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Abstract—Wireless Rechargeable Sensor Network (WRSN),
consisting of sensors with rechargeable batteries and mobile
chargers, has become a promising solution to the energy lim-
itation problem in Wireless Sensor Networks (WSNs). Charger
scheduling optimization focuses on optimizing the trajectory of
mobile chargers to prolong the life of a WRSN system. Charger
scheduling optimization problems are in general NP-hard. Previ-
ous solutions using traditional algorithms often require problem-
specific design and a trade-off between the performance and com-
puting time. An insight into these optimization problems is that
a domain-specific charger scheduling strategy could be learned
automatically when the objective function of an optimization
problem is considered as a reward. We model charger scheduling
optimization problems using a weighted graph and consider the
objective function as a cumulative reward of charging sensors
along a charging path in one cycle. We then build a deep rein-
forcement learning based framework to solve a diverse range of
charger scheduling optimization problems. The biggest advantage
of the framework is that an optimal charger scheduling strategy
can be learned from previous experiences, i.e., different graphs
with various sizes. A framework also simplifies the complexity of
algorithm design for individual charger scheduling optimization
problem. We compare the performance of algorithms based on
the proposed framework with traditional ones on a set of selected
charger scheduling optimization problems. They outperform all
existing algorithms.

Index Terms—Wireless rechargeable sensor networks, Mobile
charger scheduling, Deep reinforcement learning

I. INTRODUCTION

Wireless Rechargeable Sensor Network (WRSN), consisting
of a group of sensors with rechargeable batteries and one or
multiple mobile chargers, has become a promising solution to
the energy limitation problem in Wireless Sensor Networks
(WSNs). However, inefficient path planning of chargers may
result in not just the waste of energy but also the death
of node and failure of network task, considering a mobile
charger needs to travel close to a sensor node to charge.
Therefore, charger scheduling optimization has become a
popular research area that focuses on optimizing the trajectory
of a mobile charger to prolong the life of a WRSN system.

Charger scheduling optimization problems can be roughly
classified into two types. One provides a budget (e.g., the
total charging time, the total energy spent on charging and
traveling). A charger seeks a path to maximize an objective
function (e.g., the total energy charged to nodes, the total
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number of nodes charged) [1], [2]. The other gives a number of
sensor nodes to be charged. A charger seeks a path to minimize
an objective function (e.g., the total energy spent on the road,
the total travel distance, the total charging time) [3]–[7].

Charger scheduling optimization problems are in general
NP-hard. They are solved by exact, approximation, or heuris-
tics algorithms. Exact algorithms use enumeration strategy
but fail under the large size of a dataset. Approximation
algorithms are desirable solutions with provable guarantees
on the distance of the returned solution to the optimal one.
However, approximation algorithms do not always exist for
charger scheduling optimization problems. The computational
complexity of approximation algorithms may also go sky-
high with the large size of a dataset or high requirement of
optimality. Heuristic algorithms are alternative solutions, fast
to compute but lack of optimality guarantee. Overall, previous
solutions with traditional algorithms often require problem-
specific design and a trade-off between the performance and
computing time.

It is obvious that traditional algorithm design fails to
exploit the common characteristic of these charger schedul-
ing optimization problems. An insight into these problems
is that a domain-specific charger scheduling strategy could
be learned automatically when the objective function of an
optimization problem is considered as a reward. We model
charger scheduling optimization problems using a weighted
graph and consider the objective function as a cumulative
reward of charging sensor nodes along a path in one cycle.
We then build a deep reinforcement learning based framework
to tackle a diverse range of charger scheduling optimization
problems. The biggest advantage of the framework is that
an optimal charger scheduling strategy can be learned from
previous experiences, i.e., different graphs with various sizes.
A framework also simplifies the complexity of algorithm
design for individual charger scheduling optimization problem.

Specifically, we introduce the framework with four steps:
Graph construction: We use a weighted graph to model

charger scheduling optimization problems.
Graph representation: We apply the structure2vec tech-

nique [8], [9] to compute a p-dimensional feature vector and
node embedding to represent the weighted graph and a single
vertex.

Deep reinforcement learning based framework: The
framework includes the key components of a typical reinforce-
ment learning algorithm and functions designed for charger978-1-7281-2522-0/19/$31.00 c©2019 IEEE



scheduling optimization problems.
Deep-Q-Network algorithm: A Deep-Q-Network (DQN)

is applied to learn the policy, i.e. an optimal charger scheduling
strategy.

The rest of this paper is organized as follows: Sec. II gives a
brief review of charger scheduling optimization problems and
the introduction of the basic concept of deep reinforcement
learning. Sec. III provides in detail the proposed framework
to tackle charger scheduling optimization problems. Sec. IV-B
presents the simulation and comparison results. Sec. V con-
cludes the paper.

II. RELATED WORKS

A. Charger Scheduling Optimization

Charger scheduling optimization has been a popular re-
search area that focuses on optimizing the trajectory of a
mobile charger to prolong the life of a WRSN system. Charger
scheduling optimization problems can be roughly classified
into two types.

The first type is that a charger with a given budget (e.g.,
the total charging time, the total energy spent on charging
and traveling) seeks a path to achieve a maximum objective
function (e.g., the total energy charged to nodes, the total
number of nodes charged) [1], [2]. In [1], a charger with
energy bound seeks a path to maximize the charging rewards.
The authors consider two scenarios: the sensors can be charged
to full capacity one time or a certain energy level several times.
A 4-approximation algorithm is given in this paper. In [2], a
charger seeks a path that maximizes the number of sensor
nodes charged within a given charging time. The authors
consider mobile sensor nodes, so they discretize the moving
trajectory of each sensor node according to its moving time.
A quasi-polynomial time approximation algorithm is provided
in the paper.

The second type is that a charger needs to charge a
number of given sensor nodes and seeks a path to achieve
a minimum objective function (e.g., the total energy spent on
the road, the total travel distance, the total charging time) [3]–
[7]. A solution may not exist for problems of this category.
In [3], the authors consider a scenario where a mobile charger
periodically travels inside a network to charge each sensor
node. To maximize the ratio of the charger’s vacation time
over the cycle time, the authors prove that its optimal traveling
path in each renewable cycle is the shortest Hamiltonian
cycle. They propose a heuristic solution. In [4], the authors
consider the multi-node wireless energy transfer technology
in WRSNs and extend the study in [3] to a scenario that
multiple nodes can be charged at the same time. In [5], the
authors provide a tree-based charging schedule for robotic
sensor networks to minimize the travel distance of the charger.
To guarantee the charging schedule depletion free for any
robot, the authors provide theoretical guidance on the setting
of the remaining energy threshold at which the robots request
energy replenishment. In [6], the authors consider minimizing
both the travel distance of the charger and the charging delay
of sensor nodes by a set of nested Traveling Salesman Problem

(TSP). In [7], a mobile charger seeks a path to charge sensor
nodes before their charging deadlines under the constraint of
maintaining the k-coverage ability of a sensor network on the
monitored area, at the same time, minimizing the total travel
distance. The authors introduce a dynamic programming based
solution that suffers high computational complexity when the
size of WRSNs increases.

B. Deep Reinforcement Learning

Given a goal-directed agent in an uncertain environment,
the agent interacts with the environment through observations,
actions, and feedback (rewards) on actions [10]. In each
time step t, the agent observes current state st , and chooses
action a. Then the state of the environment transits to state
st+1 and the agent receives a reward rt . T (st+1|st ,a) is a
transition probability function indicating the probability that
the environment will transfer to st+1 if the agent take action
a at state st . The agent learns to select an action and try to
make the expected cumulative discounted rewards E[∑inf

t=0 γrt ]
in the future maximized, where γ is the discount rate between
0 and 1.

The agent takes action A at state S based on a policy
denoted by π(S,A). A policy can be either deterministic or
stochastic. If the action space is discrete and the policy is
deterministic, we choose value-based reinforcement learning,
e.g. Q-learning. If the action space is continuous and the
policy is stochastic, we then choose policy-based reinformed
learning, e.g. policy-gradient. Considering the action space of
charger scheduling optimization problems is discrete, i.e., a
charger decides which exact node to charge next, we choose
the value-based reinforcement learning technique to build the
framework.

Q-Learning is a model-free reinforcement learning that
does not require an agent with full knowledge of the whole
environment. The agent simply maintains a Q-table, which
stores Q-value for each state-action pair. The agent will select
the action that maximizes Q in the current state. However,
it is infeasible to learn all the state-action pairs for most
practical problems. The function approximation technique [11]
is commonly used. In Q-learning, a function approximator
Q(S,A;Θ) is parameterized by Θ with size much smaller
than the combination of all possible state-action pairs. Deep
Q-Network (DQN) [12] applies deep neural networks as
function approximators, combined with different techniques
including the experience replay method [13]. Considering the
exponentially increased size of station-action pairs in charger
scheduling optimization problems, we choose DQN to build
the framework to solve a diverse range of Charger Scheduling
Optimization problems in WRSNs.

III. CHARGER SCHEDULING OPTIMIZATION FRAMEWORK

We show the framework by four steps and use three
representative charger scheduling optimization problems as
concrete examples to illustrate the algorithm design based on
the framework.



A. Selected Charger Scheduling Optimization Problems

We illustrate our framework using three representative
charger scheduling optimization problems.
• Mobile Network Charging Path Optimization Prob-

lem [2]: Given a network composed of a set of mobile
nodes, the mobile network charging path optimization
problem is to find a closed tour for a mobile charger
to maximize the number of charged nodes under the
constraints of a required charging level at each mobile
node and a maximum timespan of the charger. Note
that the mobility pattern of the mobile nodes (i.e., their
moving trajectories) are known to the charger.

• Fully Charging Reward Maximization Problem [1]:
Given a static sensor network with a subset of sensor
nodes sending charging requests, the fully charging re-
ward maximization problem is to find a closed tour for
a mobile charger such that the sum of prizes collected
from all charged sensors is maximized, subject to that
the total amount of energy consumed on sensor charging
and the traveling of the mobile charger is no greater than
its energy capacity. Assuming that each sensor sending
request will be charged to its full energy capacity, where
the prize assigned to a sensor is proportional to the
amount of energy it will be charged.

• Optimal k-coverage Charging Problem [7]: An area
is called k-covered if any point of the region is within
the sensing range of at least k > 1 sensor nodes. Given
a set of static sensor nodes randomly deployed over a
planar region such that every point of the monitored
region has been at least k-covered initially, the optimal k-
coverage charging problem is to schedule a charging path
of a mobile charger that selects and charges a number
of sensor nodes before their deadlines to guarantee k-
coverage of the region. At the same time, the charger
seeks a path with a minimum traveling distance.

B. Graph Construction

Given a set of sensor nodes represented by V = {vi|1 ≤
i≤ n} deployed over a planar region with the initial positions
denoted by P = {pi|1≤ i≤ n}, the sensing range of a sensor
node vi is r and the sensing model is a disk. Each vi is equipped
with a rechargeable battery of capacity B. When the residual
energy of vi represented as Bi(t) at time t is below a specific
threshold, the sensor node vi will send a charging request to
the charger. The charger collects all charging requests before
leaving from base station denoted by v0 at t0. The average
speed of the charger is s.

We use weighted graph G(V,E,ω) to model the charger
scheduling optimization problems. Specifically,

Vertices. A vertex vi ∈ V (G) represents a sensor node
sending charging request.

Edges. An edge e(vi,v j)∈ E(G) indicates a possible charg-
ing path of a charger from sensor node vi to v j without the
violation of any constraints.

Edge Weight. The weight ω(vi,v j) assigned to edge
e(vi,v j) represents the Euclidean distance of nodes vi and v j.

More constraints are added to the graph model for each
charger scheduling optimization problem. Specifically,

• Mobile Network Charging Path Optimization Prob-
lem: The graph is a fully connected undirected one with
an edge connecting every pair of sensor nodes. The edge
weight changes dynamically because the sensor nodes are
mobile ones. With the assumption that the exact location
of each mobile node is known to a charger at any time t,
we discretize the time and update the graph in each time
step.

• Fully Charging Reward Maximization Problem: The
graph is a fully connected undirected one with an edge
connecting every pair of sensor nodes. Each vertex vi is
additionally associated with a positive integer with range
[1,n2] to model the gain of charging vi by a mobile
charger. A sensor with less residual energy is assigned
a larger prize as it needs to be charged more urgently.

• Optimal k-coverage Charging Problem: The graph is
a directed one. There exists an edge −→viv j in graph G if
and only if the inequality below holds

B−Bi(t0)
rc

+
di j

s
≤ D j (1)

where Bi(t0) denotes the residual energy of sensor node
vi at charger departure time t0, rc the energy transfer
rate of charger, di j the Euclidean distance between vi
and v j, s the average speed of a charger, and D j the
charging deadline of v j calculated by the residual energy
and energy consumption rate at v j. Note that we use the
charger departure time t0 to construct the graph, but later
t0 will be updated to the exact charging time at vi.

C. Graph Representation

As we have mentioned in Sec. II-B, deep Q-learning applies
parametrized function Q(S,A;Θ) to approximate the state-
action value function Q(S,A) where Q(S,A;Θ) is parame-
terized by Θ with size much smaller than Q(S,A), i.e., the
combinations of all pairs of state and action. It is expected
that the evaluation function Q has well summarized the state
S of the current problem solving, i.e., incorporating the current
partial solution including the selected vertices and their order
into the graph model constructed in Sec. III-B. Q should
also have an estimation of the reward value of a new node
if it is to be added as an action A in current state S. It is
challenging to accurately describe both S and A on a graph.
They may depend on global and local statistics of the current
graph. There exist different graph representation techniques.
We apply the structure2vec technique [8], [9], a deep learning
architecture over graphs to compute a p-dimensional node
embedding of each vertex and a p-dimensional feature vector
of the graph. The state-action value function Q can then be
defined by the computed feature vector and node embedding
parameterized by Θ. Parameters Θ will be learned later using
deep reinforcement learning algorithm.



D. Deep Reinforcement Learning Framework

States, actions, transition, rewards, and policy are key
components of any typical reinforcement learning algorithm.
We add objective function, insertion function, and stop func-
tion into the deep reinforcement learning based charging
framework. Before we discuss these key components of the
framework, we will briefly explain some terms borrowed from
reinforcement learning. An episode in the framework refers
to a complete sequence of charged sensor nodes before the
constraints of a charger or requirements of a network have
been satisfied. A step, denoted by t, refers to a single sensor
node charging in an episode.

Objective function: An objective function, denoted by f ,
reflects the quality of a partial solution to a charging problem.
The definition of f varies from one charging problem to
another, e.t., from maximizing the number of charging nodes
to minimizing the traveling distance. To keep consistent, we
turn f to negative when the problem requires minimizing some
value.

Insertion function: An insertion function, denoted by g,
is designed to insert vertex v to the best position in a partial
solution st+1, e.g., st+1 := g(st ,v).

Stop function: A stop function checks the problem con-
straints and determines when to stop the current episode.

States: A state st is an ordered list of visited vertices at
time step t, represented as a p-dimensional vector using the
structure2vec [8], [9] graph representation technique. It is a
partial solution st ⊆V (G). The initial state is denoted by s0 =
(v0). A stop function will determine the termination state send.

Actions: Actions include all the candidate vertices at state
st . Such candidacy depends on the definition of the individual
charging problem. We will discuss it later. Similar to a state,
an action is represented as a p-dimension node embedding
using the structure2vec [8], [9] graph embedding technique.

Transition: Suppose v is a candidate vertex. After taking the
action v at time step t, state st is transitioning to st+1 := g(st ,v)
where v is inserted to the best position by an insertion function
g.

Rewards: A reward function, denoted by r(st ,v), reflects
the change of the objective function f after taking action v at
state st and transitioning to state st+1:

r(st ,v) = f (st+1)− f (st). (2)

It is obvious that the cumulative reward of an episode
equals the objective function of the termination state, i.e.
∑

n
i=1 r(si,vi) = f (send) assuming the episode takes n steps.
Policy: We choose an epsilon greedy policy. The policy

will choose an action achieving the current highest reward.
However, with a small probability, it will instead randomly
select the next action to prevent the stuck of the agent.
Specifically, at time step t, an action vt is selected by

vt =

{
argmaxv∈s̄t Q(st ,v;Θ) with probability 1− ε

select a random vertex vt ∈ s̄t otherwise
(3)

We will illustrate how to tailor the model for each of the
selected charger scheduling optimization problems.

• Mobile Network Charging Path Optimization Prob-
lem: The objective function f counts the number of se-
lected vertices, i.e., charged mobile nodes. The Insertion
function g simply inserts the selected vertex v at time step
t to the end of state st . The stop function checks st+1 to
make sure that the total charging time is no larger than a
given maximum timespan of the charger. Otherwise, the
selected vertex v will be removed. Actions at time step t
include all non-selected vertices in current state st . The
reward function r(st ,v) is defined as

r(st ,v) = 1 (4)

because inserting one vertex to a partial solution con-
tributes the objective function f by one count.

• Fully Charging Reward Maximization Problem: The
objective function f counts the total prizes collected from
selected vertices, i.e., charged mobile nodes. The prize at
each vertex is proportional to the energy charged to its
full capacity. The Insertion function g finds a position to
insert v at st that minimizes the energy of charger spent
on road, which is defined as:

g(st ,v) = argmin
i
{E0i +Eit} (5)

where E0i +Eit is the energy of charger spent on path
when charging vertex v as the i-th one among the selected
vertices. The stop function checks st+1 to make sure that
the total amount of energy consumed on sensor charging
and the traveling is no greater than the energy capacity of
a mobile charger . Otherwise, the selected vertex v will be
removed. Actions at time step t include all non-selected
vertices in current state st . The reward function r(st ,v) is
defined as

r(st ,v) = Ev (6)

where Ev is the energy charged to get the full capacity
of v.

• Optimal k-coverage Charging Problem: The objective
function f counts the total traveling distance of a charger.
To maximize f , we turn f to negative. The stop function
checks whether the current charging path has guaranteed
the k-coverage requirement of the area. If it is the case,
the current episode/charging cycle can terminate. Actions
at time step t contain vertices who are not in st and has at
least one edge from vertices in st . The Insertion function
g finds a position to insert v at st that maximizes the
reward and ensures each node charged before its deadline.
Assuming g inserts v as the i-th node of the partial
solution at st , the reward function r(st ,v) is defined as

r(st ,v) = di−1,i+1− (di−1,i +di,i+1), (7)

where di j is the euclidean distance between nodes vi and
v j.



E. Deep-Q-Network (DQN) Algorithm

We adopt the deep-Q-network algorithm introduced in [9]
to learn the parameters Θ of the state-action value function
Q(S,v;Θ). The adopted algorithm updates the parameters Θ

after n steps, instead of each step as a standard deep Q-learning
one, to have a more accurate estimation of the objective
function. Experience replay method in [13] is also applied
to update Θ. The agent’s experience in each step is stored in a
dataset. When we update Θ, the sample batch is randomly
selected from the dataset. This method can break the data
correlation and avoid oscillations with the parameters. As a
result, it could increase data efficiency. The batch size is 32.

The input of the network is the p-dimension vector featured
by graph embedding network and output is the optimal solu-
tion for the current state. The advantage of DQN is that it can
handle delayed rewards, which represent the way to optimize
the objective function. In each step of the algorithm, the graph
embedding method will be used to update the current partial
solution and the new p-dimension vector which contains the
newest information will be used for the next step.

Algorithm 1 summaries the major steps of the algorithm.

Algorithm 1 DQN Algorithm
1: Initialize replay memory H to capacity C
2: for each episode do
3: Initialize state s1 = (v0)
4: for step t = 1 to n do
5: Select vt by (3)
6: Add vt to partial solution by insertion function:

st+1 := g(st ,v)
7: Calculate reward r(st ,v)
8: Store tuple (st ,v,r(st ,v),st+1) to H
9: Sample random batch (sl ,vl ,r(sl ,vl),sl+1) from H

10: Update the network parameter Θ by squared loss
function (yl−Q(sl ,vl ;Θ))2, where

yl =


r(sl ,v)+ γmaxv′Q(sl+1,v′;Θ)

if sl+1 non-terminal and v′ ∈ s̄l

r(sl ,v)
otherwise

(8)
11: if st+1 satisfy the stop function then
12: Break
13: end if
14: end for
15: end for

IV. SIMULATION

We compare the performance of the DQN algorithm based
on the proposed framework with traditional ones on the
selected charger scheduling optimization problems.

A. Common Simulation Setting

The simulation area is a Euclidean square with size varying
from [100,100]m2 to [1000,1000]m2. We deploy sensors under

uniform random distribution with the size, denoted by n,
varying from 10 to 200. The battery capacity of each sensor,
denoted by B, is 10.8KJ with an initial battery level randomly
chosen from [0,B] [2]. A mobile charger starts from the center
of the monitored area with an average speed of 5m/s and then
comes back to the starting point after a cycle of charging. The
average energy transfer rate is 40 W. Note that we run multiple
independent simulations for a set of given parameters and then
choose the average value.

B. Mobile Network Charging Path Optimization Problem

A quasi-polynomial time algorithm that achieves a poly-
logarithmic approximation is introduced in [2] to solve the
optimum charging path problem. The algorithm discretizes the
trajectory of each mobile node by a time step ∆t and then
constructs a directed acyclic graph with vertices representing
the discretized points on the trajectories of all nodes and the
starting and ending positions of the charger.

The computational complexity of the approximation algo-
rithm is O(nd min(nd ,C) logC)L, where nd is the size of nodes
after discretization, C is the maximum charging timespan, and
L is the recursion level of the algorithm. Given 20 mobile
nodes to charge with the maximum charging timespan C = 6
hours, if the time step size is set to ∆t = 0.1 second, nd will
be nbC/0.1c = 4.32E + 6 and the time complexity will be
O(4.32E + 6 ∗ 2.16E + 5 ∗ log2.16E + 5)L = 5.0E + 12. It is
obvious that the approximation algorithm has to sacrifice the
performance by increasing the time step size ∆t and decreasing
the recursion level L when the network size is large.

We compare the DQN algorithm based on the proposed
framework with the greedy algorithm, the random algorithm,
and the approximation algorithm (APP) in [2]. Specifically,
we set the simulation area [100,100]m2 and the maximum
timespan of charger C = 30 minutes. we choose the random
waypoint model to simulate the trace of a mobile sensor with
its average speed randomly chosen from [0,2] m/s. For the
approximation algorithm in [2], we set the recursion level
L = 3.

1) Impact of Network Size: Figure 1(a) and Table I compare
the number of mobile sensors charged within the maximum
timespan and the corresponding computing time of each
algorithm, respectively, with ∆t = 300s and a varying network
size of n. With an increased network size, more mobile sensors
can be charged, but the DQN algorithm charges a significantly
higher number of mobile sensors than any other algorithm. At
the same time, the computing time of DQN remains stable
with an increase of n. By contrast, the computing time of the
approximation algorithm in [2] increases dramatically. Overall,
the DQN algorithm outperforms all other algorithms.

2) Impact of Time Step Size: The time step size ∆t has a
big impact on the performance of the approximation algorithm
(APP) in [2] as shown in Figure 1(b) and Table I. The number
of charged mobile sensors of the approximation algorithm
in [2] increases with a decreased time step size ∆t and
comes close to the DQN algorithm with the cost of sky-
high computing time. On the contrary, ∆t has no effect on
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Fig. 1. (a) The number of mobile sensors charged with the maximum timespan of charger C = 30 minutes and ∆t = 300s under a varying network size of n.
(b) The number of mobile sensors charged with the maximum timespan of charger C = 30 minutes and n = 10 under a varying time step size.

TABLE I
COMPUTING TIME UNDER DIFFERENT NETWORK SIZE n AND TIME

STEPSIZE ∆t

Computing time in Fig. 1(a) Computing time in Fig. 1(b)
Alg. n Comp. Time ∆t Comp. Time

(s) (s) (s)

DQN

10

22

90

22
APP 580 417329

Greedy 0.01 0.033
Random 0.0006 0.0007

DQN

20

53

180

22
APP 28011 7507

Greedy 0.044 0.02
Random 0.0024 0.0006

DQN

30

70

300

22
APP 232080 580

Greedy 0.11 0.01
Random 0.005 0.0006

the DQN algorithm because of the way to construct the
graph as introduced in Sec.III-B. The DQN algorithm again
outperforms all other algorithms.

C. Fully Charging Reward Maximization Problem

Paper [1] provides a 4-approximation algorithm to solve
the fully charging reward maximization problem. The authors
reduce the original problem to the classical orienteering one
solved by the algorithm in [14].

We evaluate the DQN algorithm based on the proposed
framework, the approximation algorithm (APP) in [1], the min-
imum spanning tree (MST), the Capacitated Minimum Span-
ning Tree (CMST), and the greedy algorithm. We compare the
computing time and the total energy spent on sensor charging
of these algorithms. We also study the impact of varying
network size and charger capacity on the performances.

1) Impact of Network Size: We assume a mobile charger
with an energy capacity IE = 300KJ and 600 J/m on average
spent on traveling [1]. The remaining energy threshold is
20% when a sensor sends a charging request. Figure 2(a)
and Table II compare the energy spent on sensor charging
and the corresponding computing time of each algorithm,
respectively, with the network size n increased from 50 to 200.
It is clear that the DQN algorithm spends much more energy
in charging sensors than any other algorithm. Considering a
charger with a fixed energy capacity and a group of sensors
scattered in a field, the energy spent on charging sensors
decreases with an increased network size for all algorithms.
With the increased network size, the computing time of the
approximation algorithm (APP) in [1] increases dramatically
while the DQN algorithm remains stable. Overall, the DQN
algorithm outperforms all other algorithms.

2) Impact of Charger Capacity: Similarly, we assume a
mobile charger with 600 J/m on average spent on traveling [1]
and a sensor sends a charging request with the remaining
energy less than 20%. Figure 2(b) and Table II compare
the energy spent on sensor charging and the corresponding
computing time of each algorithm, respectively, with a varying
charger capacity. With the charger capacity, IE increased
from 200KJ to 350KJ, the energy spent on charging sensors
increases for all algorithms. The DQN algorithm consistently
charges much more energy on sensors than any other algo-
rithms. At the same time, the computing time of the DQN
algorithm keeps stable while the APP algorithm increases
dramatically. Overall, the DQN algorithm still outperforms all
other algorithms.

D. Optimal k-coverage Charging Problem

A dynamic programming based algorithm is introduced
in [7] that provides an exact solution to the optimal k-
coverage charging problem. The algorithm works on a directed
acyclic graph constructed by discretizing the time with the
computational complexity exponential to the size of a network.

We evaluate the DQN algorithm based on the proposed
framework, the dynamic algorithm in [7], the ant colony
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Fig. 2. (a) Energy spent on sensor charging for a mobile charger with a total energy capacity IE = 300KJ under a varying network size of n. (b) Energy
spent on sensor charging for a mobile charger with a varying energy capacity IE and a fixed network size n = 120.

TABLE II
COMPUTING TIME UNDER DIFFERENT NETWORK SIZE n AND CHARGER

CAPACITY IE

Computing time in Fig. 2(a) Computing time in Fig. 2(b)
Alg. n Comp. Time IE Comp. Time

(s) (kJ) (s)

DQN

50

31

200

67
APP 35 90
MST 0.2 0.39

CMST 1.2 2.35
Greedy 0.0005 0.0004

DQN

100

57

250

67
APP 506 102
MST 0.35 0.4

CMST 2.45 2.37
Greedy 0.0007 0.0004

DQN

150

87

300

68
APP 1005 605
MST 0.46 0.42

CMST 3.56 2.95
Greedy 0.0009 0.0004

DQN

200

115

350

70
APP 3500 807
MST 0.58 0.49

CMST 4.28 2.97
Greedy 0.001 0.0004

system (ACS) based algorithm, the random algorithm, and
the greedy algorithm. We compare the computing time to
find a feasible charging path and the energy of a charger
spent on traveling of these algorithms. We also study the
impact of varying network coverage requirement and size on
the performances. Specifically, we assume a monitored area
is at least k-coverage initially. Sensor node vi estimates the
charging deadline Di based on its residual energy Bi(t0) and
the experimental energy consumption rate [15]. We set the

TABLE III
PERFORMANCE COMPARISON UNDER DIFFERENT COVERAGE

REQUIREMENT k

n = 64, α = 0.45
Algorithm k Computation Feasible Traveling

Time Path Energy
(s) Found (kJ)

Dynamic

2

0.102 Yes 249
DQN 16 Yes 249
ACS 5 Yes 249

Random 0.0006 Yes 249
Greedy 0.0007 Yes 288

Dynamic

3

455 Yes 702
DQN 20 Yes 702
ACS 19 Yes 702

Random 0.0003 No –
Greedy 0.0003 Yes 846

Dynamic

4

– – –
DQN 71 Yes 1089
ACS 73 Yes 1188

Random 0.0006 No –
Greedy 0.0005 Yes 1254

time step size to 1s when implementing the dynamic algorithm
in [7].

1) Impact of Coverage Requirement: We set the number
of sensor nodes n = 64 and the remaining energy threshold
α = 0.45 when a sensor sends a charging request. Table III
compares the performances including the computation time
to find a feasible charging path and the energy spent on
traveling when the coverage requirement k varies from 2
to 4. The traveling energy increases with the increased k
because more sensor nodes need to be charged to satisfy the
coverage requirement. The dynamic programming algorithm
with an exponentially increased computing time can only find
a feasible charging path when k is small. By contrast, the



TABLE IV
PERFORMANCE COMPARISON UNDER DIFFERENT SIZES OF SENSOR

NETWORK n

k = 3, α = 0.45
Algorithm n Computation Feasible Traveling

Time Path Energy
(s) Found (kJ)

Dynamic

48

156700 Yes 771
DQN 83 Yes 771
ACS 92 Yes 951

Random 0.0004 Yes 2085
Greedy 0.0004 Yes 888

Dynamic

64

455 Yes 702
DQN 20 Yes 702
ACS 19 Yes 702

Random 0.0003 No –
Greedy 0.0003 Yes 846

Dynamic

72

362 Yes 567
DQN 32 Yes 567
ACS 57 Yes 567

Random 0.0003 Yes 1941
Greedy 0.0003 Yes 810

Dynamic

80

268 Yes 345
DQN 20 Yes 345
ACS 18 Yes 345

Random 0.0003 No –
Greedy 0.0003 Yes 375

computing time of the DQN algorithm including its training
time grows slowly with the increase of k. The ACS algorithm
performs better than the random and greedy algorithms, but
overall, the performance of the DQN algorithm significantly
outperforms all other competing algorithms.

2) Impact of Network Size: We set the coverage require-
ment k = 3 and the remaining energy threshold α = 0.45
when a sensor sends a charging request. Table IV compares
the performances including the computation time to find a
feasible charging path and the energy spent on traveling when
the network size n varies from 48 to 80. The energy spent on
traveling decreases with an increased n since there are more
redundant sensors to maintain the k-coverage requirement.
Again, the DQN algorithm outperforms all other competing
algorithms.

V. CONCLUSIONS

We introduce a deep reinforcement learning based frame-
work to solve a diverse range of charger scheduling optimiza-
tion problems. The biggest advantage of the framework is
that an optimal charger scheduling strategy can be learned
from previous experiences, i.e., different graphs with various
sizes. A framework also simplifies the complexity of algo-
rithm design for individual charger scheduling optimization
problem. We compare the performance of algorithms based
on the proposed framework with traditional ones on a set of

selected charger scheduling optimization problems. Extensive
simulation results show the effectiveness of the framework in
solving NP-hard charger scheduling optimization problems in
WRSN.
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