle curvature.
3. Geometric Accuracy Analysis

In this section, we analyze the geometric accuracy of recon-
structed meshes. Suppose X is an €-sample on S, if € satisfies

equation 1 then X induces a unique Delaunay triangulation 7,
where all edges are geodesics. Each face on T has a unique
geodesic circumscribed circle, the bound of all the radii r(X)
is determined by the sampling density €. Then by replacing
geodesic triangles on 7' to Euclidean triangles, a piecewise lin-
ear complex M(X) is produced, denoted as the Delaunay mesh
induced by X. Our goal is to estimate the Hausdorff error, nor-
mal error and Riemannian metric error between S and M, in
terms of the r(X) and sampling density €.

The following is the major steps of our proof,

(i) We first estimate the Hausdorff distance between a
geodesic triangle and the planar triangle through its
vertices.

(ii)) Then we estimate the normal deviation between the nor-
mal at an arbitrary point in a geodesic triangle and the
normal of the planar triangle.

(iii) Finally we discuss the Hausdorff distance and normal
distance between S and M, then we estimate the metric
distortion.

3.1. Hausdorff Distance Between a geodesic triangle and a
planar triangle

Lemma 1. Ler R(t) be an arc length parameterized smooth

space curve with curvature bound ¥ > 0, 0 < a,b,t,f' <T/x,

m= % then the following estimates hold

1> |R(t) — R(0)| > 2sin(kt/2)/x (6)
IR'(t) x m| < ix(b—a), t€la,bl,k(b—a)< V6 (7)

IR'(t') — R (1)| < [2sin(x(t —1))] ®)

ZR(@R(0R(b) > 1/2 )

dist(R(1),R(@)R(b)) < X _“)mi‘;(’ —ab=t) )
0<a<t<b<V6/x

0 < (R(t) —R(a),m) < |R(b) —R(a)|, tE€ (a,b) (11)

where dist(-,-) denote the distance from a point to a line, and
(+,-) denotes the inner product of two vectors.

Proof. Consider function f(tr) = (R'(¢),R'(0)), then since
R (t) LR"(1),

f'(6)=(R"(1),R'(0)) = (R"(1),R'(0) — (R'(0),R'(1))R ()
> IR (1) x R (0)] = —xy/1— 20)
f(t) satisfies /(1) > —x\/1— f2(z), f(0) = 1,then

%(arccosf(t)) <x

f(t) >cos(xt), te[0,m/x]

Now the estimates follows by integration:



R/ l‘] dtldl‘z

R -rO)P= [ [
0 JO
2//008(1((&—[]))61116#2
0 Jo

=4k %sin®(kt/2) = (6)

b
IR(b) — R(a)| (R (1),m) > / cosk(s —1)ds
:i(sinK(bft)JrsinK(tfa)) (12)

2(h— a)?
Z(b—a)—%

IR (1) x ] =

1—(R'(t),m)?
<\1-(1-2(b—aP/62, if k(b—a) <6
V2

< ?K(b —a)

Equation (12) implies (R'(¢),R(b) — R(a)) > 0 when b —a <
n/K, hence (R(t),R(b) — R(a)) is an increasing function of ¢,
hence (11) is proved.

= (7)

1 b
(R(b) —R(t),R(t) —R(a)) > / / cosK(u—v)dudv
a Jt
the right hand side equals to

cosk(b—t)+cosk(t—a)—1—cos(b—
if k(b —

a)>0
a)<m =(9).

(R'(1),R' (1)) > cosx(t' —1), [R(t)|=|R'(')| =1
Assume t —a < b —t, then (7) implies that
dist(R(r), R(@)R(b)) = |(R(r) ~R(a)) x m)| < x(b—a)(t —a) /4

which = Eqn(10). O
Notation: We use” to denote an geometric object on a surface

= (8)

in geodesic sense, such as AB, AABC to denote a geodesic or
a geodesic triangle.

Lemma 2. P, Q are two points in a geodesic convex region of
a smooth surface with principal curvature bounded by X, then
the normal at P, Q differs by at most x|PQ)|.

Proof. Bound of principal curvature implies |Vn| < k, where
V is the covariant derivative and »n is the normal. Hence the
estimate. m|

The following theorem estimate the distance of points inside
a geodesic triangle to the plane through the vertices, indepen-
dent of the shape of the triangle.

Theorem 1. Let AABC be a geodesic triangle on a smooth sur-
face embedded in R3 where the principal curvature is bounded
by x and the maximal length d of edges of AABC is bounded
by 1/x. P is any point inside the triangle, Pspc is the plane
through A, B,C, then the dist(P,Pypc) < xd> /4.

Proof. Assume AP intersects BC at Q, P’ is the projection of
P onto AQ, Q projects onto BC at H, H' is on AH such that
P'H' is parallel to QH. By (10),

dist(Q, Papc) < dist(Q,BC) =

|PP'| < xd?*/8

(11) implies that P’ is inside AQ and |P'H’| < |QH|,
dist(P, Papc) < |PP'| + |P'H’| < xd* /4

|OH| < xd*/8.

O
From the proof we see that when P go through AABC, H' go
through AABC. Then it is easy to see that the nearest distance
of any point on AABC is also bounded by xd? /4. Thus we have
the following corollary.

Corollary 3. With the same assumption of rAzBVC and K,d. The
shortest distance of and point in ABC to ABC is bounded by
xd? /4.

3.2. Normal Error Estimation between a geodesic triangle
and a planar triangle

Lemma 4. Let ABC be a geodesic triangle with maximal length
of edge d, the principal curvature is bounded by K, d < 2/x,
ZBAC = «, then the normal ny to the surface at A and the
normal n to Pypc satisfies

xd xd

<
[na x n| < max(4sm(a/2) "4cos(a/2)

) 13)

Proof. Denote by T; the tangent vector at A to fTIé, T, tangent
to AC, V) the unit vector along AB, V, along AC. Then by (7)

‘Tl X V1| < Kd/4,|T2 X V| < Kd/4
So

|(na,V1)| = |(na, Vi — (1, T1)Th )|
S |V1 7(V1,T1)T1‘ = |T] X Vl‘ S Kd/4
‘(nA,V2)|SKd/4

The projection of n4 onto P4pc falls into the parallelogram with
both width Kd/2 and inner angle o, T — o, centered at A. Now
(13) follows by simple trigonometry. o

Lemma 5. Let [(t) be a geodesic circle radius r, parameterized
by arc length. Suppose the principal curvature is bounded by
K in the disk and r < 1/(4K). N(t) is the tangent vector at I(t)
normal to I'(t). Then for t <r,

(U(r) = 1(0),N(0)) = = (14)

Proof. Let n(t) be the normal to the surface at /(). The curva-
ture condition implies |(I”(¢),n(r))| < k. Hessian comparison
theorem [25] implies



1
(I"(1),N (1)) > xeot(kr) > % if xr < 1/4
r

11
[I" ()| < kv cothir? + 1 < Tor if kr < 1/4 (15)

Lemma 3.1 implies |n(r) —n(0)| < x¢. (15) implies |I'(r) —
'(0)| < 11¢/10r, then for ¢ < r

On the other hand for AABC, |AC|,|BC| > 0.74r by (21), |AB| <
r by (20), so

/BAC > arccos(.5/.74) > .8
4sin(ZBAC/2) > 1.4 23)

Now apply Lemma 4 with estimate (22) and (23) to give an
estimate of the difference of the normal at A and to the plane

(I"(2),N(0)) = (I"(t),N(1)) + (I"(z),N(0) = N(z)) ABC, then use Lemma 3.1 to get (17).
="(t),N(t))+ (1" (t),n(0) x I'(0) —n(t) x I'()) Given (17) proved, (18) easily follows as
> (1"(1),N(0)) = [I"(0)|(In(0) — n(t) |+ [1'(0) = I'(r)]) [v—®.(v)| = |(v,napc)| = |(v,napc —na)| < 4.5¢r|y|
1,19 1l 121¢ . .
> ;(% ST 100r) (16) and for (19), let I(r) be the geodesic connecting A and p

Use '(0) L N(0), integrate (16) to get
(10~ 10).N(0) > 2=
’ ~ 40r

O

Theorem 2. D is a geodesic disk of radius r of a smooth
surface embedded in R3 with principal curvature bounded by
K, r < 1/(4x). A,B,C are three distinct points on the boundary
of D, Pypc is the plane through A, B,C, ® is the inverse shortest
distance map from D onto Pspc. For any point p € D, v €T, is
a tangent vector, we have

|I’lp—l’lAgc| <4.5«xr (17)
[v| > |®.(v)| > [v|(1 —4.5kr) (18)
dist(p, Papc) < 9xr? (19)

Proof. Consider the intersection angle between the radial
geodesic connecting center O of D and the vertices A, B, C.

If two such intersection angle is less than 9/10, say
Z/AOB, /BOC, then comparison theorem shows that the arc
between A, B or between B, C along boundary of D is less than

9 eKr _ e*Kr
. - < 2
0 22 @0
Let d1, d> be the length of line segment AB, BC respectively,
then (11) implies ZABC > m/2 while Lemma 3.2 implies
/ABC < 1 — arcsin(d; /5r) — arcsin(d, /57)
Then apply Lemma 4 to get

K(d] +d2) K(d] —|—d2)
4cos(LABC)/2 ~ 2di/5r+2d,/5r
If only one such intersection angle is less than 9/10, say
LAAO%,without lost of generality, assume ZBAC > ZABC. For
the triangle AOC, by (6) and (7)
ZAOC >9/10 — 2arcsin(kr/4) > 0.77
r> |OA|,|0C| > .99r
|AC| > 2% .995sin(0.77/2)r > 0.74r 1)
Z/CAO < arccos((.997 +.74* — 1) /(2%.99 % .74)) < 1.21
ZBAO <m/2+2arcsin(xr/4) < 1.70
4cos(£(CAB)/2) > 4cos(1.455) > 0.46 (22)

=2.5xr

|ng —napc| <

dist(p, Pasc) = | / (I'()nanc)dt] < dist(p, A) % 4.5kr < 9Kr?
1

O
3.3. Geometric Accuracy for Delaunay Meshes

Combining the theoretical results in section 2 and the esti-
mations on a single geodesic triangle theorem 3.1 and theorem
3.2, we can easily get the following theorem.

Theorem 3. Suppose S is a closed C* smooth surface embedded
in R3. The principle curvature upper bound is k, the injective
radius lower bound is T, the lower bound of local feature size
is f. Suppose X is an €-sample set on S, such that constant €
satisfies the following conditions,
2t 2n f 1
575k™4’ Sk} ’
then X induces a unique Delaunay triangulation T, (X, T) in-
duces a piecewise linear complex M,

(i) M is homeomorphic to S, the nearest distance map g :

M — S is a homeomorphism.
(ii) The Hausdorff distance

dy(M,S) < 4ke? (24)

€ < min{

(iii) The normal distance
dn(M,S) < 9ke (25)
(iv) The infinitesimal length ratio

b o dly  1+4k%?
Pk s S T ooke
Proof. Because X is an e-sample, € satisfies the Delaunay tri-
angulation condition in Equation (1), therefore the unique De-
launay triangulation 7 exists according to [13]. € is less than a
quarter of the local feature size (3), then the shortest distance
map is a homeomorphism.

Suppose C is a circumscribe circle of a triangle in 7', then
there is no interior point belonging to X. If the radius of C
is greater than 2¢, then C contains at least disks with radii €,
therefore, it contains at least one point of X as its interior. Thus
the radius of C is no greater than 2e.

From corollary 3.1, the Hausdorff distance is no greater than
4ke? From the proof of theorem 2, the normal distance at some
sample point is less than 5ke, also from (24) and previous

(26)



paragraph, any point on X is within 4¢ distance to such a sample
point, thus together with Lemma 2, the normal distance at any
point is no greater than 9ke.

In the inverse shortest distance map Eqn. (4), ¢ is less or
equal to the Hausdorff distance. From formula (5) we can derive
the (26). O

Although the sampling density € is a constant here, it can be
generalized to be a function on the surface, such that

p) 2n flp) 1 )
5 '5k(p)’ 4 '8k(p)”

then we can estimate the Hausdorff distance, normal distance
and metric distortion at point p using the formula similar to
(24),(25),(26) with € replaced by €(p).

e(p) < min{>

4. Approximation of Surface Delaunay Triangulation

Theoretical surface Delaunay triangulation is impractical, be-
cause the geodesic circles are difficult to compute. In this work,
we propose to use global conformal parameterization to map
the surface to the canonical domains, and compute the Delau-
nay triangulation on the conformal parametric domains to ap-
proximate the surface Delaunay triangulation. Delaunay trian-
gulations maximize the minimal angle, conformal parameteri-
zation preserves angles, therefore, Delaunay triangulations on
conformal parametric domains approximate the surface Delau-
nay triangulations faithfully.

4.1. Global Conformal Surface Parameterizations

Suppose S1 and S, are two surfaces with Riemannian metrics
g1 and g, suppose f:S; — S» is a map, then if the original
metric g; and the pull back metric f*g, differ by a scalar

g = frg,u: S — R,

then f is a conformal map. A conformal map preserves angles.
Suppose S and S, are embedded in the Euclidean space, the
harmonic energy of f is defined as

Hﬁ:LWNMA

For genus zero closed surfaces, harmonic maps are conformal
and all of them can be conformally mapped to the unit sphere
S2. Suppose S is a genus zero closed surface, we can get a
conformal map from S to S? by diffusing its Gauss map using
the following heat flow method

df :

o= AL
with a constraint g fdA = 0, where A is the Laplace-Beltrami
operator on S. The heat flow will converge, the final map is
a conformal map. Figure 6 demonstrates a conformal spheri-
cal parameterization for a genus zero closed surface. Once the
surface is mapped to a unit sphere, we can use steoreo-graphic
projection to conformally map the sphere onto the plane. For
details, we refer readers to the work of [26]. This method can

be generalized to compute conformal structures of general sur-
faces [27]. The rigorous theoretical proof for the convergence
of the algorithm can be found in [28]. Figure 6 illustrates the
global conformal parameterization for a genus zero closed sur-
face.

For surfaces with non-zero genus, the Ricci flow is a powerful
method to compute the conformal parameterization. Suppose
g = (gij) is the initial Riemannian metric on a surface S, then
the Ricci flow is defined as

dgij(1)

=-K ij{t),
dr gj()

where K is the Gaussian curvature. Then it is proven that
Ricci flow will converge, the final metric g(oo) is conformal to
the original metric and induces a constant Gaussian curvature.
Therefore, the surfaces can be conformally parameterized by
the Euclidean plane (genus one case) or the hyperbolic disk
(high genus case). Figure 4 demonstrates a genus one surface
conformally parameterized using Ricci flow method; Figure 7
shows a genus two surface conformally mapped to the hyper-
bolic disk using Ricci flow method.

The discrete algorithms for heat flow can be found in [29],
the discrete Ricci flow method can be found in [30]. Figure 4
and 7 demonstrate global conformal parameterizations for high
genus surfaces.

4.2. Approximation of Surface Delaunay Triangulation

After conformal parameterization of the surface, we generate
random samples on the parameter domain and construct a planar
Delaunay triangulation which induces an approximation of the
surface Delaunay triangulation. This method was proposed in
[31] for topological disk case. In current work, we generalize
the algorithm for arbitrary surfaces.

We use a piecewise polygonal mesh to represent the surface,
suppose the surface has n faces {fi,f2,---,fn}, then we use
the following sampling and Delaunay re-meshing algorithm:

(i) Compute a global conformal surface parameterization of
the input mesh.

(ii) Compute g(i) = 2};:1 sk, where s; is the area of face f;
on the original surface.

(iii) Generate a random number r € [0,1] with the uni-
form distribution. Find the unique i, such that r €
[g(i—1)/g(n),g(i)/g(n)], then the sample point should
be on face f;.

(iv) Suppose the three vertices of f; are vi,vy,v3, generate
another two independent random numbers o, B, such that
both of them are uniform distributed. Then the barycen-
tric coordinates of the sample on f; is (o, (1 — o), (1 —
o)(1-PB)).

(v) The position of the sample in R? is the linear combination
of the positions of v;s, the coefficients are the barycen-
tric coordinates. The parameter of the sample is the lin-
ear combination of the parameters of the v;’s using the
barycentric coordinates.

(vi) Repeat step 2 through 4 to generate random samples,
compute the Delaunay triangulation on the parametric



Shape |# vertices|# faces|D K d 1/4xd?

sphere(1002 2000 |0.010025(1.758418|0.314097(0.014678

torus (240 480  |0.049931(4.525904/0.616819|0.065040
knot |2000 4000 (0.032552(9.280646|0.391005|0.053959

Table 1

Comparison between the theoretical prediction of the Hausdorff distance and
the real measured distance. D is the measured Hausdorft distance; %Kd2 is
the theoretical estimations, where x is the maximal principal curvature, d is
the maximal length of edges.

(a). Surface

(c). One period (d ) Periodic conformal Mapping
Fig. 3. Smooth surfaces are approximated by Delaunay meshes. The Hausdortf Fig. 4. Global conformal surface parameterization for a genus one closed
distances really measured are consistent with the theoretical formulae. surface, the parameterization is periodic.

domain, which induces a polygonal mesh in R3.
The Delaunay re-meshing results are shown in Figures 4,5,
6 and 7.

5. Experimental Results

In order to verify our theorems, we tessellate several smooth
surfaces with different resolutions, for each mesh, we measure
the upper bound of the diameters of the faces, the upper bound
of the radii of the circum-circles of the faces. We also measure
the Hausdorff distance and the normal distance between the
mesh and the smooth surface. The experimental results shows
the Hausdorff distance is quadratically convergent with respect
to the diameter of the face, the normal distance convergent lin-
early with respect to the circum-circle radius. These experi-
ments results are consistent with our theorems.

Table 1 and Figure 3 illustrate the comparison between nu-
merical results and the theoretical estimation of Hausdorff dis-
tance for some simple surfaces. The surfaces have explicit rep-
resentations, therefore the computation of curvature bound is
straight forward. Then we tessellate the surface on the parame-
ter domain. We estimate the diameter of triangles using the Eu-
clidean distances between the vertices. The Hausdorff distance
is calculated by minimizing the following functional, suppose
pEM,Sis S(u,v) then f(u,v) =< S(u,v) — p,S(u,v) —p >. (¢). 5k samples (d) 10k samples
For any point p on M, first we find the closest vertex po on M,
po is also on S with parameter (u9,vo). Then we use (uo,vo) as
the initial point, then use Newton’s method to find the global

(a). 2.5k samples, front view (b). 2.5k samples, back view

Fig. 5. Approximated surface Delaunay triangulation by global conformal
parameterization. The sample points are 2.5k, Sk and 10k.



(c). Delaunay triangulation, (d) Delaunay triangulation,

front view back view

Fig. 6. Approximated surface Delaunay triangulation by global conformal
parameterization for a genus zero closed surface. The sample points are 10k.

minimum of f(u,v). We densely sample M, and find the max-
imum distance between the sample points to S. we subdivide
the triangulation on the parameter domain to get a sequence of
meshes. The diameters of faces converge to zero, the radii of
circum-circles converge to zero, the largest angle are bounded.
From the table, it is clear that the numerical results are always
no greater than the theoretical upper bound, and the real values
are close to their theoretical predictions.

We further verify our theoretical results by several compli-
cated surfaces as illustrated in Figure 8. All the models are
scaled into a unit cube. In order to accurately compute the
principal curvature, Hausdorff distance and normal, we con-
vert these shapes into manifold splines [32][33][34]. We con-
struct the manifold triangular B-splines for the two-hole torus
(of genus 2, the second row in figure 8) and sculpture (of genus
3, the third row in figure 8), and manifold T-spline for the kit-
ten model (of genus 1, the first row in figure 8). We compute
the curvature bound using the spline function. We then tessel-
late the spline surfaces by triangulating the parameter domain
to induce a polygonal mesh. Next we subdivide the planar tri-
angulation to get the refined meshes. For each mesh, we com-
pute the diameter of the faces d and the Hausdorff distance dy
between the spline surface and the mesh. We plot the points of
(d,dp), which form a quadratic curve (see Figure 9(a)). Also,
we compute the bound of the radii of the circum-circles of faces
on each mesh r, and the normal distance dy. We plot the pairs
(r,dy), which form a linear curve when r is sufficiently small

(b). Spherical conformal mapping.

(a). Original surface.

(c). Delaunay triangulation, (d ) Delaunay triangulation,

front view. back view.

Fig. 7. Approximated surface Delaunay triangulation by global conformal
parameterization for a genus two closed surface. The sample points are 10k.

(see Figure 9(b)). The experimental results are consistent with
our theoretical predictions.

6. Conclusion and Future Work

This work gives explicit formulae of approximation error
bounds for both Hausdorff distance and normal distance in
terms of sampling density. For a set of sample points on a sur-
face with sufficient density, it induces a unique Delaunay tri-
angulation, and a discrete mesh. With the increase of sampling
density, the Delaunay meshes converge to the original surface
under both Hausdorff distance and normal distance, therefore,
the area, the Riemannian metrics and the Laplace-Beltrami op-
erators are also convergent.

The theoretical results can be directly generalized along two
directions: general triangulations and off surfaces samples.

(i) General Triangulations From our theoretical deduction,
the Hausdorff distance is bounded by the quadratic func-
tion of the diameter of triangles on the discrete mesh, the
normal distance is bounded by the radius of the circum-
circle of the triangle on the mesh. The results proved in
this paper works for Delaunay triangulation, same esti-
mates(but may with different constants) work for triangu-
lations where the largest angle of any face is bounded. For
example it will work for a triangulation with only acute
triangles. The proof is a direct application of Lemma 4.



Fig. 8. Manifold splines are used to verify the theoretical results. These
spline surfaces are of C? continuous, thus, the principal curvatures, normals,
Hausdorff distance, etc, can be obtained analytically.

(i1) Samples off the surface In this paper, the sample points
are assumed to be on the surface. When sample points
are off the surface in practice, we expect the same results
to be valid if the normal distance of the sample points
is up to a constant locally bounded by the square of
least distance between sample points, thus the geometric
accuracy results are expectable.

A practical algorithm is introduced to approximate surface
Delaunay triangulations using planar Delaunay triangulations
on conformal parametric domains. The method produces good
approximation results and is practical for real applications.

In the future, we will apply these error estimation formulae
to prove the convergence of other advanced algorithms in geo-
metric modeling and processing, such as the conformal param-
eterizations, Poisson editing etc. We will prove the convergence
of current surface Delaunay triangulation algorithm.
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