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Abstract

Teichmüller shape space is a finite dimensional Riemannian manifold, where each point represents a class of
surfaces, which are conformally equivalent, and a path represents a deformation process from one shape to the
other. Two surfaces in the real world correspond to the same point in the Teichmüller space, only if they can be
conformally mapped to each other. Teichmüller shape space can be used for surface classification purpose in shape
modeling.

This work focuses on the computation of the coordinates of high genus surfaces in the Teichmüller space. The
coordinates are called as Fenchel-Nielsen coordinates. The main idea is to deform the surface conformally using
surface Ricci flow, such that the Gaussian curvature is −1 everywhere. The surface is decomposed to several pairs
of hyperbolic pants. Each pair of pants is a genus zero surface with three boundaries, equipped with hyperbolic
metric. Furthermore, all the boundaries are geodesics. Each pair of hyperbolic pants can be uniquely described by
the lengths of its boundaries. The way of gluing different pairs of pants can be represented by the twisting angles
between two adjacent pairs of pants which share a common boundary.

The algorithms are based on Teichmüller space theory in conformal geometry, and they utilize the discrete
surface Ricci flow. Most computations are carried out using hyperbolic geometry. The method is automatic,
rigorous and efficient. The Teichmüller shape space coordinates can be used for surface classification and indexing.
Experimental results on surfaces acquired from real world showed the practical value of the method for geometric
database indexing, shape comparison and classification.

Index Terms

conformal geometry, Teichmüller space, shape space, shape analysis, shape classification.

I. INTRODUCTION

Surfaces in real life have multiple geometric structures, such as topology, conformal structure, Rieman-
nian metric etc. They can be classified according to different geometric structures. This work focuses on
the classification which is based on conformal geometric structures.

A conformal mapping between two surfaces preserves angles. Two surfaces are conformally equivalent,
if there exists a conformal mapping between them. All conformal equivalent classes for fixed topology
form a finite dimensional Riemannian manifold, the so-called Teichmüller space. In this shape space,
each point represents a class of surfaces, and a curve is a deformation process from one shape to the
other. Teichmüller theory plays an important role in Riemann surface theory, differential geometry and
theoretic physics. With the advancement of computational conformal geometry, the coordinates of shapes
in Teichmüller space can be computed efficiently today, which is the major focus of the current work.

The main idea for Teichmüller space coordinates is as follows. First, each closed surface of genus g > 1
in R3 has an induced Euclidean metric. By using curvature flow method, one can conformally deform the
metric to a canonical Riemannian metric with constant −1 Gaussian curvature, which is called hyperbolic
metric. Then under the hyperbolic metric, one can decompose the surface to 2g− 2 pairs of pants, ( a
pair of pants are a genus zero surface with three boundaries), by cutting the surface along 3g−3 geodesic
loops. Two adjacent pairs of pants are glued together along a cutting geodesic loop with an angle, called
twisting angle. The lengths of the cutting loops and the twisting angles give the coordinates of the surface
in the Teichmüller space, which are the so-called Fenchel-Nielsen coordinates.

The Fenchel-Nielsen coordinates uniquely determine the conformal structure of the surface. They can
be treated as the fingerprint of the surfaces and can be applied for shape comparison and classification.
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Two surfaces with the same Fenchel-Nielsen coordinates can be further compared by their Riemannian
metrics and the embedding in R3.

a) Contributions: The major contributions of the current work are:
1) A framework of using Teichmüller shape space for surface classification and comparison.
2) A set of rigorous and practical algorithms for computing Fenchel-Nielsen coordinates for high genus

surfaces, including hyperbolic pants decomposition, computing the closed geodesic, shortest paths
on hyperbolic pants etc.

The computational algorithms are based on hyperbolic surface Ricci flow. Most computations are carried
out using hyperbolic geometric methods. We tested our algorithms using surfaces from real life. Potential
applications are illustrated as well.

The paper is organized in the following way: Section II will briefly introduce the previous works in
the literature; Section III will introduce the major theoretic concepts from differential geometry, Riemann
surface theory; Details of algorithms are explained in Section IV; experimental results are reported in
Section V; and the work is concluded in Section VI.

II. PREVIOUS WORKS

Our work proposes to compute Teichmüller space coordinates as shape descriptors based on surface hy-
perbolic uniformization metric, which classifies surfaces according to their conformal structures. Surfaces
which have the same descriptors share the same conformal structure, invariant to conformal deformations.

The research literature on shape descriptors is vast. A thorough review of shape descriptors is beyond
the scope of current work. We will focus here only on recent shape descriptors which are most relevant
to our work using conformal geometry, and methods for designing metrics by prescribed curvatures.

A. Shape Descriptors
For the application of 3D shape classification and matching, shape descriptors are to extract meaningful

and simplified representations from the 3D model based on the geometric and topological characteristics of
the object. As the name suggests, shape descriptors should be descriptive enough to be able to distinguish
similar and dissimilar shapes. The interested reader is referred to [1], [2] and [3] for comprehensive
surveys of different shape descriptors and evaluations of their performance.

Shape descriptors can be classified by the corresponding transformation groups, to which they are
invariant. The following transformation groups are considered: rigid motion, isometric transformation and
conformal deformation. The former groups are the subgroups of the latter ones. In the discussion, we
focus on shape descriptors based on conformal geometry. There are many other shape descriptors invariant
to the above transformation groups based on other methods. We only brief some of them.

1) Shape Descriptors Invariant to Conformal Deformations: Conformal structure is invariant to confor-
mal deformations, which include isometric deformations and rigid motions. To the best of our knowledge,
the first work proposed to use conformal structure for shape classification is [4], where the conformal
structure is represented as period matrices. Later, geodesic spectrum of surfaces under their uniformization
metrics are applied as the conformal structure descriptors in [5], which can be computed symbolically. A
general framework for 3D surface matching is proposed in [6] and [7]. By conformally parameterizing
the 3D surfaces to canonical 2D domains, the matching problem is greatly simplified. If the surfaces are
conformally equivalent, then 2D mapping is an identity with appropriate boundary conditions. Recently,
Luo coordinates [8], which define surface conformal structure in Teichmüller space using the lengths of
a special group of geodesics on surfaces, are used for shape descriptors in [9].

Previous methods using geodesic lengths as coordinates have more than 6g−6 numbers, which is the
dimension of Teichmüller space. Therefore there are redundancy. For Fenchel-Nielsen coordinates, each
coordinate component is independent of others, so the representation is more compact. The correlations
among the components of Luo’s coordinates are complicated and unclear, while the F-N coordinates
have strong intuition behind. Basically, each pair of hyperbolic pants are determined by their boundary
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lengths; the twisting angle determine the gluing pattern of pants. So it is trivial to construct a Riemann
surface purely from its F-N coordinates. Furthermore, Our method based on consistent hyperbolic pants
decomposition has less ambiguity when used for surfaces comparison purpose.

2) Shape Descriptors Invariant to Isometric Transformations: Pose changes are a quasi-isometric
transformation of the 3D mesh, in the sense that edge lengths do not change much as a result of the trans-
formation. Pose-invariant Shape Descriptors are invariant under non-rigid isometric transformations, and
tolerant quasi-isometric transformations. Pose-invariant shape descriptors based on conformal geometry is
introduced in [10], where the histogram of the conformal factor computed from surface uniformization
metric is applied as shape descriptor. This descriptor is intrinsic and pose-invariant.

Laplace-Beltrami operator is determined by the Riemannian metric. Therefore, most descriptors related
to discrete laplace-Beltrami operators are also invariant to isometric deformations, and tolerant quasi-
isometric deformations. For examples, Reuter et al. in [11] use the eigenvalues of Laplace-Beltrami
operator; Rustamov in [12] uses the eigenvectors; Xiang et al. in [13] use the histogram of the solution
to the volumetric Poisson equation which involves the Laplace-Beltrami operator.

3) Shape Descriptors Invariant to Rigid Motions: Shape descriptors which are invariant to rigid motions
and based on conformal geometry are used in [14] and [15] for medical application purpose, where
both conformal factor and mean curvature are considered. Conformal factor itself fully determines the
Riemannian metric of surfaces. After adding mean curvature, they two can determine the embedding of
surfaces unique up to rigid motions with appropriate boundary conditions.

4) Other Shape Descriptors: There are many other shape descriptors invariant to isometric deformations
based on Riemannian geometry. For example, those methods in [16], [17], [18] compute from surface
geodesic distances. The method in [19] computes the diameter of the 3D shape at each point, and the
average geodesic distance from each point to all other points. The histograms of the two functions are
applied as the shape descriptors.

Many global or local features based, or graph based shape descriptors are invariant to rigid motions,
while extra algorithms for feature and graph matching are necessary. We refer readers to [3] for more
details.

III. THEORETIC BACKGROUND

This section briefly introduces the background knowledge of conformal geometry, which is necessary
for the discussion in the work. The basic concepts of algebraic topology and hyperbolic geometry are
briefly introduced in the Appendix also. For more details, we refer readers to the classical textbooks [20],
[21] and [22].

A. Conformal Structure
Let S be a topological surface, we consider all the possible Riemannian metrics on S, G = {g}. Two

metrics g1,g2 are said to be conformally equivalent, g1 ∼ g2, if there exists a function u : S → R, such
that g1 = e2ug2.

Intuitively, the angle values measured by conformally equivalent metrics are the same. Hence, conformal
means angle preserving. Then each conformal equivalent class of the Riemannian metrics in G/ ∼ is a
conformal structure.

A mapping between two Riemann surfaces f : S1 → S2 is conformal, if it preserves angles. Conformal
mappings preserve conformal structures. Namely, if there exists a conformal mapping between S1 and S2,
the S1 and S2 have the same conformal structure.

B. Uniformization Theorem
In each conformal equivalent class of Riemannian metrics, there exists a special metric, that induces

constant Gaussian curvature. This is the most fundamental fact for surfaces.
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(a) A pair of hyperbolic pants (b) Hyperbolic pants decomposition

Fig. 1. (a) A pair of hyperbolic pants with three geodesic boundaries. (b) A genus g surface with hyperbolic metric is decomposed to
2g−2 pairs of hyperbolic pants by 3g−3 geodesic cutting loops. The twisting angles and lengths of cutting loops give the Fenchel-Nielsen
coordinates in the shape space. Here we visualize the twisting angle on w2, which equals to the ratio between the hyperbolic distance of
|p1,P2| and the geodesic length of w2.

Theorem 3.1 (Uniformization): Let S be a surface with a Riemannian metric g, there exists a Rieman-
nian metric g̃, such that g̃ is conformal to g and induces constant Gaussian curvature, which is one of
{+1,0,−1}.

For surfaces S with negative Euler number, there exists a unique hyperbolic metric conformal to
the original metric. The universal covering space of S with the hyperbolic metric can be isometrically
embedded in the hyperbolic space H2. All the deck transformations are Möbius transformation. The
deck transformation group is called the Fuchsian group of S. According to Gauss-Bonnet theorem, each
homotopy class has a unique closed geodesic on a surface with a hyperbolic metric.

C. Teichmüller Space and Fenchel-Nielsen Coordinates
Let S be a closed topological surface of genus g > 1. All the conformal structures on S form a 6g−6

dimensional manifold, called as Teichmüller space, denoted as Tg. Because each conformal structure has
a unique hyperbolic metric, it is enough to consider only surfaces with hyperbolic metrics for computing
the Teichüller space.

Assume S is with a hyperbolic metric, then its coordinates in Tg can be constructed in the following
way.

Definition 3.2 (Pants): A pair of topological pants is a genus zero surface with three boundaries.
Given a genus g surface, it can be decomposed to 2g−2 pairs of pants. Figure 1 illustrates one example.

Assume all the cutting loops are geodesics {γ1,γ2, · · · ,γ3g−3}, then each pair of pants is pair of hyperbolic
pants.

Definition 3.3 (Hyperbolic Pants): A pair of pants is called a pair of hyperbolic pants, if it is with a
hyperbolic metric, and all boundaries are geodesics.

For each pair of hyperbolic pants P with three boundaries γi,γ j,γk, there are three shortest paths
connecting each pair of boundaries, e.g. τi connects γ j,γk, and intersects γ j and γk with right corner
angles.

Suppose two pairs of hyperbolic pants P1 and P2 are glued together along γ . The shortest path τ1 on P1
intersects γ at p1, and the shortest path τ2 on P2 intersects γ at p2, then the twisting angle on γ is given
by

θ = 2π
d(p1, p2)
|γ |

where d(p1, p2) is the geodesic distance between p1 and p2, |γ| is the length of γ .
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Definition 3.4 (Fenchel-Nielsen Coordinates): Suppose S is a genus g > 1 closed surface with a hyper-
bolic metric. S is decomposed to pairs of pants {P1,P2, · · · ,P2g−2} by closed geodesics {γ1,γ2, · · · ,γ3g−3}.
Then Fenchel-Nielsen coordinates of S in the Teichmüller space Tg are given by

{(l1,θ1),(l2,θ2), · · · ,(l3g−3,θ3g−3)},
where (lk,θk) are the length and twisting angle of γk.
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Fig. 2. Topological pants decomposition for surface with g handles: (a) Compute surface handle loops and tunnel loops; (b) Slice surface
open along tunnel and handle loops; (c) Connect all other boundaries except c0 to form a big boundary and get a topological cylinder; (d)
Find a locally shortest loop w0 along the path l connecting boundaries c0 and ć0, which is the waist of the handle; (e) Repeat the process
to find waists for each handle; (f) Cutting handles out along each waist, we get a topological sphere with g holes. Repeat this process as
long as the total number of boundaries is less than 4: a locally shortest loop wi j which is homotopic to wi ◦w j is computed, and surface
patch bounded by wi, w j , and wi j is cut out. (g) The set of cutting loops are tunnel loops computed in (a), waists computed in (e), and loops
computed in (f). They decompose the surface to topological pants.

D. Surface Ricci Curvature Flow
Let S be a surface embedded in R3. S has a Riemannian metric induced from the Euclidean metric of

R3, denoted by g. Suppose u : S→R is a scalar function defined on S, then ḡ = e2ug is also a conformal
metric. The Gaussian curvatures will also be changed accordingly. The Gaussian curvature will become

K̄ = e−2u(−∆gu+K), (1)

where ∆g is the Laplacian-Beltrami operator under the original metric g. The above equation is called the
Yamabe equation. Yamabe equation can be solved using Ricci flow method. The Ricci flow deforms the
metric g(t) according to the Gaussian curvature K(t) (induced by itself), where t is the time parameter

dgi j(t)
dt

= 2(K̄−K(t))gi j(t). (2)

Ricci flow method can be applied to compute surface hyperbolic metric.

IV. ALGORITHMS

The key of our algorithm is to compute hyperbolic pants decomposition for a given closed high genus
surface based on surface hyperbolic metric. The geodesic lengths of cutting loops which segment the
surface into pairs of hyperbolic pants and the angles of gluing pair of pants together are the Fenchel-
Nielsen coordinates of the surface. The pipelines of our algorithms can be listed as:

1) Compute topological pants decomposition (section IV-A);
2) Compute the hyperbolic metric using Ricci flow (section IV-B);
3) Compute hyperbolic pants decomposition (section IV-C);
4) Compute the Fenchel-Nielsen coordinates (section IV-D).



COMMUNICATIONS IN INFORMATION AND SYSTEM 6

A. Compute Topological Pants Decomposition
To get hyperbolic pants decomposition, we need to get topological pants decomposition first. Surface

topological pants decomposition has been widely studied [23] and done with the optimal segmentation
of a given surface into pants [24]. Since the major application of computing Fenchel-Nielsen coordinates
in out paper is for surface index and classification purpose, we adopt the methods in [25] and [26] to
consistently decompose surfaces with same topology to a set of corresponding pants, which will induce
consistent hyperbolic pants decomposition and Fenchel-Nielsen coordinates. For a closed g > 1 surface,
the set of cutting loops which decompose surface to topological pants is 3g−3.

The algorithm to consistently decompose surfaces to topological pants can be illustrated in Figure 2.
1) Compute handle and tunnel loops for a given surface (Figure 2(a)): A closed embedded surface M

with genus g in R3 separates R3 into a bounded space I and an unbounded space O. A loop bi is a
handle if it spans a disk in the bounded space I; if one cuts M along bi and fills the boundary with
that disk, one eliminates a handle. A loop ai is a tunnel if it spans a disk in the unbounded space
O, and its removal eliminates a tunnel. Tunnel loops and handle loops can be effectively computed
using the technique (and the software) presented in [25]. Since handles of given surfaces have been
indexed, we will get a set of labeled handle and tunnel loops.

2) each surface handle hi is sliced open along its handle loop bi and tunnel loop ai, with the boundary
curve ci = aiḃiȧ−1

i ḃ−1
i (Figure 2(b)).

3) To compute the waist wi, the shortest loop which is homotopic to ci, we connect all other c js to
form a large boundary loop ći, then we get a topological cylinder (Figure 2(c)). A shortest path l
which connects the two boundaries ci and ći is computed, then the waist wi is the shortest loop
along l (Figure 2(d)). Then the handle bounded by ci and wi can be cut off, and wi is replaced with
ci (Figure 2(e)). We repeat this process until we finish the computation of waists for all handles.
Now the surface M is a topological sphere with g holes(g is the handle number of the surface).

4) If g > 3, then for each pair of wi and w j (from the increasing number of indexes), we compute the
shortest loop ẃi j which bounds wi and w j. After removing the pant with boundaries ẃi j, wi and w j,
we repeat this step until the number of boundaries is less or equal to 3 (Figure 2(f)).

All the tunnel loops computed in the first step, waists computed in the third step, and loops computed in
the forth step form the set of cutting loops which segment the given surface to topological pants (Figure
2(g)). Since we have indexed surfaces handles, the ordered set of topological pants is consistent with
surfaces of same topology.

B. Compute the Hyperbolic Metric
For a negative Euler number surface, there exists a unique hyperbolic metric conformal to its original

metric. The computation of the hyperbolic metric on a triangular mesh is based on the discrete hyperbolic
Ricci flow algorithm. We brief the outline of the algorithm, details can be found in [27] and [28].

Let M be a simplicial complex (triangular mesh) with vertex set V , edge set E and face set F . The
outline of the algorithm can be listed as the following steps.

1) For each vertex vi, assign a circle with the initial radius ri which approximates the original Euclidean
metric of the edges associated with the vertex; For each edge ei j, its weight φi j is the intersection
angle of the two circles associated with the ending vertices of the edge, vi and v j.

2) The edge length li j of ei j is updated by current vertex radius and edge weight using the hyperbolic
cosine law,

cosh li j = coshri coshr j + sinhri sinhr j cosφi j.

3) Update the angle θ jk
i , related to each corner i∠k

j, using current edge lengths with the inverse
hyperbolic cosine law:

θ jk
i = cos−1 cosh(li j)cosh(lki)− cosh(l jk)

sinh(li j)sinh(lki)
,
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Fig. 3. Embed the Universal Cover Isometrically onto H2: (a) A set of canonical homology basis is marked on surface with red; (b)
surface is sliced open along homology basis to form a unit disk, the fundamental domain; (c) one layer copies of the fundamental domain
are transformed with Möbius transformation and glued with the original one; (d) a portion of the universal cover embedded in Poincaré disk.

4) Compute the discrete Gaussian curvature Ki of each vertex vi :

Ki =

{
2π−∑ fi jk∈F θ jk

i , interior vertex
π−∑ fi jk∈F θ jk

i , boundary vertex
(3)

where θ jk
i represents the corner angle attached to vertex vi in the face fi jk.

5) Update the radius ri of each vertex vi:

ri = ri + ε(K̄i−Ki)sinhri,

where K̄i is the target vertex curvature.
6) Continue the procedure from B to E, until ‖K̄i−Ki‖ of all vertices satisfy the user-specified error

tolerance.

C. Compute Hyperbolic Pants Decomposition
The key to decompose surfaces to hyperbolic pants is to compute geodesics homotopic to the set of

cutting loops which decompose the given surface to topological pants (see Section 4.1) under hyperbolic
metric (see Section 4.2). Our main idea is to embed the universal cover of the given surface to hyperbolic
space, then the set of cutting loops will be mapped to a set of paths. For each path, its two ending points
will be projected to the same point on the surface, while in the universal cover, the two ending points
for each path induce a Möbius transformation. The axis of each Möbius transformation, when projected
from universal cover to the surface, is a geodesic loop homotopic to the original cutting loop. The details
of our algorithms are introduced in the following pipelines.

1) Embed the Universal Cover Isometrically onto H2: The major steps to embed the universal cover of
a given surface with hyperbolic metric onto H2 are similar with algorithms in [28]. While in this paper,
we only need to construct a portion of the universal cover which are needed in the next step, instead of
computing all the Fuchsian group transformations.

1) Slice M open along a set of canonical homology basis a1,b1,a−1
1 ,b−1

1 · · ·ag,bg,a−1
g ,b−1

g to form
a topological disk, the fundamental domain M̄ (Figure 3(a)(b)) (see Appendix for definition of
canonical homology basis).

2) Embed the seed triangle f012 (random chosen from M̄) into Poincaré disk with positions of the three
vertices:

τ(v0) = (0,0),τ(v1) = tanh
l01

2
,τ(v2) = tanh

l02

2
eiθ 12

0 .

3) Put all the neighboring faces of the seed face to a queue.
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Fig. 4. Cutting loops which decompose surface to consistent topological pants are lifted to universal cover. (a) We show a set of cutting
loops marked with green, and a set of canonical homology basis marked with red on surface; (b) Surface is cut open along homology basis
to form a fundamental domain and embedded onto the Poincaré disk. To lift η1 and η2 to Poincaré disk , we start from the base point, p0
for each loop, and extend vertex by vertex. We have to glue other copies of fundamental domains when we go to the boundary of the center
fundamental domain. The worst time complexity case is when we hit a corner point of the fundamental domain, like to lift η2 to η̃2, we
have to glue instead of one domain but 4g−1 domains.

4) Suppose that fi jk is a non-embedded face which is popped out from the queue. If vi and v j have
been embedded, τ(vk) can be computed as the intersection point between two hyperbolic circles
under proper orientation, with centers (τ(vi) and (τ(v j), the positions of the two vertices, radii lki)
and lk j), the edge lengths of eki and ek j in Poincaré disk. Then we put all the neighboring faces of
fi jk into queue.

5) Repeat step D until the queue is empty. Then we get the embedding of the fundamental domain of
M onto H2, with boundary segments (Figure 3(b))

∂M̄ = a1b1a−1
1 b−1

1 · · ·agbga−1
g b−1

g .

6) To construct the universal cover of M, the embedding of infinite copies of M̄ in Poincaré disk, we
need to compute a set of Möbius transformations, the so called deck transformations, which transform
one copy of M̄ in Poincaré disk and match with the original copy along the mate boundaries, ai
and a−1

i , or bi and b−1
i . Suppose we want to transform a copy of M̄ by a Möbius transformation

φ along a1 of M̄. Let the ending points of a1 are p1,q1 on S̄, the ending points of a−1
1 are p2,q2.

To find a Möbius transformation φ which maps p1,q1 to p2,q2, we first construct a unique Möbius
transformation φ1:

ψ0(z) = e−iθ0
z−p0

1− p̄0z
, where θ0 = arg

q0−p0

1− p̄0q0
,

such that p1 is mapped to the origin, and q1 to a positive real number. Similarly, we construct
another unique Möbius transformation φ2, which maps p2 to the origin and q2 to a positive real
number. Then φ = φ−1

2 ◦φ1.
7) We can repeat this process and glue copies of the fundamental domain along their mate boundaries.

Figure 3(c) and (d) shows the process of gluing copies of the fundamental domain of a genus two
surface to form a portion of its universal cover embedded in the Poincaré disk. Different fundamental
domains are encoded by different colors.

2) Compute Hyperbolic Cutting Loops Based on Universal Cover: We have computed a set of cutting
loops which decompose the given surface to topological pants in Section 4.1. In this section, we propose
the algorithms that compute a set of geodesics which are homotopic to the set of topological cutting loops
and decompose the given surface to hyperbolic pants based on universal cover.
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Fig. 5. Pipeline of computing Fenchel-Nielsen coordinates: The fundamental domain of the eight surface is embedded in hyperbolic disk
as shown in (a). The three geodesics on its domain, when lifted on to the surface as shown in (b), will decompose the eight surface to two
hyperbolic pants. One pant is shown in (e), and its boundaries, c1,c2,andc3 are geodesics in hyperbolic disk. We compute the geodesics
perpendicular to the boundaries of the two pants, and get intersection points. One is shown in (d), and the other is shown in (f). The twisting
angle can be computed from the distance of the two intersection points along the same cut loop. For this eight model, since it is very
symmetric, all its twisting angles are close to zero. As visualized in (f), the distance between the two intersection points is very small, almost
coincide. Both the three geodesic lengths in (a) and the twisting angles are Fenchel-Nielsen coordinates.

(a) (b) (c) (d)

Fig. 6. Compute the Fenchel-Nielsen Coordinates. (a) Hyperbolic cutting loops computed on universal cover for cup model and 3-hole
model; (b) hyperbolic cutting loops computed on universal cover are projected back to original surfaces, and decompose cup model to 2
hyperbolic pants, 3-hole model to 4 hyperbolic pants; (c) computing the geodesics perpendicular to the boundaries of these pants on universal
cover; (d) those perpendicular geodesics are projected back to the surface to visualize the twisting angles: the ratio between the distance of
the two intersection points (q1 and q2) along the same cutting loop and the geodesic length of that loop (marked with dark green). Again,
the 3-hole surface is very symmetric, so its twisting angle is very small, while for the cup model, its twisting angle is around π

2 .

For each cutting loop η computed in Section 4.1, we perform a ”lifting” process which lifts the loop
to the universal cover. In practice, to save space, the lifting is only needed to perform in a finite portion
of the universal cover, which contains η̃ . The portion is constructed during the lifting process ”on the
fly”, which means we glue one more copy of the fundamental domain only if we have to. The steps of
the ”lifting” can be summarized as:
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1) For one cutting loop η on surface M, we choose one point p ( can be arbitrary point in η) as the
base point of the loop.

2) To lift η to universal cover, We first lift the base point p to the center fundamental domain M̄.
3) Then we lift next vertex connecting p through edge ep along the loop under CCW direction. we

extend the lifting vertex by vertex. Whenever the lifted loop intersects the boundary segment of the
fundamental domain, we compute a Möbius transformation (with the method in Section 4.3.1) to
glue a new copy of the fundamental domain along that boundary segment, then we continue the
extension of the lifting (see η̃1 in Figure 4(b)). If the lifted path goes through a corner point of the
fundamental domain, we need to compute 4g−1 Möbius transformations and glue 4g−1 copies at
that corner (see η̃2 in Figure 4(b)).

4) When the lifting process comes back to the edge ep, we have lifted the cutting loop η in M to a
path η̃ in universal cover, with the base point lifted to the two points p̃0 and p̃1, and edge ep lifted
to two edges ẽp0 and ẽp1 of η̃ .

5) Similarly, We can construct a deck transformation τ , such that τ(ẽp0) = ẽp1.
6) Since τ is a Möbius transformation, its two fixed points can be computed as

s = lim
n→∞

τn(z), t = lim
n→∞

τ−n(z),

where z is an arbitrary point in the unit disk.
7) A unique geodesic γ̃ in Poincaré disk passing through s and t can be computed, which is the axis

of τ .
Then the projection of γ̃ , γ = h(γ̃), from universal cover back to the original surface, is the geodesic

homotopic to η .

D. Compute the Fenchel-Nielsen Coordinates
Let the geodesic cutting loops computed from Section 4.3.2 be {γ1,γ2, · · · ,γ3g−3}, we can decompose

surface M to hyperbolic pants. For a pair of hyperbolic pants S, the three boundaries ∂S = γi + γ j + γk
are geodesics in hyperbolic space. Since we have indexed each handle at the step of topological pants
decomposition, we will consistently assign a number to each boundary of the pant.

To compute the Fenchel-Nielsen coordinates, we first compute the length of each geodesic cutting loop.
They can be easily computed using hyperbolic geometry. Here are the steps:

1) For each geodesic cutting loop γk on M, the same as we lift the topological cutting loop to universal
cover in Section 4.3.2, we first choose one base point p on that loop, then lift that base point to
universal. We extend the lifting vertex by vertex along this loop until we are back to the base point.

2) Then γk is lifted to universal cover as part of a geodesic hyperbolic line, with p lifted to p̃0 and
p̃1. The geodesic hyperbolic line will intersect the unit circle at q0 and q1, then the length of γk is
given by the logarithm of the cross ratio of {q0, p̃0, p̃1,q1}.

To compute the twisting angle associated with each geodesic cutting loop, the algorithm is:
1) Suppose geodesic cutting loop γk glues the two pairs of pants P1 and P2 together. The lifting of

γk and other boundaries of pants P1 and P2 (other geodesic cutting loops) are geodesic hyperbolic
lines in Poincaré disk.

2) The geodesic ζ1 between γ̃k and γ̃1 (let γ̃1 be one of the other two lifted boundaries of pant P1,
with the smallest assigned number) is also a hyperbolic line in Poincaré disk, which is not only
perpendicular to γ̃k and γ̃1, but also perpendicular to the unit circle. Namely, we compute a circular
arc, orthogonal to three circles, the unit circle, γ̃k, and γ̃1. ζ1 is unique.

3) The same we compute the geodesic ϒ2 between γ̃k and γ̃2 (the lifted boundary of pant P2).
4) Suppose ζ1 intersects γk with point q1, and ζ2 intersects γk with point q2, hyperbolic distance

between q1 and q2 is |q1q2|, then the twisting angle is given by

θk = 2π
|q1q2|

lk
,
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where lk is the length of γ̃k in Poincaré disk.
Then the Fenchel-Nielsen coordinates are given by

{(l1,θ1),(l2,θ2), · · · ,(l3g−3,θ3g−3)}.
Figures 5 and 6 visualizes the computation of Fenchel-Nielsen coordinates and results on models with

different topologies.

V. EXPERIMENTAL RESULTS

In our experiments, most of our testing surfaces are closed genus two surfaces. For closed genus two
surfaces, the dimension of Fenchel-Nielsen coordinates is six. Half are lengths of geodesics, and half are
associated twisting angles. Due to the page limit, Table I only lists the coordinates of some genus two
surfaces in our experiments.

Table II gives part of our experimental results. For a pair of surfaces, the first number is their geodesic
length difference, and the second number is their angle difference. By a quick check of this table, we can
easily find the most similar and the most non-similar surfaces with the selected retrieval surface in terms
of their conformal structure. For example, Table III shows the neighborhoods of the selected surfaces and
also surfaces far away from them in the Teichmüller space.

We use L2 norm to measure their angle differences and geodesic length differences to approximate their
geodesic distances in Teichmüller space. So we can classify surfaces based on their conformal structure.
Figure 7 shows the clustering of those genus two surfaces, with the x-coordinate representing the twisting
angle, the y-coordinate representing the geodesic length. Based on twisting angles, we can classify them
into three big groups. Then we can get more refined groups with marked circles after adding geodesic
lengths.

We compare our method with other existing conformal structure based methods. The results are offered
in Table IV with a selected teapot and its distances to the other teapots. The sorting result of our method
is same with using Luo coordinates in [9], while there is no redundancy of coordinates in our method,
also, our consistent hyperbolic pants decomposition can guarantee easily the consistent comparison of
coordinates for surfaces with same topology.

Since the time complexities of algorithms to compute consistent topological pants decomposition and
surface hyperbolic metric have been reported in [26] and [28] respectively, we only analyze the time
complexities of algorithms to compute hyperbolic pants decomposition and Fenchel-Nielsen coordinates.
Although the time complexity to construct universal cover grows exponentially with surface genus number,
and the computation of both hyperbolic cutting loops and Fenchel-Nielsen coordinates are based on
universal cover, we do not need to compute all the Möbius transformations and glue all the copies of
the domain. When we lift the topological cutting loops to universal, we start from one center domain in
Poincaré disk, then glue another domain only when the extension process hits the boundary of the center
domain. The worst case is that we hit the corner points of the domain, then we have to compute 4g−1
Möbius transformations and glue that number of copies of domain to Poincaré disk. Since we have 3g−3
cutting loops for a surface with genus g, and for each cutting loop η , suppose |η | is its word length in
π1(S, p) (see Appendix), the time complexity to construct universal cover is (3g−3)∗ (4g−1)∗ |η |. For
other computations, they are linear to the number of vertices and edges of the surface.

VI. CONCLUSION

This paper introduces the computational algorithms for Fenchel-Nielsen coordinates for closed high
genus surfaces in the Teichmüller space. The method is based on Teichmüller space theory, which is
automatic, rigorous and efficient. Details of the algorithm has been thoroughly explained. Computational
efficiency has also been reported.

Fenchel-Nielsen coordinates can be used to compare and classify surfaces based on their conformal
structures, and can also help to understand the structure of surfaces, like their symmetry information. For
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Distance Geodesic Length Twisting Angle

1.542 4.07 1.536 0.01 0.05 0.01

1.52 4.443 1.844 0.002 1.495 0.001

7.160 4.202 0.180 0.005 1.507 0.005

0.706 3.957 0.343 0.001 3.115 0.001

TABLE I

CONSISTENT FENCHEL-NIELSEN COORDINATES OF GENUS TWO SURFACES: THE LENGTH OF EACH GEODESIC AND THE TWISTING

ANGLE ASSOCIATED WITH THAT GEODESIC.

Fig. 7. Clustering of surfaces based on their Fenchel-Nielsen coordinates. The x-coordinate indicates the twisting angle, and the y-coordinate
indicates the geodesic length. Surfaces are clustered based on both their twisting angle and geodesic lengths, with different groups marked
with circles.

example, the twisting angle gives a quantitative way to measure how two pants are glued together, like
the two pants of the cup model in Figure 6(b) glued with a π

2 angle twisting. We will explore the direction
further.

Although our current algorithms focus on closed high genus surfaces, they can also be applied directly
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distance

1.06 0.00

1.49 0.00

0.68 0.45 0.00

0.00 1.49 0.00

0.16 1.16 0.79 0.00

0.01 1.48 0.00 0.00

1.04 1.90 1.18 1.10 0.00

0.01 1.49 0.01 0.01 0.00

1.01 1.46 1.34 1.20 1.93 0.00

0.00 1.49 0.01 0.01 0.00 0.00

3.68 3.18 3.48 3.64 4.72 2.91 0.00

0.03 1.45 0.03 0.03 0.04 0.04 0.00

1.08 2.11 1.11 1.04 0.69 1.63 4.52 0.00

0.01 1.48 0.01 0.00 0.02 0.01 0.02 0.00

6.12 5.88 5.81 6.14 6.25 6.54 7.47 6.65 0.00

1.50 0.01 1.50 1.49 1.50 1.50 1.47 1.49 0.00

4.09 3.59 3.90 4.06 5.13 3.32 0.42 4.93 7.72 0.00

0.00 1.49 0.00 0.01 0.00 0.00 0.03 0.01 1.50 0.00

0.96 1.92 1.57 0.95 0.81 1.49 4.30 0.90 6.84 4.71 0.00

0.13 1.35 0.13 0.13 0.14 0.14 0.10 0.12 1.37 0.14 0.00

2.85 2.27 2.53 2.82 3.86 2.36 1.71 3.83 5.77 2.01 3.71 0.00

0.11 1.38 0.11 0.10 0.12 0.12 0.08 0.10 1.39 0.11 0.02 0.00

0.95 1.97 1.06 0.94 0.50 1.63 4.50 0.20 6.49 4.91 1.10 3.75 0.00

3.13 1.64 3.13 3.12 3.13 3.13 3.10 3.12 1.63 3.13 2.99 3.02 0.00

0.88 1.86 1.43 0.89 0.86 1.67 4.52 0.88 6.21 4.93 0.69 3.66 0.89 0.00

0.01 1.48 0.01 0.00 0.02 0.02 0.02 0.00 1.49 0.01 0.12 0.10 3.12 0.00

1.02 2.03 1.62 1.00 0.83 1.67 4.54 0.96 6.53 4.96 0.45 3.80 0.87 0.33 0.00

0.07 1.42 0.07 0.06 0.07 0.07 0.04 0.06 1.43 0.07 0.07 0.04 3.06 0.06 0.00

0.88 1.93 1.54 0.82 0.78 1.38 4.27 0.77 6.55 4.68 0.42 3.57 0.70 0.50 0.32 0.00

0.00 1.49 0.00 0.01 0.00 0.00 0.03 0.01 1.50 0.00 0.14 0.11 3.13 0.01 0.07 0.00

0.93 1.90 1.48 0.95 0.64 1.70 4.54 0.58 6.45 4.95 0.49 3.77 0.59 0.26 0.23 0.47 0.00

0.05 1.43 0.05 0.05 0.06 0.06 0.02 0.04 1.44 0.06 0.08 0.06 3.07 0.04 0.01 0.06 0.00

0.96 1.98 1.56 0.95 0.58 1.65 4.52 0.42 6.48 4.93 0.46 3.76 0.53 0.27 0.07 0.33 0.17 0.00

0.15 1.34 0.15 0.14 0.16 0.16 0.12 0.14 1.35 0.15 0.02 0.04 2.98 0.14 0.08 0.15 0.10 0.00

0.89 1.88 1.53 0.74 1.26 0.98 3.88 0.81 6.41 4.29 0.89 3.17 0.84 0.92 0.86 0.57 0.99 0.87 0.00

3.05 1.56 3.05 3.04 3.05 3.05 3.02 3.04 1.55 3.05 2.91 2.94 0.08 3.04 2.98 3.05 2.99 2.89 0.00

0.96 1.52 1.18 0.88 1.48 1.33 3.81 1.52 5.39 4.22 1.64 2.67 1.41 1.23 1.45 1.32 1.44 1.41 0.66 0.00

3.13 1.64 3.13 3.12 3.13 3.13 3.10 3.12 1.63 3.13 2.99 3.02 0.00 3.12 3.06 3.13 3.07 2.97 0.08 0.00

0.92 1.78 1.49 0.77 1.54 0.66 3.54 1.12 6.46 3.94 1.11 2.88 1.15 1.22 1.18 0.87 1.28 1.18 0.36 0.59 0.00

3.11 1.62 3.11 3.10 3.11 3.11 3.08 3.10 1.61 3.11 2.97 3.00 0.02 3.10 3.04 3.11 3.05 2.95 0.06 0.02 0.00

TABLE II

DIFFERENCE OF FENCHEL-NIELSEN COORDINATES ON SURFACES: THE FIRST NUMBER IS THE GEODESIC LENGTH DIFFERENCE; THE

SECOND NUMBER IS THE TWISTING ANGLE DIFFERENCE; BOTH OF THEM CONTRIBUTE TO THE DISTANCE BETWEEN SURFACES IN

TEICHMÜLLER SPACE.
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Distance

0.32 0.33 4.68 6.55

0.07 0.15 0.00 1.50

Distance

0.42 1.71 4.50 7.47

0.03 0.08 3.10 1.47

TABLE III

THE SORTED DISTANCES BASED ON FENCHEL-NIELSEN COORDINATES BETWEEN SELECTED MODELS AND OTHER MODELS IN

TECHMÜLLER SPACE BY CHECKING TABLE I. HERE WE ONLY SHOW MODELS WITH MAXIMUM AND MINIMUM DISTANCES. AGAIN, THE

FIRST NUMBER INDICATES THE GEODESIC LENGTH DIFFERENCE, AND THE SECOND NUMBER INDICATES THE TWISTING ANGLE

DIFFERENCE.

Fenchel-Nielsen
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TABLE IV

COMPARISON: SORTED DISTANCES BETWEEN SELECTED TEAPOT MODEL AND OTHER TEAPOT MODELS USING DIFFERENT CONFORMAL

INVARIANT BASED METHODS. SINCE THE DIMENSION OF BOTH GEODESIC SPECTRUM AND CONFORMAL FACTORS ON SURFACES ARE

INFINITE, WE CHOOSE THE LENGTHS OF THE FIRST 14 SORTED GEODESICS AS SHAPE DESCRIPTORS FOR GEODESIC SPECTRUM BASED

METHOD, AND FOR CONFORMAL FACTORS BASED METHOD, THEIR HISTGRAMS IN FINITE RANGE ARE USED TO DO COMPARISON.

to surfaces with boundaries, as long as the Euler number of the surface is negative. We will include these
cases in our future research.

In this paper, we use Euclidean distances between consistent Fenchel-Nielsen coordinates of surfaces
to approximate their distance in Teichmüller space. We will explore feasible algorithms to compute the
real geodesics in Teichmüller space.

In the future, we plan to further test our algorithm for large scale geometric database indexing and
many other real applications in engineering fields.

APPENDIX

In the appendix, we briefly introduce the concepts from algebraic topology and hyperbolic geometry,
which are essential for understanding and implementing the algorithm described in the current work.
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A. Fundamental Group and Representation of Homotopy Class
Let S be a topological surface, and let p be a point of S. We are interested in the set of continuous

functions f : [0,1] → S with the property that f (0) = p = f (1). These functions are called loops with
base point p. Any two such loops, say f and g, are considered equivalent if there is a continuous
function h : [0,1]× [0,1]→ S with the property that, for all 0 ≤ t ≤ 1, h(t,0) = f (t), h(t,1) = g(t) and
h(0, t) = p = h(1, t). Such a h is called a homotopy from f to g, and the corresponding equivalence classes
are called homotopy classes.

The product f · g of two loops f and g is defined by setting ( f · g)(t) := f (2t), if 0 ≤ t ≤ 1/2 and
( f · g)(t) := g(2t − 1) if 1

2 ≤ t ≤ 1. The product of two homotopy classes of loops [ f ] and [g] is then
defined as [ f ·g], and it can be shown that this product does not depend on the choice of representatives.

With the above product, the set of all homotopy classes of loops with base point p forms the fundamental
group of S at the point p and is denoted π1(S, p). The identity element is the constant map at the base
point, and the inverse of a loop f is the loop g defined by g(t) = f (1− t).

Suppose S is a genus g closed surface. A canonical set of generators of π(S, p) consists of {a1,b1,a2,b2, · · · ,ag,bg},
such that the pair ai and bi has one intersection point, the pairs {ai,a j}, {bi,b j} and {ai,b j}, have no
intersections, where i 6= j. See figure 3(a) for an example of canonical basis on a genus two surface.

B. Universal Cover and Uniformization Metric
A covering space of S is a space S̃ together with a continuous surjective map h : S̃→ S, such that for

every h ∈ S there exists an open neighborhood U of p such that h−1(U) (the inverse image of U under h)
is a disjoint union of open sets in S̃, each of which is mapped homeomorphically onto U by h. The map
h is called the covering map. A connected covering space is a universal cover if it is simply connected.
Suppose γ ⊂ S is a loop through the base point p on S. Let p̃0 ∈ S̃ be a pre-image of the base point
p̃0 ∈ h−1(p), then there exists a unique path γ̃ ⊂ S̃ lying over γ (i.e. h(γ̃) = γ) and γ̃(0) = p̃0. γ̃ is a lift
of γ .

A deck transformation of a cover h : S̃ → S is a homeomorphism f : S̃ → S̃ such that h ◦ f = h. All
deck transformations form a group, the so-called deck transformation group. A fundamental domain of
S is a simply connected domain, which intersects each orbit of the deck transformation group only once.
A fundamental domain can be obtained by slicing a surface S open along a canonical fundamental group
generators as shown in figure 3(b), where a finite portion of the universal cover of a genus two surface is
shown, different fundamental domains are encoded by different colors in (b) and (c). Deck transformations
map fundamental domains to fundamental domains. The deck transformation group Deck(S) is isomorphic
to the fundamental group π1(S, p). Let p̃0 ∈ h−1(p), φ ∈ Deck(S), γ̃ is a path in the universal cover
connecting p̃0 and φ(p̃0), then the projection of γ̃ is a loop on S, φ corresponds to the homotopy class
of the loop φ → [h(γ̃)]. This gives the isomorphism between Deck(S) and π1(S, p).

C. Poincaré Disk Model
In this work, we use Poincaré disk to model the hyperbolic space H2, which is the unit disk |z|< 1 on

the complex plane with the metric

ds2 =
4dzdz̄

(1− zz̄)2 .

The rigid motion is the Möbius transformation

z→ eiθ z− z0

1− z̄0z
,

where θ and z0 are parameters. A hyperbolic circle with center c and radius r (c,r) is also a Euclidean
circle (C,R) with

C =
2−2µ2

1−µ2cc̄
c,R2 = CC̄− cc̄−µ2

1−µ2cc̄
,
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where µ = tanh r
2 .

Given two points p and q on H2, the unique geodesic (hyperbolic line) through them is a circular arc
and is perpendicular to the unit circle.
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