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Abstract

3D surface matching is a fundamental issue in computer
vision with many applications such as shape registration,
3D object recognition and classification. However, surface
matching with noise, occlusion and clutter is a challenging
problem. In this paper, we analyze a family of conformal
geometric maps including harmonic maps, conformal maps
and least squares conformal maps with regards to 3D sur-
face matching. As a result, we propose a novel and com-
putationally efficient surface matching framework by using
least squares conformal maps. According to conformal ge-
ometry theory, each 3D surface with disk topology can be
mapped to a 2D domain through a global optimization and
the resulting map is a diffeomorphism, i.e., one-to-one and
onto. This allows us to simplify the 3D surface-matching
problem to a 2D image-matching problem, by comparing
the resulting 2D conformal geometric maps, which are sta-
ble, insensitive to resolution changes and robust to occlu-
sion and noise. Therefore, highly accurate and efficient 3D
surface matching algorithms can be achieved by using con-
formal geometric maps. Finally, the performance of confor-
mal geometric maps is evaluated and analyzed comprehen-
sively in 3D surface matching with occlusion, noise and res-
olution variation. We also provide a series of experiments
on real 3D face data that achieve high recognition rates.

1. Introduction

3D shape matching is a fundamental issue in 3D com-
puter vision with many applications, such as shape registra-
tion, partial scan alignment, 3D object recognition and clas-
sification [2, 31, 24, 13]. As 3D scanning technologies im-
prove, large databases of 3D scans require automated meth-
ods for matching. However, matching 3D shapes in noisy
and cluttered scenes is a challenging task. Generally, the
crux of surface matching is finding good shape representa-
tions, allowing us to match two given free-form surfaces by
comparing their shape representations.

Figure 1. Distortion comparison between a conformal
map and a harmonic map. (a) Original surface without tex-
ture. (b) Original surface with texture. (c) The 2D confor-
mal map of the surface with texture. (d) The harmonic map
of the surface with texture. (e) Checkerbox textured sur-
face by conformal mapping. (f) Checkerbox textured sur-
face by harmonic mapping. Because of angle-preservation,
(c) and (e) have less distortions than (d) and (f), which can
be clearly seen in the close-up views (g) and (h) of the chin
areas in the red boxes respectively.

There has been a lot of research on 3D shape match-
ing in recent decades. The key question in shape
matching has been the choice of the shape representa-
tion scheme. Different approaches include curvature-based
representations[29], regional point representations[16, 24,
28, 3], spherical harmonic representations[17, 8, 9], shape
distributions[23] and harmonic shape images[32]. How-
ever, many shape representations that use local shape sig-
natures are not stable and cannot perform well in the pres-
ence of noise, occlusion and clutter. In this paper, we pro-
pose a family of conformal geometric maps that does not
suffer from such problems. According to conformal ge-
ometry theory, each 3D shape with disk topology can be
mapped to a 2D domain through a global optimization and
the resulting map is a diffeomorphism, i.e.,one-to-oneand



onto[7, 25, 26, 19]. Consequently the 3D shape-matching
problem can be simplified to a 2D image-matching problem
of the conformal geometric maps. These maps are stable,
insensitive to resolution changes and robust to occlusion
and noise. The 2D maps integrate geometric and appear-
ance information and 2D matching is a better understood
problem [20, 1, 21]. Therefore, highly accurate and effi-
cient 3D shape matching algorithms can be achieved using
conformal geometric maps.

Conformal geometric maps have been used in several ap-
plications of computer vision and graphics. In [32], Zhang
et al. proposed harmonic maps for surface matching. In
[30], Wang et al. use harmonic maps to track dynamic 3D
surfaces. In [10], conformal maps are used for face and
brain surface matching. Levy et al.[19] use least squares
conformal maps for texture atlas generation and Sharon et
al.[26] analyze similarities of 2D shapes using conformal
maps. However, in order to calculate harmonic maps the
surface boundary needs to be identified and a boundary
mapping from 3D surfaces to the 2D domain needs to be
created, which can be a difficult problem especially when
part of the surface is occluded. The two other conformal
geometric maps we discuss in this paper, conformal maps
and least squares conformal maps, do not need boundary
information and so lend themselves as a natural choice to
solve this problem. Moreover, in addition to the advantages
of harmonic maps, such as sound mathematical basis and
preservation of continuity of the underlying surfaces, con-
formal maps are also angle preserving, which leads to less
distortion and robustness to noise. The differences between
conformal maps and harmonics maps are shown in Fig. 1.

In this paper, we make the following contributions:
(1) We analyze a family of conformal geometric maps

when applied to 3D shape matching and compare their prop-
erties comprehensively.

(2) We propose a novel 3D shape matching framework,
using least squares conformal maps.

(3) We systematically evaluate the performance of con-
formal geometric maps on 3D shape matching for different
challenges such as occlusion, noise and resolution variation.

(4) We demonstrate conformal geometric maps in prac-
tice, through a 3D face recognition application.

The rest of the paper is organized as follows: The math-
ematical background of the various conformal geometric
maps is introduced and compared in Section 2. A frame-
work for 3D shape matching using least squares conformal
maps is proposed in Section 3. Experimental results and
performance analysis are presented in Section 4, and we
conclude with discussion and future work in Section 5.

2. Theoretical background

An important merit of conformal geometric maps, in-
cluding harmonic maps, conformal maps and least squares

conformal maps, is to reduce the 3D shape-matching prob-
lem to a 2D image-matching problem, which has been ex-
tensively studied[30, 32, 18]. We are dealing with 3D sur-
faces, but since they are manifolds, they have an inherent 2D
structure, which can be exploited to make the problem more
tractable using conformal geometry theory[10, 26]. Most
work using conformal geometry theory is done in surface
parameterization, which can be viewed as an embedding
from a 3D surfaceS with disk topology to a planar domain
D. Following the introduction of the notions of harmonic
maps, conformal maps and least squares conformal maps,
these three conformal geometric maps will be compared in
a comprehensive manner.

2.1. Harmonic maps

As described in [32], a harmonic mapH : S →
D is a critical point for the harmonic energy functional,
E(H) =

∫

S
‖∇H‖2dµS , and can be calculated by mini-

mizing E(H). The norm of the differential‖∇H‖ is given
by the metric onS andD, andµS is the area element on 3D
surfaceS[25, 22, 5, 6]. Since the source surface meshS is
in the form of adiscretetriangular mesh, we approximate
the harmonic energy as [5, 32, 10],

E(H) =
∑

[v0,v1]

k[v0,v1]‖H(v0) − H(v1)‖
2, (1)

where[v0, v1] is an edge connecting two neighboring ver-
ticesv0 andv1, andk[v0,v1] is defined as

1

2
(

(v0 − v2) · (v1 − v2)

‖(v0 − v2) × (v1 − v2)‖
+

(v0 − v3) · (v1 − v3)

‖(v0 − v3) × (v1 − v3)‖
)

where{v0, v1, v2} and{v0, v1, v3} are two conjoined trian-
gular faces.

By minimizing the harmonic energy, a harmonic map
can be computed using the Euler-Lagrange differential
equation for the energy functional, i.e.,∆E = 0, where
∆ is the Laplace-Beltrami operator [25, 22, 5, 6]. This will
lead to solving a sparse linear least-squares system for the
mappingH of each vertexvi [5, 32, 10]. If the boundary
conditionH|∂S : ∂S → ∂D is given, the solution exists
and is unique.

Although harmonic maps are easy to compute, they re-
quire satisfaction of the above boundary condition, which
becomes unreliable when there are occlusions in the 3D
original data. To overcome this problem, the miss-
ing boundaries can be approximated[32], which might be
enough for rough surface matching. However, since in-
terior feature points are often more robust to occlusion,
it is desirable to replace the boundary condition with fea-
ture constraints. This can be achieved by conformal maps,
another mathematical tool in conformal geometry theory,
which only require several feature constraints as an input
and obviate the need to specify the boundary condition.



2.2. Conformal maps

It can be proven that there exists a mapping from any sur-
face with a disk topology to a 2D planar domain[11], which
is one-to-one, onto, and angle preserving. This mapping is
calledconformal mappingand keeps the line element un-
changed, except for a local scaling factor[7].

Conformal maps have many appealing properties: (1)
If the parameterization is conformal, then the surface is
uniquely determined (up to a rigid motion) by the mean
curvature with area stretching factor defined on the param-
eter domain. (2) The conformal parameterization can be
uniquely determined by 2 corresponding points. (3) Con-
formal parameterization depends on the geometry itself, not
the triangulation of the surfaces. From a practical point of
view, conformal parameterization is easy to control. Hence
conformal parameterization is crucial for 3D shape match-
ing and recognition.

Consider the case of mapping a planar regionS to the
planeD. Such a mapping can be viewed as a function of
a complex variable,d = U(s). Locally, a conformal map
is simply any functionU which is analytic in the neighbor-
hood of a points and such thatU ′(s) 6= 0. A conformal
mappingU thus satisfies the Cauchy-Riemann equations,
which are

∂u

∂x
=

∂v

∂y
,
∂u

∂y
= −

∂v

∂x
. (2)

whered = u + iv ands = x + iy.
Differentiating one of these equations with respect tox

and the other with respect toy, we obtain the two Laplace
equations

∆u = 0,∆v = 0. (3)

where ∆ = ∂2

∂x2 + ∂2

∂y2 . Any mapping which satisfies
these two Laplace equations is called a harmonic mapping.
Thus a conformal mapping is also harmonic. However, un-
like the harmonic maps described in the previous section,
which need the boundary mappingH|∂S fixed in advance,
conformal maps can be calculated without demanding the
mesh boundary to be mapped onto a fixed shape. For a dis-
crete mesh, the main approaches to achieve conformal pa-
rameterizations are: harmonic energy minimization[4, 10],
Cauchy-Riemann equation approximation[19], Laplacian
operator linearization[11], circle packing[14], most isomet-
ric parameterizations(MIPS)[12] and angle-based flattening
method[27]. In this paper, we compute conformal maps us-
ing the harmonic energy minimization method.

Riemann’s theorem states that for any surfaceS home-
omorphic to a disc, it is possible to find a parameterization
of the surface satisfying Eq. 2 [19], which can be uniquely
determined by two points on surfaceS. However, to better
handle the errors caused by noise in the data and the in-
accuracy of finding feature points, we introduce additional
feature constraints, indicating that the corresponding fea-
tures on two 3D surfaces should be mapped onto the same

locations in the 2D domain. However, with these additional
constraints, it is not always possible to satisfy the confor-
mality condition. Hence, we seek to minimize the violation
of Riemann’s condition in the least squares sense.

2.3. Least squares conformal maps

The Least Squares Conformal Map(LSCM) parameter-
ization algorithm generates a discrete approximation of a
conformal map by adding more constraints. Here we give
a brief description (see [19] for details using different con-
straints).

Given a discrete 3D surface meshS and a smooth tar-
get mappingU : S → (u, v), then, as described in section
2.2,U is conformal onS if and only if the Cauchy-Riemann
equation(∂U

∂x
+i∂U

∂y
= 0) holds true on the whole ofS. How-

ever, in general this conformal condition cannot be strictly
satisfied on the whole triangulated surfaceS, so the confor-
mal map is constructed in the least squares sense:

C(S) =
∑

d∈S

‖
∂U

∂x
+ i

∂U

∂y
‖2A(d) (4)

whered is a triangle on the meshS with the areaA(d).
Furthermore letαj = uj + ivj and βj = xj + iyj , so
αj = U(βj) for j = 1, 2, ..., n. Then, we rearrange the vec-
tor α such thatα = (αf , αp) whereαf consists ofn − p

free coordinates andαp consists ofp constraint point coor-
dinates. Therefore, Eq. 4 can be rewritten as

C(S) = ‖Mfαf + Mpαp‖
2 (5)

whereM = (Mf ,Mp), a sparsem × n complex matrix.
The least squares minimization problem in Eq. 5 can be ef-
ficiently solved using the Conjugate Gradient Method. Thus
we can map a 3D surface to a 2D domain with multiple cor-
respondences as constraints by using the LSCM technique.

Since LSCMs have almost all the properties of confor-
mal maps and also provide more correspondences as addi-
tional constraints, we expect them to be very useful in 3D
shape matching and recognition.

2.4. Comparison of conformal geometric
maps

Based on conformal geometry theory, harmonic maps,
conformal maps and least squares conformal maps(LSCMs)
between two topological disks preserve continuity of the
underlying surfaces, with minimal stretching energy and an-
gle distortion. All the maps are invariant for the same source
surface with different poses, thus making it possible to ac-
count for global rigid transformations. A very important
property, which governs our matching algorithm, is that all
the maps can establish a common 2D parametric domain for



Table 1. Performance comparison of conformal geometric maps.

Harmonic Maps Conformal Maps Least Squares Conformal Maps
Resolution changes Not sensitive Not sensitive Not sensitive
Boundary constraint Needed Not needed Not needed
Boundary occlusion Difficult to handle No significant impact No significant impact

Interior feature Use 2 Points Use more
points used in mapping Do not use (from Riemann’s theorem) feature constraints

Error of interior
feature points detection Not sensitive Sensitive Not sensitive

Nonlinear (with linear
Computational Complexity Linear approximation available) Linear

the two surfaces. Therefore we can simplify the 3D shape-
matching problem to a 2D image-matching problem. How-
ever, they vary in performance for 3D surface matching as
can be seen in table 1.

Compared to the exact solutions for harmonic maps and
conformal maps, LSCMs are generated by minimizing the
violation of Riemann’s condition in the least squares sense.
This optimization-based parameterization method has the
following properties: (1) LSCMs have the same properties
as conformal maps, e.g., existence and uniqueness which
have already been proven in [19] and preservation of the
triangle orientation which means that no triangle flip can
occur. (2) LSCMs can map a 3D shape to a 2D domain
in a continuous manner with minimized local angle distor-
tion. (3) LSCMs can handle missing boundaries and oc-
clusion and also allow multiple constraints. (4) LSCMs are
independent of mesh resolution. (5) The least squares min-
imization problem in calculating LSCMs has the advantage
of being linear.

For actual 3D surfaces, it is very likely to have noise and
missing data. From the above comparison, we can see that
LSCMs are the best candidate among conformal geometric
maps to perform 3D shape matching efficiently. LSCMs do
not require the boundary condition explicitly which means
they can handle missing boundaries and occlusions. Also,
they take multiple feature constraints as input, which allows
them to better handle noise introduced by the feature point
detection. In the remaining paper, we propose a framework
of 3D shape matching using LSCMs.

3. Shape matching framework using least
squares conformal maps

To match 3D shapes accurately and efficiently, a new 2D
representation, least squares conformal shape images, is de-
veloped in our framework using LSCMs. Therefore, we
simplify the original 3D shape-matching problem to a 2D
image-matching problem. In particular, our shape matching
framework includes two steps: First, interior feature cor-
respondences are detected by using spin-images[16]; After

that, we generate and match least squares conformal shape
images.

3.1. Correspondence detection using spin-
images

In order to use least squares conformal mappings, we
need to establish interior feature constraints between the3D
shapes. For this purpose, we first select candidate points
with curvature larger than a thresholdTc, and then compare
their spin-images to detect feature correspondences. The
spin-image is a well-known technique that has been proven
useful for 3D point matching[16]. It encodes the surface
shape surrounding an oriented pointp by projecting nearby
surface points into a 2D histogram, which has cylindrical
coordinates of radiusr and heighth centered atp, with
its axis aligned with the surface normal ofp. The num-
ber of bins and support size in the spin-image histograms
are parameters fixed at generation. It has been shown that
the matching results using spin-images are insensitive to the
choice of the above parameters [13]. In our experiments, the
highest confidence feature correspondences are used. The
typical number of selected feature points is 5-6 for 3D face
surfaces and 10-12 for brain surfaces.

3.2. Least squares conformal shape images

In this section, we will introduce a method to describe
3D surfaces using least squares conformal shape images
(LSCSIs). In section 2.3, we have shown that there exists a
least squares conformal mapping that can map each 3D sur-
face with disk topology to the canonical 2D domain. The
LSCSIs are generated by associating a shape attribute with
each vertex. Mean curvature is a useful geometric attribute
that depends only on the surface’s geometry. In our method,
the mean curvature is computed in the same way as in [10].
Moreover, least squares conformal maps can also help gen-
erate additional shape representations by associating other
attributes, e.g. texture, which leads to a natural solutionof
combining multiple important cues for 3D surface matching
and recognition, such as shape and texture.



As an example, Fig. 2(d) shows the LSCSI of the surface
Fig. 2(b), with higher intensities representing larger mean
curvature. Fig. 2(a) is the original surface with texture in-
formation and Fig. 2(c) is its LSCM. Fig. 2(e) is the LSCM
of a lower resolution(25%) version of the original surface.
The similarity between Fig. 2(c) and Fig. 2(e) shows that
LSCMs are independent to resolution variation.

Figure 2. Least Squares Conformal Shape Image: (a)
Original surface with texture. (b) Original surface with-
out texture. (c) Least squares conformal maps with texture.
(d) Least squares conformal shape image. (e)Least squares
conformal maps of the same surface, subsampled by a fac-
tor of 4, still very similar to (c).

3.3. Matching surfaces by matching LSCSIs

Given two general surfacesS1 andS2 with disk tropol-
ogy, we first detect high curvature correspondences using
spin-images. Then, by incorporating interior correspon-
dences as constraints, LSCSIs are generated for both sur-
faces as described in section 2.3. After that, the normalized
correlation coefficientMS1,S2

and the similarity criterion
S(S1, S2) introduced in [15] are computed on the two re-
sulting LSCSIs by

MS1,S2
=

N
∑

p
S1

i
p

S2

i
−

∑

p
S1

i

∑

p
S2

i
√

(N
∑

(p
S1

i
)2−(

∑

p
S1

i
)2)(N

∑

(p
S2

i
)2−(

∑

p
S2

i
)2)

S(S1, S2) = (ln
1 + MS1,S2

1 − MS1,S2

)2 −
1

2N
(6)

whereN is the number of overlapping points in the LSCSIs
of 3D surfaceS1 andS2, andpSk

i is the value of pointi in
the LSCSI of surfaceSk(k = 1, 2).

However, for 3D surfaces with holes, which violate the
disk topology assumption, we can not calculate the LSCMs
directly. To overcome this problem, we can simply fill in
the holes through interpolation and then use our method to
generate the LSCSIs of the new surfaces. As discussed in
section 2.4, LSCMs depend on the geometry in a continu-
ous manner, which leads to robustness to local perturbation.
Fig. 3 demonstrates the robustness of our method to holes
on surfaces. The normalized correlation coefficient of the
LSCSIs shown in Fig. 3(b,f) is 0.99, which means a very
good match between the two surfaces of Fig. 3(a,e) after
hole filling. If we desire to preserve the non-disk topology
of the object during matching, then the object should be
partitioned into simpler parts with disk topology[19] which
could then be matched. Optimal partitioning will be studied
in future work.

Figure 3. An example of surface matching with holes :
(a) A frontal 3D scan. (b) The LSCSI of (a). (c) A side
3D scan of the same subject as in (a), which has a hole
illustrated in (d). (e) The same surface of (c,d) after hole
filling. (f) The LSCSI of (e).

4. Performance analysis

In this section we analyze the robustness of conformal
geometric maps for 3D shape matching with occlusion,
noise and resolution variation. We also perform experi-
ments on 3D shape recognition with real data and compare
the recognition results of conformal geometric maps with
the surface curvature technique of [29].1

4.1. Robustness analysis

In this section, we use two surface types: brains (2 in-
stances) and faces (4 instances) to analyze the performance
of conformal geometric maps. We present three experi-
ments in which 3D surface matching is performed under
occlusion, noise and resolution variation.

4.1.1 Experiments on data occlusion

In this experiment, we test the robustness of conformal ge-
ometric maps under occlusion for both face and brain sur-
faces. Such occlusions might be caused by rotation of the
object in front of the scanner. Fig. 4 and 6 show examples of
3D face and brain surfaces respectively, under different oc-
clusions, and the corresponding conformal geometric maps.
For each original surface, partially occluded surfaces were
generated with occlusion rates between 5% and 45%. Aver-
age matching results of these face and brain surfaces using
conformal geometric maps are shown in Fig. 5 and 7, re-
spectively. Since the harmonic maps require satisfaction of
the surface boundary condition as discussed in section 2.1,
the performance of harmonic maps is more impacted than
the performance of conformal maps and least squares con-
formal maps. Instead, changes of boundary have very small
effects on both conformal maps and least square conformal
maps. In some cases, we superimpose the matched surfaces
with significant occlusions (only 60% of area is common

1A video of the 3D face matching can be found at:
http://www.cs.sunysb.edu/∼ial/expressionModeling.html



Figure 4. 3D face surfaces and their conformal geometric
maps under occlusion. The original 3D face surfaces with
different occlusions are in the first row. Their least squares
conformal shape images are in the second row. Their con-
formal maps and harmonic maps with curvature are in the
third and the last row, respectively.
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Figure 5. Average matching results of the face surfaces
under occlusion.

to both) and the matching error is very hard to detect visu-
ally, which suggests that our framework could be useful for
partial scan alignment.

4.1.2 Experiments on noisy data

The second experiment tests the robustness of conformal
geometric maps in the presence of noise. We add gaus-
sian noise(N (0, σ)) on each vertex of the face and brain
surfaces. σ increases from 0.0 mm to 2.0 mm while the
window size for computing the curvatures of 3D face and
brain surfaces is 10.5 mm. Example surfaces with noise
under two differentσ are shown in Fig. 8. We match the
various noisy surfaces to the original noise-free surface and
the average matching results of the face and brain surfaces
are shown in Fig. 9 for variousσ values. From the results

Figure 6. 3D brain surfaces and their conformal geo-
metric maps under occlusion. The original 3D brain sur-
faces with different occlusions are in the first row. Their
least squares conformal shape images are in the second row.
Their conformal maps and harmonic maps with curvature
are in the third and the last row, respectively.
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Figure 7. Average matching results of the brain surfaces
under occlusion.

we can see that all three conformal geometric maps appear
robust to gaussian noise. However, since conformal maps
depend on 2 feature points only, which might be detected
with errors caused by the noise, they have lower matching
rates than the harmonic maps and the least square conformal
maps.

4.1.3 Experiments on resolution variation

The third experiment tests the robustness of conformal ge-
ometric maps to resolution changes. Fig. 10 shows exam-
ples of 3D face and brain surfaces with resolution varia-
tion, where all the meshes have the same shape but different
resolution. The surfaces with low resolution are matched
to the original surfaces and average matching results using
the three conformal geometric maps are shown in Fig. 11.
Results show that conformal geometric maps achieve fairly
stable matching results and all of them are impervious to
resolution changes. A small deterioration of the matching



Figure 8. Examples of face and brain surfaces under
gaussian noise with differentσ set to 0.0 and 2.0 mm, re-
spectively.
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Figure 9. Average matching results of conformal geomet-
ric maps under gaussian noise increases. The window size
for computing the curvatures of faces surfaces and brain
surfaces is 10.5 mm and theσ increases from 0.0 mm to
2.0 mm.

results is due to the use of a discrete curvature approxima-
tion, since approximation error increases as the resolution
drops.

4.2. Recognition of 3D faces

In this section, we apply conformal geometric maps to
3D face recognition and compare their results with the sur-
face curvature technique of [29]. We use a 3D face database
which contains 100 3D face scans from 10 subjects captured
by a phase-shifting structured light ranging system. Each
face has approximately 80K 3D points with both shape and
texture information available (example face data from two
subjects in the database are shown in Fig. 12). We perform
3D face recognition using conformal geometric maps and
compare them with the surface curvature technique. In each
experiment, we randomly select a single face from each
subject for the gallery and use all the remaining faces as the
probe set. The average recognition results from 20 exper-
iments (with different randomly selected galleries) are re-
ported in Table 2. In this experiment, conformal geometric
maps perform 12.3% better than the surface curvature tech-
nique even if only the shape information is used. Moreover,
conformal geometric maps allow to combine both shape and
texture information, which improves the accuracy of 3D
face recognition. As we expected, the least squares con-
formal maps achieve the best recognition result among all
three conformal geometric maps.

Figure 10. 3D face and brain surfaces with 1 and 1/8 of
the original resolution, respectively.
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Figure 11. Average matching results of conformal geo-
metric maps under resolution variation.

5. Conclusion and future work
In this paper, we presented a family of conformal geo-

metric maps and proposed a fully automatic and novel 3D
shape matching framework using least squares conformal
shape images – a new shape representation which simplified
the 3D surface-matching problem to a 2D image-matching
problem. Furthermore, performance of conformal geomet-
ric maps including harmonic maps, conformal maps and
least squares conformal maps were systematically evaluated
vis-a-vis a surface curvature technique in 3D face recog-
nition. Our results have shown that conformal geometric
maps are robust to occlusion, noise and different resolu-
tions and that the least squares conformal mapping is the
best choice for 3D surface matching.

In future work, we will continue to exploit the properties
of conformal geometric maps and further analyze the prop-
erties of conformal geometric shape representations for sur-
faces with non-disk topology. We will further validate our
method as larger databases become available. We plan to
use our framework for applications such as 3D object clas-
sification and registration under non-rigid deformations.
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