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Abstract

The centroidal Voronoi tessellation (CVT) has found versatile applications in
geometric modeling, computer graphics, and visualization, etc. In this paper,
we first extend the concept of CVT from Euclidean space to spherical space
and hyperbolic space, and then combine all of them into a unified framework
– the CVT in universal covering space. The novel spherical and hyperbolic
CVT energy functions are defined, and the relationship between minimizing
the energy and the CVT is proved. We also show by our experimental results
that both spherical and hyperbolic CVTs have the similar property as their
Euclidean counterpart where the sites are uniformly distributed with respect
to given density values. As an example of the application, we utilize the CVT
in universal covering space to compute uniform partitions and high-quality
remeshing results for genus-0, genus-1, and high-genus (genus>1) surfaces.

Keywords: Centroidal Voronoi Tessellation, Universal Covering Space,
Spherical Space, Hyperbolic Space, Remeshing

1. Introduction

The Voronoi diagram is a well studied concept in computational geometry,
and has a wide usage in different areas in geometric modeling, computer
graphics, visualization, etc. [Okabe et al., 1999]. The centroidal Voronoi
tessellation (CVT) is a special case of the Voronoi diagram, where every site
coincides with the centroid of its Voronoi cell [Du et al., 1999]. The sites in

1This paper is the extended version of our previous paper published on Symposium of
Solid & Physical Modeling 2010 [Rong et al., 2010].
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a CVT are uniformly distributed. This property is conjectured by Gersho in
1979 [Gersho, 1979], and has been proved in 2D convex polygons with up to
six edges [Fejes Tóth, 2001].

In geometric modeling, many applications require a uniform sampling
on a surface, or a partition of a surface where every region covers similar
area. These tasks can be achieved simultaneously by computing a CVT
on the surface where all sites are constrained on the surface. Such a CVT
is usually known as the constrained CVT [Du et al., 2003]. It is natural
to use the geodesic distance to compute the constrained CVT [Peyré and
Cohen, 2004], but it is difficult to compute the geodesic distance accurately.
Another alternative is to use the 3D Euclidean distance as an approximation
[Liu et al., 2009; Rong et al., 2011; Yan et al., 2009], but this may lead
to disconnected Voronoi cells if two regions are very close in 3D Euclidean
space but are far away along the surface. A better approach is to compute
the CVT in a 2D parametrization domain of the surface [Alliez et al., 2005].
By assigning appropriate density values, the computed CVT is very close to
the constrained CVT computed using the geodesic distance. This method
overcomes the shortages of both prior methods, and is more efficient since
the computation is performed in a 2D Euclidean domain.

While to parameterize a closed surface to a 2D Euclidean domain, the
original surface has to be cut into a genus-0 surface. This makes the sites
unable to cross the boundaries in the parametrization domain, and leads to
visible artifacts along the cutting edges. In [Alliez et al., 2005], a great deal of
special care and delicate strategies, such as minimizing the total cutting edge
length and matching the cut graph with the feature skeleton, are required.
If the cut graph does not coincide much with a set of feature edges, the
remeshing results become unacceptable as indicated in [Alliez et al., 2005].

This cutting problem can be solved by computing the CVT directly on the
universal covering space [Klingenberg, 1982] of the surface. For closed genus-
1 surfaces, their universal covering space can be embedded in 2D Euclidean
space R2, so the computation of the CVT in the universal covering space is
similar as in [Alliez et al., 2005] except that sites can move freely across the
cutting boundaries. The universal covering space of closed genus-0 surfaces
can be embedded in 2D spherical space S2. As proved later in Section 4, the
spherical CVT is identical to the constrained CVT on the sphere. So we can
compute the constrained CVT on the sphere to get the uniform samplings
on these surfaces. For closed high-genus (genus>1) surfaces, their universal
covering space can be embedded in 2D hyperbolic space H2. So computing
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the CVT in hyperbolic space is required and can lead to new geometric
modeling techniques for high-genus surfaces.

To the best of our knowledge, the CVT in hyperbolic space has not been
studied before. Furthermore, no previous work has systematically studied
the CVT in universal covering space. We study the CVT in hyperbolic space
in this paper, and combine it with Euclidean CVT and spherical CVT in a
unified framework of the CVT in universal covering space.

One difficulty for defining the CVT is how to well define the centroid of a
given region in different spaces. In this paper, we extend the model centroid
[Galperin, 1993] to define the centroid of a Voronoi cell in 2D spherical,
Euclidean, and hyperbolic spaces in a unified way. We also prove that the
model centroid is in fact the central projection of the centroid in 3D Euclidean
space onto the model.

Previous studies on spherical CVT all treat it as the constrained CVT
on the sphere. In this paper, we directly define the CVT energy in spherical
space and study its relationship with the spherical CVT. We also define the
CVT energy in hyperbolic space and prove the relationship between minimiz-
ing this energy and the hyperbolic CVT. Following these conclusions, we can
prove the convergence of Lloyd’s algorithm for both spherical and hyperbolic
CVTs. So we can use Lloyd’s algorithm to compute them. Based on our
extensive experiments, we conjecture the sites in the spherical and hyper-
bolic CVTs are also uniformly distributed with respect to the corresponding
metrics.

We also show how to use the CVT in universal covering space to generate
uniform partitions and high quality remeshing results for genus-0, genus-1,
and high-genus (genus>1) surfaces. Compared with previous methods using
parametrization in 2D Euclidean space such as [Alliez et al., 2005], the main
advantage of using the CVT in universal covering space is that the sites can
move freely anywhere on the surface.

The main contributions of this paper include:

• We formally define the CVT energy in spherical space, and prove the
relationship between minimizing this energy and the spherical CVT.
We also demonstrate the uniformity of the sites in the spherical CVT.

• We extend the concept of CVT into hyperbolic space. We define the
CVT energy in hyperbolic space, and prove the relationship between
minimizing this energy and the hyperbolic CVT. We also demonstrate
the uniformity of the sites in the hyperbolic CVT.
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• We prove the convergence of Lloyd’s algorithm for spherical and hyper-
bolic CVTs, and explaine the implementation details of using Lloyd’s
algorithm to compute them.

• We combine spherical, Euclidean, and hyperbolic CVTs into a unified
framework – the CVT in universal covering space, and apply it on
computing uniform partitions and high quality remeshing results for
genus-0, genus-1, and high-genus (genus>1) surfaces.

The rest of the paper is organized as follows: Section 2 briefly reviews
some related previous work. The formal definitions of the CVT in different
spaces are given in Section 3, and the corresponding CVT energy functions
are defined in Section 4. The relationship between minimizing this energy
and the CVT is also proved in Section 4. Section 5 gives details on how
to compute the CVT in difference spaces. Section 6 defines the CVT in
universal covering space and applies it on geometric modeling applications.
Finally, Section 7 concludes the paper with some possible future work.

2. Related Work

We briefly review some previous work on how to compute the CVT in
Euclidean space. We also list applications of the CVT in geometric modeling.

2.1. Centroidal Voronoi Tessellation

The concept of the centroidal Voronoi tessellation was first introduced by
Du et al. [1999], but the similar concepts have been studied in different areas
long before that, e.g. optimal quantization in signal processing and k-means
in pattern recognition.

One of the earliest algorithms to compute the CVT is proposed by Mac-
Queen [1967] which is a probabilistic algorithm. Although the almost sure
convergence of this algorithm is proved, its convergence is very slow. Lloyd
proposed a deterministic method in 1960s which is officially published later
in 1982 [Lloyd, 1982]. The convergence of Lloyd’s algorithm is later proved
by Du et al. [2006]. Due to its simplicity and robustness, Lloyd’s algorithm
is currently the most widely used algorithm to compute the CVT. Ju et al.
[2002] combined MacQueen’s method and Lloyd’s algorithm into the proba-
bilistic Lloyd algorithm which is suitable for parallel computation.

Du and Emelianenko [2006] proposed a Lloyd-Newton method where they
first run standard Lloyd’s algorithm until the sites are almost stable and then
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switch to Newton iteration. Most recently, Liu et al. [2009] proved the CVT
energy function (defined in Section 4) is C2 continuous, and thus they are
able to apply a quasi-Newton method – L-BFGS algorithm – to compute the
CVT. This method avoids the computation and storage of the full Hessian
matrix in Lloyd-Newton method. It converges much faster than Lloyd’s
algorithm and is the fastest algorithm for the CVT so far.

Previous researches on spherical CVT, such as [Du et al., 2003], [Du and
Ju, 2005a], [Du and Ju, 2005b], all treat the spherical CVT as the constrained
CVT on the sphere. So the above algorithms can be used to compute the
spherical CVT with Euclidean metric.

2.2. Geometric Modeling Applications

Due to the uniformity of the Voronoi cells and sites, the CVT has been
widely used in many applications. We only review previous work closely
related to geometric modeling. For other applications, please refer to [Du
et al., 1999, 2010; Rong et al., 2011] and the references therein.

Many researches on geometric modeling utilize the dual of the constrained
CVT to achieve high quality remeshing results. Surazhsky et al. [2003] com-
puted the constrained CVT by projecting the 1-ring neighbors of a site in
the dual triangle mesh onto the tangential plane, and then finding the cen-
troid of its Voronoi cell in the plane. Contrast to this local parametrization
approach, Alliez et al. [2005] used a global parametrization by cutting the
surface into a disk-like topology, and computing a 2D CVT in the Euclidean
parametrization domain. Valette et al. [2008] directly computed an approxi-
mation of the constrained CVT as clusters of triangles. Yan et al. [2009] first
computed a 3D CVT and then found the intersection between the surface
and the 3D CVT.

Cohen-Steiner et al. [2004] extended the concept of centroids to planar
proxies, and used a flooding scheme to compute the constrained CVT as
a good shape approximation. Lu et al. [2009] computed the CVT for line
segments and graphs, and used it to get meaningful segmentations of 3D
models.

The CVT in all the above work is computed in 2D or 3D Euclidean space.
In this paper, we study the CVT in spherical space and hyperbolic space,
and combine them with the CVT in Euclidean space into a unified CVT in
universal covering space. We also demonstrate the application of the CVT
in universal covering space for geometric modeling.
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3. Centroidal Voronoi Tessellation

In this section we first give formal definitions of the Voronoi diagram and
the centroid in different spaces, and then combine them together to define
the centroidal Voronoi tessellation in different spaces. For each definition,
we first review its usual definition in Euclidean space, and then extend it to
spherical and hyperbolic spaces. We only study the CVT in 2D spaces in
this paper. The superscripts E, S, and H are used to represent notions in
Euclidean, spherical and hyperbolic spaces respectively.

3.1. Voronoi Diagram in Different Spaces

Given n points (called sites) s1, s2,..., sn in a domain Ω, the Voronoi cells
Ωi is the union of all points nearer to site si than to other sites:

Ωi = {p ∈ Ω|d(p, si) < d(p, sj), i ̸= j}, (1)

where d(a,b) is the distance defined in Ω. The union of all the Voronoi cells
is the Voronoi diagram of the sites.

For a 2D Euclidean domain ΩE ⊂ R2, the distance d(a,b) is replaced by
the 2D Euclidean distance dE(a,b) = ∥a − b∥ =

√
(xa − xb)2 + (ya − yb)2,

and we have the Voronoi diagram defined in Euclidean space. Similarly,
by replacing the distance d(·, ·) in Equation (1) with the spherical distance
dS(·, ·) or the hyperbolic distance dH(·, ·), we can define the Voronoi diagram
in a 2D spherical domain ΩS ⊂ S2 or a 2D hyperbolic domain ΩH ⊂ H2.

On a sphere with radius of r, the spherical distance between two points
p and q is defined as:

dS(p,q) = r cos−1

(
⟨p,q⟩
r2

)
,

where ⟨p,q⟩ = xpxq+ypyq+zpzq is the inner product in 3D Euclidean space.
In this paper, we always consider the spherical space on a unit sphere. So
the spherical distance is simplified to:

dS(p,q) = cos−1 (⟨p,q⟩) .

Figure 1(a) shows a Voronoi diagram of 500 randomly sampled points on a
sphere.
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(a) (b)

Figure 1: (a) Voronoi diagram of 500 random initial sites (solid dots) on a sphere. Hollow
dots are spherical centroids of corresponding Voronoi cells. (b) Spherical CVT generated
from (a). ρ(p) ≡ 1 in this example.

Because of the relationship between the spherical distance and the 3D
Euclidean distance:

dS(p,q) = 2 sin−1 d
E(p,q)

2
,

we have dS(p, si) < dS(p, sj) if and only if dE(p, si) < dE(p, sj). So the
spherical Voronoi diagram is in essence same as the constrained Voronoi
diagram on the sphere, i.e. the intersection between the sphere and the 3D
Euclidean Voronoi diagram.

There are several different models for the hyperbolic geometry. They
are all equivalent, but provide different views. Poincaré disk model and
Klein disk model both use a unit disk (x2 + y2 < 1) in 2D Euclidean plane
to represent the 2D hyperbolic space; the upper half-plane model uses half
of the 2D Euclidean plane (y > 0) to represent the 2D hyperbolic space;
Minkowski model embeds the 2D hyperbolic space into one sheet of a two-
sheeted hyperboloid (−x2 − y2 + z2 = 1, z > 0) in 3D Euclidean space. All
these models can be easily converted from one to another. In this paper,
we only use Klein disk model and Minkowski model. The details of the
conversion between these two models are given later in Section 5.

Among these models, the Voronoi diagram has been studied in the upper
half-plane model [Onishi and Takayama, 1996], Poincaré disk model [Nil-
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foroushan and Mohades, 2006], and Klein disk model [Nielsen and Nock,
2010]. In our implementation, we compute the Voronoi diagram in Klein
disk as it is easy for both computation and visualization.

The geodesic distance in Klein disk is a chord of the unit disk. The
distance between two points p and q in Klein disk is

dHK(p,q) = cosh−1 1− ⟨p,q⟩√
(1− ∥p∥2)(1− ∥q∥2)

,

where ⟨·, ·⟩ and ∥·∥ are inner product and vector norm computed in Euclidean
space as defined above. Using this distance, it can be proved that the bisector
of two points in Klein disk is a straight line in Euclidean space, and the
hyperbolic Voronoi diagram in Klein disk is a power diagram [Aurenhammer,
1987] in Euclidean space. More specifically, for every site si in Klein disk, a
corresponding weighted point wpi =< ti, w

2
i > can be created in Euclidean

space, where ti = si

2
√

1−∥si∥2
and w2

i = ∥si∥2
4(1−∥si∥2) −

1√
1−∥si∥2

. The power

diagram of weighted points wpi in Euclidean space is same as the Voronoi
diagram of the sites si in Klein disk. The derivation details can be found
in [Nielsen and Nock, 2010]. Figure 2(a) shows a Voronoi diagram of 100
random sampled sites in a hexagon in Klein disk.

3.2. Centroidal Voronoi Tessellation in Different Spaces

The centroidal Voronoi tessellation (CVT) is a special Voronoi diagram
where every site si coincides with the centroid ci of its Voronoi cell [Du
et al., 1999, 2010]. To define the CVT in Euclidean, spherical, and hyperbolic
spaces, we have to first define the centroid in these spaces. Combining these
definitions and the definition of the Voronoi diagram above, we can well
define the CVT in these spaces.

The definition of the centroid (a.k.a. center of mass) is based on a given
density field. We use ρ(p) to denote the density value at point p, and require
ρ(p) ≥ 0. In Euclidean space, the centroid of a region V E

i ⊂ R2 is defined as:

cEi =

∫
V E
i
ρ(p)p dσ∫

V E
i
ρ(p) dσ

. (2)

The centroid has also been studied in Riemannian manifolds [Karcher,
1977; Kobayashi and Nomizu, 1996]. In this paper, we utilize the idea of
model centroid proposed by Galperin [1993], and extend it from discrete
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(a) (b)

Figure 2: (a) Voronoi diagram of 100 random initial sites (solid dots) in a hexagon in Klein
disk. Hollow dots are hyperbolic centroids of corresponding Voronoi cells. (b) Hyperbolic
CVT generated from (a). ρ(p) ≡ 1 in this example.

points to a continuous region. The model centroid unified the definition of
the centroid in spaces with constant curvature – Euclidean space, spherical
space, and hyperbolic space.

Given n discrete points pi in a k-dimensional space, and n mass values
mi corresponding to these points, the position of the centroid of these points
can be located as follows: We find a “model” of the k-dimensional space in
(k + 1)-dimensional Euclidean space. For every point pi, a vector is built
from the origin pointing to the point. The vectors are first scaled by the
corresponding mass values, and then added up. The intersection between
the sum vector and the model is defined as the position of the centroid of
these points. This definition is proved to be well-defined for any number of
discrete points and satisfies the axioms given in [Galperin, 1993].

For 2D Euclidean space, the model is the plane z = 1 in 3D Euclidean
space. Figure 3 illustrates the side view of the computation of the centroid
of two points in 2D Euclidean space. For this case, the sum vector q =
m1p1 + m2p2. To compute the intersection between any vector and the
model (the plane z = 1), we can divide it by its z-component. So we have

c =
q

zq
=

m1p1 +m2p2

m1zp1 +m2zp2

=
m1p1 +m2p2

m1 +m2

,
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O

m1p1
m2p2

q

Figure 3: Side view of the computation for the centroid of two discrete points in Euclidean
space.

which is same as the usual definition of the centroid of two points in Euclidean
space.

When we replace the summation of the n vectors with the integral over
a continuous region, we can compute the centroid of the region. Using the
computation similar to above, it is easy to verify that the model centroid
defined in this way is same as the centroid cEi defined in Equation (2).

For 2D spherical space, the model is the unit sphere x2 + y2 + z2 =
1. Figure 4 illustrates the side view of the computation of the centroid
of two points in spherical space. The sum vector is same as above, i.e.
q = m1p1 +m2p2. To compute the intersection between any vector and the
sphere, we normalize the vector using its Euclidean norm:

c =
q

∥q∥
=

m1p1 +m2p2

∥m1p1 +m2p2∥
.

Comparing this with the Euclidean centroid of these two points

cE =
m1p1 +m2p2

m1 +m2

,
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q

cE

Figure 4: Side view of the computation for the centroid of two discrete points in spherical
space.

we note their numerators are same, which indicates these two vectors are
collinear. In other words, the spherical centroid defined by model centroid is
the central projection, with respect to the origin point, of the 3D Euclidean
centroid onto the sphere.

Similarly, we can extend the definition of the spherical centroid from
discrete points to a continuous region V S

i ⊂ S2 by replacing the summation
by integral:

cSi =

∫
V S
i
ρ(p)p dσ

∥
∫
V S
i
ρ(p)p dσ∥

, (3)

and the projection property still holds. The hollow dots in Figure 1(a) are
spherical centroids of the Voronoi cells. Figure 1(b) shows the spherical CVT
generated from the 500 initial sites in Figure 1(a).

For 2D hyperbolic space, the model is Minkowski model, which is the
upper sheet of a two-sheeted hyperboloid −x2 − y2 + z2 = 1 in 3D Eu-
clidean space. Figure 5 illustrates the side view of the computation of the
centroid of two points in hyperbolic space. Again, the sum vector here is
q = m1p1+m2p2. To compute the intersection between any vector with the
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Figure 5: Side view of the computation for the centroid of two discrete points in hyperbolic
space.

hyperboloid, we normalize the vector using its Minkowski norm defined as
∥p∥M =

√
−x2p − y2p + z2p. So, in Figure 5, we have:

c =
q

∥q∥M
=

m1p1 +m2p2

∥m1p1 +m2p2∥M
.

It also has the same numerator with the 3D Euclidean centroid cE, and thus
these two vectors are collinear.

When we extend this definition to continuous regions using integral, we
have the hyperbolic centroid of a region V H

i ⊂ H2 as:

cHi =

∫
V H
i
ρ(p)p dσ

∥
∫
V H
i
ρ(p)p dσ∥M

. (4)

It is the central projection, with respect to the origin point, of the 3D Eu-
clidean centroid onto the hyperboloid. Note that because we use Minkowski
model to define the hyperbolic centroid, the integral in Equation (4) is in
fact a surface integral on the hyperboloid. Since all models of the hyperbolic
geometry are equivalent, we can always compute the integral in hyperbolic
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space as a surface integral on a hyperboloid by using Minkowski model. Fig-
ure 2(a) shows the hyperbolic centroids of all Voronoi cells marked as hollow
dots, and the corresponding hyperbolic CVT is shown in Figure 2(b).

4. CVT Energy

In Euclidean space, for any set of sites and any partition corresponding
to the sites, we can define an energy function. It is proved that the necessary
condition for minimizing this energy function is that the sites and the par-
tition form a centroidal Voronoi tessellation [Du et al., 1999]. This energy
function is thus called CVT energy. In this section, we define the CVT en-
ergy in different spaces and study the relationship between the CVT energy
and the CVT in these spaces.

4.1. CVT Energy in Different Space

In Euclidean space, suppose we have an ordered set of sites S = (s1, s2, . . . , sn)
in a Euclidean domain ΩE ⊂ R2, and a tessellation V = (V E

1 , V
E
2 , . . . , V

E
n ),

where part V E
i correspond to site si, V

E
i ∩V E

j = ∅ if i ̸= j, and
∪n

i=1 V
E
i = ΩE.

The CVT energy of S and V is defined as:

F E(S, V ) =
n∑

i=1

∫
V E
i

ρ(p)
(
dE(p, si)

)2
dσ

=
n∑

i=1

∫
V E
i

ρ(p)∥p− si∥2 dσ. (5)

We can also define a similar energy function in both spherical space and
hyperbolic space. As proved later in this section, these functions have similar
properties as their Euclidean counterpart, and thus are also appropriately
called CVT energy in these spaces.

To define the CVT energy in spherical space, recall that the distance in
spherical space is dS(a,b) = cos−1 (⟨a,b⟩). So cos

(
dS(a,b)

)
= ⟨a,b⟩. Since

⟨a, a⟩ = ∥a∥2, cos
(
dS(a,b)

)
has the same dimension (i.e. square of length)

as
(
dE(a,b)

)2
. Based on this observation, we define the CVT energy in
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spherical space as:

F S(S, V ) =
n∑

i=1

∫
V S
i

ρ(p) cos
(
dS(p, si)

)
dσ

=
n∑

i=1

∫
V S
i

ρ(p) ⟨p, si⟩ dσ. (6)

We define the hyperbolic CVT energy on Minkowski model, since the
hyperbolic distance on this model has a simple form. The distance between
two points p and q on Minkowski model is:

dHM(p,q) = cosh−1 (⟨p,q⟩M) ,

where ⟨p,q⟩M = −xpxq−ypyq+zpzq is the Minkowski inner product defined
in 3D Euclidean space. Similar to spherical space, we define the CVT energy
in hyperbolic space as:

FH(S, V ) =
n∑

i=1

∫
V H
i

ρ(p) cosh
(
dH(p, si)

)
dσ

=
n∑

i=1

∫
V H
i

ρ(p) ⟨p, si⟩M dσ. (7)

Next, we study the properties of the CVT energy in spherical space and
hyperbolic space.

4.2. CVT Energy and Voronoi Diagram

In Euclidean space, if the sites are fixed and the tessellation varies, we
have the following conclusion:

Lemma 1. When the sites are fixed, the CVT energy F E(S, V ) is minimized
when the tessellation V is the Voronoi diagram of the sites.

The proof of this lemma can be found in [Du et al., 1999].

We have the similar property for spherical CVT energy as shown in the
following lemma:

Lemma 2. When the sites are fixed, the CVT energy F S(S, V ) is maximized
when the tessellation V is the Voronoi diagram of the sites.
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Proof. Suppose we have a tessellation V which is different to the Voronoi di-
agram Ω = (ΩS

1,Ω
S
2, . . . ,Ω

S
n). For a particular point p belonging to a Voronoi

cell ΩS
i , suppose in the tessellation V it belongs to a cell V S

j . Because of the
definition of the Voronoi diagram, we always have

dS(p, si) ≤ dS(p, sj).

Note 0 ≤ dS(a,b) ≤ π for any two points a and b. So,

ρ(p) cos(dS(p, si)) ≥ ρ(p) cos(dS(p, sj)).

Since V is not a Voronoi diagram, the above formula must hold with strict
inequality on some cells. Thus,

F S(S,Ω) > F S(S, V )

so that F S(S, V ) is maximized when the tessellation is the Voronoi diagram
of the sites. �

To be consistent with the Euclidean space and hyperbolic space, we can
slightly modify the definition of the CVT energy in spherical space as:

F S(S, V ) =
n∑

i=1

∫
V S
i

ρ(p) cos
(
π − dS(p, si)

)
dσ

= −
n∑

i=1

∫
V S
i

ρ(p) cos
(
dS(p, si)

)
dσ

= −
n∑

i=1

∫
V S
i

ρ(p) ⟨p, si⟩ dσ. (8)

Obviously, for the CVT energy under this definition, we have:

Lemma 3. When the sites are fixed, the CVT energy F S(S, V ) is minimized
when the tessellation V is the Voronoi diagram of the sites.

To distinguish these two definitions, we denote the two CVT energy func-
tions defined by Equation (6) and (8) by F S

max(S, V ) and F S
min(S, V ) respec-

tively.

This relationship between the CVT energy and the Voronoi diagram also
holds in hyperbolic space, and we have:

Lemma 4. When the sites are fixed, the CVT energy FH(S, V ) is minimized
when the tessellation V is the Voronoi diagram of the sites.

Proof. The proof is almost same as Lemma 2 and is omitted here. �
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4.3. CVT Energy and Centroid

Next we study the situation when the tessellation is fixed and the sites
moves. For simplicity, under this situation, we ignore the tessellation and
write the energy as F (S) (with corresponding superscripts for different spaces).
In Euclidean space, we have:

Lemma 5. When the tessellation is fixed, the CVT energy F E(S) is mini-
mized when the sites locate at centroids of their corresponding parts.

The proof of this lemma is also provided in [Du et al., 1999].

Again, this property also holds in spherical space as shown in the following
lemma:

Lemma 6. When the tessellation is fixed, the CVT energy F S
min(S) is min-

imized, and the CVT energy F S
max(S) is maximized, when the sites locate at

centroids of their corresponding parts.

Proof. We first study how to minimize the partial CVT energy on the part
V S
i corresponding to site si:

F S
min(si) =

∫
V S
i

ρ(p) cos
(
π − dS(p, si)

)
dσ

= −
∫
V S
i

ρ(p) cos
(
dS(p, si)

)
dσ

= −
∫
V S
i

ρ(p) ⟨p, si⟩ dσ.

To find the minimum point of F S
min(si), we write the problem as a non-

linear programming problem:{
min
si∈R3

F S
min(si)

g(si) = ⟨si, si⟩ − 1 = 0
,

where g(si) is the equation of the model of spherical space (the unit sphere).
The Lagrange multiplier rule states that the solution of this problem is the
stationary point of

L(si) = F S
min(si) + λg(si) = −

∫
V S
i

ρ(p) ⟨p, si⟩ dσ + λg(si),
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where λ ∈ R is the Lagrange multiplier. The necessary condition is{
∇siL(si) = ∇siF

S
min(si) + λ∇sig(si) = 0

∇λL(si) = g(si) = 0
.

From the first equation, we have

−
∫
V S
i

ρ(p)p dσ + 2λsi = 0.

So

si =

∫
V S
i
ρ(p)p dσ

2λ
.

Comparing this result with Equation (3), we can see these two vectors are
collinear. Also, the second necessary condition g(si) = 0 limits si on the unit
sphere. So si is either the spherical centroid defined by Equation (3) (i.e.
si = cSi ), or its anti-point on the other end of the diameter passing through
the centroid (i.e. si = −cSi ). It is easy to verify that F S

min(si) has smaller
value at cSi . So we proved the centroid of part V S

i minimizes the partial CVT
energy over it.

If all sites locate at centroids of their corresponding parts, all partial
CVT energy functions are minimized. As a result, the sum of them, the
CVT energy F S

min(S) is minimized.
Using the same derivation, we can prove when all sites locate at cen-

troids of their corresponding parts, the CVT energy energy F S
max(S) is max-

imized. �
To be consistent with Euclidean space and hyperbolic space, from now

on, when we mention the CVT energy in spherical space, we always mean
F S
min(S) and thus write it as F S(S).
In Section 3.1, we have proved that the Voronoi diagram in spherical space

is same as the constrained Voronoi diagram on the sphere. We can also define
the CVT energy for this constrained Voronoi diagram in 3D Euclidean space:

F E
c (S) =

n∑
i=1

∫
Vc,i

ρ(p)
(
dE(p, si)

)2
dσ

=
n∑

i=1

∫
Vc,i

ρ(p)∥p− si∥2 dσ, (9)
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where Vc,i is the constrained Voronoi cell of site si, i.e. the intersection be-
tween the sphere and the 3D Voronoi cell ΩE

i . The point c∗i ∈ Vc,i which
minimizes the partial CVT energy F E

c (si) is defined as the constrained cen-
troid of Vi [Du et al., 2003]. It is proved in [Du et al., 2003] that if cE is
the centroid of Vc,i in 3D Euclidean space, the vector cEc

∗ is collinear with
the normal vector at c∗. For sphere, this indicates that c∗ is the central
projection of cE onto the sphere. So the constrained centroid c∗ is same as
the spherical centroid cSi defined by Equation (3), and the spherical CVT is
thus identical to the constrained CVT on the sphere.

When the tessellation is fixed, the CVT energy in hyperbolic space also
has the similar property:

Lemma 7. When the tessellation is fixed, the CVT energy FH(S) is mini-
mized when the sites locate at centroids of their corresponding parts.

Proof. The proof is similar to that of spherical space, and the non-linear
programming problem we need to solve is:{

min
si∈R3

FH(si)

g(si) = ⟨si, si⟩M − 1 = 0
,

where g(si) is the equation of the model of hyperbolic space (Minkowski
model). Using the Lagrange multiplier rule, we have∫

V H
i

ρ(p)p̃ dσ + 2λs̃i = 0,

where the notation ã represent a vector whose first two components are nega-
tive of those of a, and the third component is same, i.e. ã = (−xa,−ya, za)T .
We can split this vector equation into three scalar equations, multiply −1 to
both sides of the first two equations, and combine them again to have∫

V H
i

ρ(p)p dσ + 2λsi = 0.

From this equation on, we can use the same argument as in Lemma 6 to
finish the proof. �
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5. Computing Centroidal Voronoi Tessellations

Lloyd’s algorithm is the most widely used algorithm to compute the CVT
in Euclidean space. We use Lloyd’s algorithm to compute the spherical CVT
and hyperbolic CVT in this paper. Note that it is also possible to use the
L-BFGS algorithm to compute them as in [Liu et al., 2009].

5.1. Lloyd’s Algorithm

Lloyd’s algorithm is an iterative algorithm to minimize the CVT energy.
It starts with an arbitrary set of initial sites. In every iteration of Lloyd’s
algorithm, the Voronoi diagram of current sites is first computed. Next, the
centroids of Voronoi cells are computed and used as new sites for next itera-
tion. This procedure is repeated until certain stopping condition is satisfied
(e.g. the moving distance of every site is smaller than a threshold).

In Euclidean space, Lloyd’s algorithm is proved to be converged [Du et al.,
2006]. The basis of the proof is Lemma 1 and 5. Since we have proved sim-
ilar lammas in both spherical space (Lemma 3 and 6) and hyperbolic space
(Lemma 4 and 7), we can use the same proofs of Theorem 2.3, Corollary 2.4,
Theorem 2.5, and Theorem 2.6 in [Du et al., 2006] to prove the convergence
(with respect to CVT energy) of Lloyd’s algorithm in both spherical space
and hyperbolic space, i.e. Lloyd’s algorithm always converges to a configura-
tion corresponding to a local minimum of the CVT energy. Note that same
as the case in Euclidean space, the stationary point found by Lloyd’s algo-
rithm in spherical space or hyperbolic space may be either a local minimum
point or a saddle point of the CVT energy.

For spherical CVT, as it is identical to the constrained CVT on the sphere,
we can actually compute a constrained CVT as in [Du et al., 2003].

The case of hyperbolic CVT is more complicated. Since the hyperbolic
Voronoi diagram is computed in Klein disk and the hyperbolic centroid is
defined in Minkowski model, we need to convert positions between these two
models. In the following of this section, we use normal letters to represent
points in Minkowski model, and letters with bars for points in Klein disk.
Furthermore, we use letters with primes to represent points on the plane
z = 0.

When embedded in the plane z = 1 with the center on z-axis, Klein disk
is the central projection of Minkowski model with respect to the origin point.
The correspondence between a point p(xp, yp, zp) in Minkowski model and
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Figure 6: Illustration of mapping functions φ and ψ.

a point p(xp, yp) in Klein disk is given by the following formulas:{
xp = xp/zp
yp = yp/zp

(10)


xp = xp/

√
1− (x2p + y2p)

yp = yp/
√
1− (x2p + y2p)

zp = 1/
√

1− (x2p + y2p)

. (11)

Formula (11) define a mapping function φ from Klein disk to Minkowski
model, where φ(p) = p. We also define another mapping function ψ which
orthogonally projects a point p in Minkowski model to the plane z = 0 to
get the point p′, i.e. ψ(p) = p′. Note that these two mapping functions can
be naturally extended to Voronoi cells:

φ(Ω
H
i ) =

∪
p∈ΩH

i

φ(p) = ΩH
i , ψ(Ω

H
i ) =

∪
p∈ΩH

i

ψ(p) = Ω′H
i .

Figure 6 illustrates these two mapping functions.
Last, we would like to emphasize that the above mapping functions are

only for centroid computations. The hyperbolic Voronoi diagram is directly
computed as a power diagram in Euclidean space as explained in Section 3.
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5.2. Implementation Details

Lloyd’s algorithm requires to compute the Voronoi diagram as the first
step. For spherical space, we use STRIPACK [Renka, 1997] to compute the
Voronoi diagram on a sphere. For hyperbolic space, as discussed above, com-
puting a hyperbolic Voronoi diagram in Klein disk can be easily accomplished
by computing a power diagram in Euclidean space. In our implementation,
we use the CGAL library [Fabri, 2001] to compute the power diagram.

The next step of Lloyd’s algorithm is to compute the centroid for every
Voronoi cell. In hyperbolic space, although the centroid of a triangle with
constant density is proved to be coincident with the common point of its
three medians [Stahl, 2007], for a triangle with non-constant density, it is not
known how to get a close-form solution of its centroid defined by Equation (4).
The same difficulty exists in spherical space. As a result, we cannot compute
the centroid of a Voronoi cell by dividing it into several triangles as we did
in Euclidean space. Instead, we use summations to approximate the integral
to compute centroids in spherical and hyperbolic spaces.

For every spherical Voronoi cell ΩS
i , we first apply a rigid transformation

(i.e. rotation) to transform its site onto z-axis (point (0, 0, 1)). The trans-
formed Voronoi cell is then orthogonally projected to the plane z = 0 as Ω′S

i .
The plane z = 0 is uniformly sampled using a regular grid. We perform the
summation over all samples located within Ω′S

i to approximate the integral
in Equation (3).

Similarly, for every hyperbolic Voronoi cell Ω
H
i in Klein disk, we first apply

a Möbius transformation, the rigid motion in hyperbolic plane, to move its
site si to the origin to achieve a relatively small numerical error. Then we use

the mapping functions φ and ψ to map the Ω
H
i from Klein disk to Minkowski

model, and then to the plane z = 0, to get Ω′H
i = ψ(φ(Ω

H
i )). The plane z = 0

is uniformly sampled using a regular grid. We perform the summation over
all samples located within Ω′H

i to approximate the integral in Equation (4).
We plot in Figure 7(a) and Figure 7(b) the spherical CVT energy F S

max(S)
and F S

min(S) against the number of iterations starting from the 500 sites
shown in Figure 1(a). The hyperbolic CVT energy FH(S) corresponding to
Figure 2 is shown in Figure 7(c). These results verify the lemmas proved in
Section 4. Similar to in Euclidean space, the energy changes dramatically
for the first several iterations, and converges gradually to a local minimum
(maximum). Note although the CVT energy should monotonically decrease
or increase, there is slight perturbation in the curves due to our approxima-
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(a) (b) (c)

Figure 7: CVT energy against the number of iterations for Lloyd’s algorithm. (a) and (b)
starts from the 500 initial sites shown in Figure 1(a). (c) starts from the 100 initial sites
shown in Figure 2(a).

tion of the integral for centroid computation.

5.3. Uniformity of Centroidal Voronoi Tessellation

Gersho’s conjecture states that the sites in a Euclidean CVT are uniformly
distributed in the space [Gersho, 1979]. We conjecture that it is also true for
the spherical CVT and the hyperbolic CVT. Since it is difficult to visually tell
the uniformity of the sites in these CVT results, we measure the geometrical
uniformity of the sites and Voronoi cells. For every site si, we define the
radius ri of its Voronoi cell, the distance di to its nearest neighbors, and the
area ai of its Voronoi cell as follows:

ri = max
p∈Ωi

d(p, si), di = min
j ̸=i

d(si, sj), ai = Area(Ωi),

where d(·, ·) and Area(·) denote the distance between two points and the
area of a Voronoi cell computed in the corresponding space respectively. For
each quality measure, smaller variance means better uniformity of the sites.
Figure 8 compares the three measures computed for the Voronoi diagram of
500 initial sites (Figure 1(a)) in spherical space and the spherical CVT (Fig-
ure 1(b)). Figure 9 compares the three measures computed for the Voronoi
diagram of 100 initial sites in hyperbolic space (Figure 2(a)) and the hyper-
bolic CVT (Figure 2(b)). It is clear that the sites in both the spherical CVT
and the hyperbolic CVT are very uniformly distributed.

In 2D Euclidean space, it has been proved that most of Voronoi cells
in a CVT are hexagons [Newman, 1982]. We conjecture that this is also
true for both spherical and hyperbolic CVTs. We have also experimentally
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(a) (b) (c)

Figure 8: Comparison of (a) radius of Voronoi cell, (b) distance to nearest neighbor, and
(c) area of Voronoi cell of the Voronoi diagram of 500 initial sites shown in Figure 1(a)
(gray curve) and the spherical CVT shown in Figure 1(b) (black curve).

(a) (b) (c)

Figure 9: Comparison of (a) radius of Voronoi cell, (b) distance to nearest neighbor, and
(c) area of Voronoi cell of the Voronoi diagram of 100 initial sites shown in Figure 2(a)
(gray curve) and the hyperbolic CVT shown in Figure 2(b) (black curve).
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(a) (b)

Figure 10: Hexagonal (unshaded) Voronoi cells in (a) the Voronoi diagram of 5,000 random
initial sites on a sphere, and (b) the spherical CVT generated from (a). ρ(p) ≡ 1 in this
example.

confirmed this conclusion. So more hexagon cells means a better uniformity
of the sites. Two examples are shown in Figure 10 and Figure 11 where we
show hexagonal Voronoi cells as unshaded. It is clear that most of Voronoi
cells in the CVT results are hexagons, and the CVT results have much more
hexagon cells than the initial Voronoi diagrams.

Although the above CVT results are all computed with a constant density
value ρ(p) ≡ 1, our definition of the CVT is general for any density values.
Figure 12 shows two examples with non-constant density values. As we
can see, similar to the behavior in Euclidean space, in both spherical and
hyperbolic CVTs, sites tend to cluster near the regions with higher density
values. This property is critical for many applications in geometric modeling
(see Section 6 for details).

6. Applications for Surface Modeling

We have given detailed definitions and analysis of the CVT in spheri-
cal, Euclidean, and hyperbolic spaces respectively. In this section, we put
these three types of CVT into a unified framework – the universal covering
space. We also show how to apply the CVT in universal covering space on
applications of surface modeling.
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(a) (b)

Figure 11: Hexagonal (unshaded) Voronoi cells in (a) the Voronoi diagram of 1,000 random
initial sites in a hexagon in Klein disk, and (b) the hyperbolic CVT generated from (a).
ρ(p) ≡ 1 in this example.

(a) (b)

Figure 12: (a) Spherical CVT of 2,562 sites with ρ(p) = e−6(1−zp)
2

. (b) Hyperbolic

CVT generated from same initial sites as in Figure 11 with ρ(p) = e−20x2
p−20y2

p +
0.05 sin2(πxp) sin

2(πyp).
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6.1. Homotopy Group and Universal Covering Space

This section briefly introduces the necessary background of algebraic
topology for the current work. We refer readers to [Munkres, 1996] for details.

Two curves are homotopic to each other, if they can deform to each other
on the surface. Let S be a topological surface, and p be a point of S. All
loops with base point p are classified by homotopy relations. All homotopy
equivalence classes form the homotopy group or fundamental group π(S,p),
where the product is defined as the concatenation of two loops through their
common base point.

A covering space of S is a space S̄ together with a continuous surjective
map h : S̄ → S, such that for every p ∈ S there exists an open neighborhood
U of p such that h−1(U) (the inverse image of U under h) is a disjoint union
of open sets in S̄, each of which is mapped homeomorphically onto U by h.
The map h is called the covering map. A simply connected covering space is
a universal covering space.

A deck transformation of a cover h : S̄ → S is a homeomorphism f : S̄ →
S such that h ◦ f = h. All deck transformations form a group, the so-called
deck transformation group, which is isomorphic to the fundamental group.

A fundamental domain F is a subset of S̄, such that the universal cov-
ering space is the union of conjugates of F , and any two conjugates have
no interior point in common. For a genus g closed surface S, one can
find a set of canonical homotopy group generators a1, b1, a2, b2, · · · , ag, bg,
such that 1) all the curves meet at a single base point v; 2) each pair of
curves ai, bi algebraically intersect each other exactly once; and 3) no curve
in another pair aj, bj algebraically intersects either of ai, bi. We can slice
S along the set of curves and get a fundamental domain with boundary
a1b1a

−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · · agbga−1
g b−1

g .
For any surface S, its uniformization metric is also a metric for its uni-

versal covering space S̄ which can be isometrically embedded into one of
the three canonical spaces: sphere, plane and hyperbolic space, given by
the following Uniformization Theorem which was first proved by Koebe and
Poincaré independently in 1907. More details can be found in [Chan, 2004].

Theorem 1 (Uniformization Theorem). Let (S,g) be a compact two-
dimensional surface with a Riemannian metric g, then there is a metric
ḡ conformal to g with constant Gaussian curvature everywhere; the constant
can be made to be one of {−1, 0, 1}.
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We call such a metric the uniformization metric of S. According to the
Gauss-Bonnet theorem, the sign of the constant Gaussian curvature must
match the sign of the Euler number χ of the surface: −1 for χ(S) < 0, 0 for
χ(S) = 0, and +1 for χ(S) > 0.

Since conformal metric only introduces area distortion, which can be eas-
ily compensated by modifying the density function expressed in the embed-
ding domain [Alliez et al., 2005], we use uniformization metric to param-
eterize surfaces of different genera to universal covering space in different
spaces. The usage of the universal covering space allows sites to move freely
everywhere on the surface: a site can cross the boundary of the fundamental
domain, and come into the fundamental domain from the “opposite” side
of the boundary. So there is no artifacts along the cutting edges any more.
This is also the major advantage of our method over Alliez et al.’s algorithm
[Alliez et al., 2005].

For a given closed genus-0 surface, its universal covering space is itself.
We apply the spherical harmonic method [Gu et al., 2004] to compute its con-
formal embedding in unit sphere. A finite portion of the universal covering
space of a given closed genus-1 surface is computed and conformally embed-
ded in Euclidean plane based on discrete Euclidean Ricci flow [Jin et al.,
2008]. For a given closed high-genus surface, we use discrete hyperbolic Ricci
flow [Jin et al., 2006] to compute its hyperbolic uniformization metric and
construct the embedding of a finite portion of its universal covering space in
Klein disk. We show an example of a genus-2 surface and the corresponding
universal covering space in hyperbolic space to better illustrate the concept
of universal covering space.

A double torus surface (genus-2) is given in Figure 13(a), with a set of
canonical fundamental group generators (black loops a1, b1, a2, b2) which cut
the surface into a topological disk, the fundamental domain, with 8 sides:
a1, b1, a

−1
1 , b−1

1 , a2, b2, a
−1
2 , b−1

2 . The fundamental domain is isometrically
embedded in Klein disk with marked sides as shown in the unshaded region
in Figure 13(b). A finite copies of the fundamental domain (shaded regions in
Figure 13(b)) are glued coherently by applying corresponding Möbius trans-
formations. Note that any two domains in universal covering space only differ
by a rigid motion of that embedding space. In hyperbolic space, the rigid
motion is a Möbius transformation, which can be computed quickly as in [Jin
et al., 2006]. In Euclidean space, the rigid motion is simply a translation,
which can be easily computed from any corresponding pair of points from the
two domains. In spherical space, one fundamental domain, also the surface
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Figure 13: Canonical fundamental group generators on (a) the surface and (b) Klein disk.
Fundamental domain is shown unshaded, and neighbor domains shaded.

itself, covers the whole space, we do not need to compute the rigid motion.

6.2. Centroidal Voronoi Tessellation in Universal Covering Space

We adapt Lloyd’s algorithm to compute the CVT of a set of initial sites
S in the embedded fundamental domain of the universal covering space.
For Euclidean space and hyperbolic space, by applying the rigid motion on
sites in S, we compute the corresponding points in neighbor domains (those
sharing an edge or a vertex with the fundamental domain) and denote the
union of them by S′ (S′ = ∅ for spherical space). The Voronoi diagram of
S∪S′ is computed, and the centroids of Voronoi cells of sites in S are located.
If a centroid is outside of the fundamental domain by one side, say a1 (see
Figure 13(b)), by performing a corresponding rigid motion we move it to the
“opposite” side a−1

1 of the fundamental domain. The adjusted centroids are
all inside the fundamental domain and are used as the new sites in the next
iteration.

Back to the example of the double torus surface and the conformal em-
bedding of the universal covering space in Klein disk, Figure 14(a) shows
the Voronoi diagram of 100 random initial sites (solid black dots) inside the
fundamental domain and their corresponding points (solid white dots) in
neighbor domains in universal covering space. The adjusted centroids (hol-
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low dots) for Voronoi cells of sites in S are all inside the fundamental domain.

As discussed before, conformal metric introduces area distortion only,
which can be compensated by assigning an appropriate density value at each
point expressed in the embedding domain.

The conformal factor cf is defined to measure the local scaling of con-
formal mapping. For each vertex v on the surface, cf can be computed as
the ratio of the area sum of its incident triangles in 3D space and in 2D
parametrization domain, i.e. cf(v) = A3D(v)

A2D(v)
. For a non-vertex point on the

surface, cf can be computed by linearly interpolating the computed confor-
mal factors of the three vertices of the triangle containing that point.

We then define a sizing field where every point p on the surface has
a desired size µ(p). For every triangle t, its sizing ratio is computed as

sr(t) = longest edge(t)
µ(centroid(t))

. For a given sizing field, we say a triangle mesh satisfies
it if the sizing ratio of every triangle is less than or equal to 1. For the ideal
case, the sizing ratios of all triangles should be 1 to minimize the number
of triangles used. So the length of the longest edge of every triangle is
approximately equal to the sizing at its centroid. The area of the triangle
is thus proportional to the square of the sizing at its centroid, i.e. A(t) ∼
µ(centroid(t))2. Since we want the sites uniformly distributed on the surface,
the sizing field on the surface should be a constant value everywhere. After
a proper normalization, we have A3D(p) ∼ 1 and A2D(p) ∼ µ(p)2, thus the
conformal factor cf(p) = 1

µ(p)2
. It is pointed out by Du and Wang [2006]

that the dual mesh of a CVT with density values ρ(p) = 1
µ(p)d+2 satisfies the

given sizing field, where d is the dimension of the problem. In 2D, we assign
the density value at point p as:

ρ(p) =
1

µ(p)4
= cf(p)2. (12)

So the uniformity of the sites in the CVT result is compensated by the
distortion, and thus uniformly distributed on the surface.

With the modulated density values (instead of a constant), the CVT
result generated by 100 Lloyd’s iterations from the initial sites shown in
Figure 14(a) is given in Figure 14(b). The Voronoi diagram of the initial
sites and the CVT results on the surface are shown in Figure 14(c) and 14(d)
respectively. As we can see the final sites are uniformly distributed on the
surface. Figure 15 shows the initial Voronoi diagram and the corresponding
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(a) (b)

(c) (d)

Figure 14: (a) Voronoi diagram of 100 random initial sites in the universal covering space,
and the centroids for Voronoi cells of sites in S. Solid black dots are sites in S, solid white
dots are sites in S′, and hollow dots are centroids. (b) CVT result generated from (a). (c)
Initial Voronoi diagram on surface. (d) CVT result on surface.
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Time Per Total Time
Figure Surface Genus #Sites Iter. (sec.) (sec.)

Fig. 14 Double Torus 2 100 0.38 76.48

Fig. 15 Kitten 1 1000 0.26 52.48

Fig. 16 Igea 0 2000 13.57 2714.01

Fig. 17 Knot 2 2000 25.35 5070.22

Fig. 18(a) David 3 1000 36.79 7358.53

Fig. 18(b) Sculpture 3 1000 55.24 11048.36

Table 1: Running time of computation of CVT for different surfaces.

CVT results both in Euclidean parametrization domain and on the genus-1
surface Kitten. Figure 16 shows the results both in spherical parametrization
domain and on the genus-0 surface Igea.

Figure 17 shows results for a genus-2 surface Knot with much more com-
plicated shape. It is clear that our algorithm using the hyperbolic CVT can
generate high quality results for relatively few sites on complicated surfaces.
Two more results for genus-3 surfaces are shown in Figure 18.

We list in Table 1 the running time of our programs on a platform with
Intel Core 2 Duo 2.93GHz CPU and 2GB DDR2 RAM. Note that our im-
plementations are not optimized, and there is much space to further improve
the speed, which is beyond the scope of this paper. For simplicity, in all
the experiments, we use a fix number (200) of iteration as the terminating
condition.

Figure 19 compares our algorithm with Yan et al.’s fast restricted Voronoi
diagram algorithm [Yan et al., 2009], which uses Euclidean distance to com-
pute a 3D Voronoi diagram, and then finds the intersection between the 3D
Voronoi diagram and the surface. For the surface Knot, part of the inner
knot is very close to the outer surface, but they are far away along the sur-
face. From our experiments, even with 4,000 sites, some Voronoi cells in the
result of the fast restricted Voronoi diagram algorithm still span over the
inner knot and the outer surface. As a result, in the dual triangle mesh, the
inner knot is glued with the outer surface by some non-manifold vertices and
edges (marked out in Figure 19(c)). As a comparison, our method using the
hyperbolic CVT has no problem to separate these two parts with much fewer
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(a) (b)

(c) (d)

Figure 15: (a) Voronoi diagram of 1,000 random initial sites in the universal covering
space, and the centroids for Voronoi cells of sites in S. Black solid dots are sites in S,
white solid dots are sites in S′, and hollow dots are centroids. (b) CVT result generated
from (a). (c) Initial Voronoi diagram on surface. (d) CVT result on surface.

32



(a) (b)

(c) (d)

Figure 16: (a) Voronoi diagram of 2,000 random initial sites in the universal covering
space, and the centroids for Voronoi cells of sites in S. Solid dots are sites in S and hollow
dots are centroids. (b) CVT result generated from (a). (c) Initial Voronoi diagram on
surface. (d) CVT result on surface.
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(a) (b)

Figure 17: (a) The CVT of 2,000 sites on the surface Knot (genus-2). (b) Dual triangle
mesh for Knot. (The wire frame mode is used to show the complex inner structure.)

sites.
Although non-manifold vertices and edges are still possible in the results

of our method, we did not have any problems in our experiments with a rea-
sonable number of sites. In our method, the CVT in universal covering space
is computed in the running-time, but all the other steps, including computing
the uniformization metric, embedding, and computing the distortion can all
be pre-computed. The time complexity of computing the spherical Voronoi
diagram and the hyperbolic Voronoi diagram is same as that in Euclidean
space, i.e. O(n log n) where n is the number of sites. As a comparison, the
algorithms using the exact geodesic distance need to compute the geodesic
Voronoi diagram in every iteration, which is much more expensive than the
computation of the Voronoi diagram in universal covering space.

7. Conclusion and Future Work

In this paper, the concept of centroidal Voronoi tessellation is extended
from Euclidean space to spherical and hyperbolic spaces. New CVT energy
functions are defined in these spaces, and the relationship between minimiz-
ing these functions and the CVTs in these spaces is proved, which leads
to the proof of the convergence of Lloyd’s algorithm in these spaces. It is
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(a) (b)

Figure 18: (a) The CVT of 1,000 sites on the surface David (genus-3) and (b)The CVT
of 2,000 sites on the surface Sculpture (genus-3).
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(a) (b)

(c)

(d)

Figure 19: Comparing the dual triangle meshes generated by (a) the fast restricted Voronoi
diagram algorithm [Yan et al., 2009] with 4,000 sites and (b) our algorithm with 2,000
sites. The regions where the inner tube is very close to the outer surface (marked by black
boxes) are enlarged in (c) and (d). Non-manifold vertex and edges in (c) are marked out.
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shown that the spherical CVT and hyperbolic CVT have the same property
with its Euclidean counterpart, i.e. the sites are uniformly distributed. Fi-
nally, spherical, Euclidean, and hyperbolic CVTs are combined into a unified
framework – CVT in universal covering space, and applied to get uniform
partitions and high quality remeshing results for genus-0, genus-1, and high-
genus (genus>1) surfaces. This is the first work systematically studying
the spherical CVT, the hyperbolic CVT, and the CVT in universal covering
space. We believe our results would have many more applications in different
areas such as surface processing, scientific visualization, pattern recognition,
etc.

Due to the lack of a close-form solution for the centroid of a triangle
with non-uniform density in spherical or hyperbolic space, we can only use
summation to approximate the integral in the computation of the spherical
or hyperbolic CVT. This not only leads to degraded quality, but also slows
down the performance of our programs. How to directly compute the integral
as in Euclidean space is one of our major future work.

In our current implementation, the Voronoi diagram on the universal cov-
ering space is computed by using all points including initial sites and their
corresponding points in neighbor domains. For a genus-g surface, there are
16g2−8g neighbor domains. So the number of sites is quite large. This makes
the computation of the Voronoi diagram very slow, which becomes the bot-
tleneck of our current program. For a genus-3 surface with 2,000 sites, our
current program needs more than one minute to compute the Voronoi dia-
gram for a single iteration. Optimizing this procedure is critical to increase
the program speed. We may borrow the idea of the periodic triangulation
package in CGAL [Caroli and Teillaud, 2009, 2011] to accelerate this proce-
dure.

Another possible acceleration approach is to utilize the parallel com-
putability of the programmable graphics processing unit (GPU). GPU has
already been used to accelerate the computation of the CVT in Euclidean
space [Vasconcelos et al., 2008; Rong et al., 2011]. But the metric of Klein
disk is highly non-uniform in the unit Euclidean disk, and is not easy (if
not impossible) to be represented by a 2D texture. So none of the existing
GPU algorithms can be straightforwardly extended to compute the hyper-
bolic CVT. We would like to investigate new data structures on the GPU for
hyperbolic geometry.
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