
Localized Algorithm for Precise Boundary

Detection in 3D Wireless Networks

Hongyu Zhou, Su Xia, Miao Jin, and Hongyi Wu

The Center for Advanced Computer Studies

University of Louisiana at Lafayette

Lafayette, LA, USA

E-mail: {hxz6029,sxx1110,mjin,wu}@cacs.louisiana.edu

Abstract—This research focuses on distributed and localized
algorithms for precise boundary detection in 3D wireless
networks. Our objectives are in two folds. First, we aim to
identify the nodes on the boundaries of a 3D network, which
serve as a key attribute that characterizes the network, especially
in such geographic exploration tasks as terrain and underwater
reconnaissance. Second, we construct locally planarized 2-
manifold surfaces for inner and outer boundaries, in order to
enable available graph theory tools to be applied on 3D surfaces,
such as embedding, localization, partition, and greedy routing
among many others. To achieve the first objective, we propose
a Unit Ball Fitting (UBF) algorithm that discovers a set of
potential boundary nodes, followed by a refinement algorithm,
named Isolated Fragment Filtering (IFF), which removes
isolated nodes that are misinterpreted as boundary nodes by
UBF. Based on the identified boundary nodes, we develop
an algorithm that constructs a locally planarized triangular
mesh surface for each 3D boundary. Our proposed scheme is
localized, requiring information within one-hop neighborhood
only. Our simulation results demonstrate that the proposed
algorithms can effectively identify boundary nodes and surfaces,
even under high measurement errors. As far as we know, this is
the first work for discovering boundary nodes and constructing
boundary surfaces in 3D wireless networks.

Index Terms—3D; boundary detection; triangulation; wireless
sensor networks.

I. INTRODUCTION

Many wireless networks exhibit substantial randomness,

due to the lack of precise nodal deployment and the non-

deterministic failures and channel dynamics. Therefore, the fi-

nal formation of a wireless network heavily depends on its un-

derlying environment. Consequently, there is a primary interest

to discover the unknown geometry and topology of a wireless

network formation (or a subnetwork formation), which provide

salient information for understanding its environment and for

efficient operation of the network itself. In particular, boundary

is one of the key attributes that characterize the network in

two or three-dimensional space, especially in such geographic

exploration tasks as terrain and underwater reconnaissance.

A. Related Work

The quest for efficient boundary detection in wireless net-

works has led to two research thrusts outlined below:

Detection of Event Boundary

The investigation on boundary detection started from the

estimation and localization of events in sensor networks. The

spatially distributed sensors usually report different measure-

ments in respond to an event. For example, upon a fire,

the sensors located in the fire are likely destroyed (and thus

resulting a void area of failed nodes), while the sensors close to

the fire region measure higher temperature and smoke density

than the faraway sensors do. Boundary detection is to delineate

the regions of distinct behavior in a sensor network [1].

Achieving accurate detection of event boundary is chal-

lenging, because the sampling density is limited, the sensor

readings are noisy, the delivery of sensor data is unreliable,

and the computation power of individual sensors is extremely

low [1], [2]. To this end, a series of studies have been carried

out to explore efficient information processing and modeling

techniques to analyze sensor data, in order to estimate the

boundary of events [1]–[5].

Due to inevitable errors in raw sensor data, these approaches

do not yield precise boundary. Instead, they aim at a close

enough estimation that correctly identifies the events frontier,

based on either global or local data collected from a set of

sensors.

Detection of Network Boundary

Besides the researches discussed above that are mainly from

the data processing perspective, interests are also developed

to precisely locate the boundary of the network based on

geometric or topology information of a wireless network.

Noise in sensor data is no longer a concern here, because

such boundary detection is not based on sensor measurement.

However, new challenges arise due to the required accuracy of

the identified boundary, especially in networks with complex

inner boundary (i.e., “holes”) or in high dimensional space.

Most proposed network boundary detection algorithms are

based on 2D graphic tools. For example, Voronoi diagrams

are employed in [6], [7] to discover coverage holes in sensor

networks. Delaunay triangulation is adopted in [8] to iden-

tify communication voids. In contrast to [6]–[8] that exploit

sensor positions, two distributed algorithms are proposed in

[9] by utilizing distance and/or angle information between

nodes to discover coverage boundary. In [10], an algebraic

topological invariant called homology is computed to detect



(a) A 3D Network. (b) Boundary nodes. (c) Landmarks.
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(d) CDG.
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(e) CDM. (f) Triangular mesh.
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(g) Algorithm efficiency.
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(h) Mistaken distribution.
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(i) Missing distribution.

(j) 20% distance measurement errors. (k) 30% distance measurement errors. (l) 40% distance measurement errors.

Fig. 1. Illustration of the proposed boundary detection algorithm (based on a 3D wireless network of 4210 nodes with an average nodal degree of 18.8).

holes. The algorithm is generally applicable to networks in any

dimensional space. However, it is a centralized approach and

there is significant challenge to decentralize its computation

[10]. In [11], the isosets (each of which consists of nodes

with the same hop distance to a beacon node) are identified.

The disconnection in an isoset indicates the boundary nodes

of holes. Multiple beacons can be employed to locate the

boundary nodes at different directions of a hole. This approach

does not guarantee to discover the complete boundary of every

hole. Higher accuracy can be achieved if more beacons are

employed or when the network is denser. [12] introduces a de-

terministic algorithm for boundary detection. It searches for a

special subgraph structure, called m-flower, which is bounded

by a circle. Once a m-flower is identified, the algorithm can

subsequently find the boundary nodes through a number of

iterations of augmentation of the circle. But not every graph

has an m-flower structure. Therefore, the algorithm may fail

especially when the nodal density is low. In [13], a shortest



path tree is built to find the shortest circle, which is then

refined to discover the tight boundaries of the inner holes.

All of the network boundary detection approaches discussed

above are developed for networks in 2D space. Except [10]

which is centralized, none of them can be readily applied

to 3D networks since higher dimension space introduces

significant complexity in searching for boundaries and many

topological and geometrical tools cannot be extended from

2D to 3D. In addition, while boundary extraction has been

extensively studied in 3D imaging, the algorithms developed

therein always assume grid-like 3D pixels as inputs, which

are in sharp contrast to network settings where nodes are ran-

domly distributed, and thus are not applicable in 3D wireless

networks.

B. Our Contribution

There are increasing interests in 3D wireless networks,

with several areas such as routing [14]–[19], localization [20],

nodal placement [21], [22], physical layer investigation [23]

and applications [23], [24], being explored recently. This

research aims to develop distributed and localized algorithms

for precise boundary detection in 3D wireless networks. Our

objectives are in two folds:

(1) First, we aim to identify the nodes on the boundaries of

a 3D network (see Fig. 1(b) for example).
(2) Second, we construct locally planarized 2-manifold sur-

faces for inner and outer boundaries (as shown in

Fig. 1(f)).

To achieve the first objective, we propose a Unit Ball Fitting

(UBF) algorithm that discovers a set of potential boundary

nodes, followed by a refinement algorithm, named Isolated

Fragment Filtering (IFF), which removes isolated nodes that

are misinterpreted as boundary nodes by UBF. Our proposed

scheme is localized, requiring information within one-hop

neighborhood only.

The boundary nodes are discrete. They serve as sample

points that depict the network boundaries. However, many ap-

plications desire not only such discrete points, but also closed

boundary surfaces, especially locally planarized 2-manifold in

order to apply available graph theory tools on 3D surfaces,

such as embedding, localization, partition, and greedy routing

among many others. In this research we develop an algorithm

that constructs locally planarized triangular meshes on the

identified 3D boundaries. We adopt the method proposed in

[25] that produces a planar subgraph in 2D, and extend it to 3D

surfaces to achieve complete triangulation without degenerated

edges. The algorithm is localized and based on connectivity

only.

As far as we know, this is the first work for discovering

boundary nodes and constructing boundary surfaces in 3D

wireless networks. The rest of this paper is organized as

follows: Secs. II and III introduce our proposed algorithms for

boundary node identification and boundary surface construc-

tion, respectively. Sec. IV presents simulation results. Finally,

Sec. V concludes the paper.

II. BOUNDARY NODE IDENTIFICATION

The proposed boundary node identification algorithm in-

volves two phases. The first phase is the Unit Ball Fitting

(UBF), which aims to discover most, if not all, boundary

nodes. The second phase is Isolated Fragment Filtering (IFF),

which removes isolated nodes that are misinterpreted as

boundary nodes in Phases 1.

A. Phase 1: Unit Ball Fitting (UBF)

We present the Unit Ball Fitting (UBF) algorithm in this

subsection. The related definitions, theories, and algorithm

description are elaborated sequentially.

1) Definitions: To facilitate our exposition, we first intro-

duce several basic definitions.

Definition 1: Without loss of generality, we consider an

arbitrary radio transmission model with a maximum radio

transmission range of 1.

Definition 2: The nodal density, denoted by ρ, is the aver-

age number of nodes in a unit volume.

Definition 3: We consider well connected networks only.

A well connected network implies: (1) no nodes are isolated;

and (2) there are no degenerated line segments. In other words,

given a line segment between two nodes, e.g., Nodes i and j,

there must be at least one node whose distances to Nodes i

and j are less than Max(1,di j), where di j denotes the distance

between Nodes i and j.

Definition 4: A unit ball is a ball with a radius of r = 1+δ,
where δ is an arbitrarily small constant.

Definition 5: An empty unit ball is a unit ball with no

nodes located inside.

Definition 6: We say a unit ball touches a node if the node

is on the surface of the ball.

Definition 7: A hole is an empty space that is greater than a

unit ball. The space outside the network is treated as a special

hole.

With the above definitions, we next discuss the motivations

to develop the UBF algorithm and the theories that prove its

correctness and computing complexity. Subsequently, we give

the formal algorithm description.

2) Motivations and Theoretic Insights: The proposed UBF

algorithm is motivated by the fact that a hole can always

contain an empty unit ball. For example, the smallest hole

is defined as a void space that can be filled by adding a node

to connect with nearby nodes. Therefore, we can search for

empty unit balls in order to identify holes and boundary nodes.

More specifically, a node can test if it is on a boundary by

constructing a unit ball with itself on the ball’s surface. If at

least one such ball can be found that no nodes are located

inside, a hole is identified and the node is a boundary node

(see Node A in Fig. 2(a) for example).

The above process is called unit ball fitting. It can be

applied to identify both inner and outer boundaries. However,

it is obviously infeasible for a node to perform a complete

test of unit ball fitting via brute-force search, because there

are infinite possible orientations to place the unit ball. Next,

we will show that a localized algorithm with a polynomial
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(a) An empty unit ball touching Node A.
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Fig. 2. Principles for Unit Ball Fitting (UBF).

computing complexity can be employed to test if such an

empty unit ball exists.

Lemma 1: Node A can construct an empty unit ball that

touches itself if and only if there exists an empty unit ball

touching Node A and two neighbors of Node A (within 2r).

Proof: We first show the sufficient condition, which is

straightforward. If a unit ball touched by Node A and two

neighbors of Node A is empty, i.e., there is an empty unit

ball with Node A and two neighbors of Node A on its surface,

Node A has constructed such an empty unit ball touching itself.

Consequently, a hole is identified and Node A is a boundary

node.

Now, we prove the necessary condition. If there exists an

empty unit ball with Node A on its surface, we can always

fix Node A and rotate the ball until it touches another node

within 2r, denoted by Node B (see Fig. 2(b)). Note that

if Node B does not exist, Node A must be isolated, which

conflicts with our assumption of well connected networks (see

Definition 3). Then we can further rotate the ball with Line

AB as an axis, until it touches another node, denoted by Node

C. Similarly, Node C must exist, because otherwise Line AB is

degenerated and thus against Definition 3. Therefore, if Node

A can construct an empty unit ball that touches itself, we can

always find an empty unit ball with Node A and two neighbors

of Node A on its surface.

Based on the sufficient condition and the necessary condi-

tion discussed above, the lemma is thus proven.

According to Lemma 1, we can show that a node can

A

B

C

Fig. 3. Up to two unit balls determined by Node A and two of its neighbors.

determine if it can construct an empty unit ball that touches

itself by a localized algorithm with a computing complexity of

Θ(ρ3). If such an empty unit ball can be constructed, the node

must be a boundary node. Formally, we have the following

theorem.

Theorem 1: Node A can determine if it can construct an

empty unit ball that touches itself by testing Θ(ρ2) unit balls

and Θ(ρ) nodes for each ball.

Proof: According to Lemma 1, Node A can exhaustively

test all unit balls determined by Node A and its neighbors.

Given Node A and any two neighbors (whose distances to

Node A are less than 2r), zero or one or two unit balls can be

formed such that the three nodes are on the surface(s). Fig. 3

illustrates an example where two unit balls are determined

by three nodes. Since Node A has about 4
3
π(2r)3ρ, or Θ(ρ),

neighboring nodes within the distance of 2r, it needs to test

up to Θ(2×
(

ρ
2

)
) = Θ(ρ2) unit balls. For each unit ball, about

4
3
πr3ρ, or Θ(ρ), nodes must be tested to judge if it is empty.

Therefore, the overall computing complexity is Θ(ρ3). Note

that ρ is usually small and bounded.

3) Algorithm Description: Theorem 1 provides a clear

guidance for our algorithm development. It suggests a dis-

tributed and localized algorithm where each node tests Θ(ρ2)
unit balls to judge if any one of them is empty. To this end,

we propose the Unit Ball Fitting (UBF) algorithm as outlined

in Algorithm 1 and elaborated below.

Algorithm 1: Unit Ball Fitting (UBF) Algorithm

Input: N(i); //Neighbors of Node i

Output: Boundary(i);
Boundary(i) = FALSE;1

Establish a local coordinates system;2

Ωi = {[ j,(x j,y j,z j)] | j ∈ N(i)};3

for j,k ∈ Ωi and j �= k do4

Find the unit ball(s) determined by Nodes i, j,k;5

if a unit ball is empty then6

Boundary(i) = TRUE;7

Break;8

end9

end10

The proposed UBF algorithm largely follows the discussions

in Sec. II-A2. The sole difference is that each node considers

its one-hop neighbors only to realize a truly localized algo-

rithm. It consists of the following three steps, and outputs



a boolean value Boundary(i) indicating if Node i is on a

boundary or not.

(I) Local coordinates establishment (Lines 2-3): If all nodes

have known their coordinates, this step can be skipped.

Otherwise each node employs a 3D embedding algorithm

to establish a local coordinates system. More specifically,

Node i collects the distances between all pairs of nodes

within one hop. The distance between two nodes can be

estimated by such ranging techniques as received signal

strength indicator (RSSI) or time difference of arrival

(TDOA) [26]. The measured distances are inaccurate in

general and the errors will be discussed in Sec. IV. Based

on the pair-wise distances, multiple schemes [27]–[31]

are available to create a local coordinates system for

Node i and its neighbors. Among them, [31] is adopted

in our implementation. Once the coordinates system is

established, Node i keeps a set of neighboring nodes

and their coordinates, i.e., Ωi = {[ j,(x j ,y j,z j)] | j ∈N(i)},
where N(i) denotes the set of nodes that include Node i

itself and its one-hop neighbors.

(II) Unit ball identification (Lines 4-5): For every two dis-

tinct nodes, e.g., j and k ∈ Ωi, calculate the center(s) of

the unit ball(s) determined by Nodes i, j and k. This is

done by solving a set of standard equations as follows,

where (x,y,z) are the coordinates of the center.
⎧⎨
⎩

(x− xi)
2 +(y− yi)

2 +(z− zi)
2 = r2,

(x− x j)
2 +(y− y j)

2 +(z− z j)
2 = r2,

(x− xk)
2 +(y− yk)

2 +(z− zk)
2 = r2.

(1)

Depending on the coordinates of Nodes i, j and k, Eq. (1)

may yield no solution, or one solution, or two solutions

for (x,y,z).

(III) Empty unit ball check (Lines 6-9): For each center point

(x,y,z) identified above, check if any node in Ωi is

located inside the corresponding unit ball, i.e., if it is

an empty unit ball. If an empty unit ball is found, Node

i declares that it is on a boundary.

Steps (II) and (III) check all unit balls determined by Node i

and its neighbors. If no empty unit ball is found, Node i reports

that it is not a boundary node. As revealed by Theorem 1, only

Θ(ρ2) unit balls need to be examined by each node. Moreover,

it requires local information only, i.e., merely the coordinates

of the neighboring nodes are needed, and a local coordinates

system (without global alignment) is sufficient.

In addition, the size of holes to be detected is adjustable by

varying r (or δ). By default, one can set r close to 1, in order

to identify the holes of any size. However, if one is interested

in the boundary nodes of large holes only, a larger r can be

chosen. As a result, a node on the boundary of a small hole

cannot find an empty unit ball that can fit in according to

Algorithm 1 and thus deems itself a non-boundary node.

B. Phase 2: Isolated Fragment Filtering (IFF)

A small number of interior nodes may be interpreted by

UBF as boundary nodes due to inaccurate nodal coordinates

or unexpected low nodal density areas randomly distributed

in the network, resulting in some isolated fragments that

should be filtered out. Generally, the nodes on a boundary

form a well connected closed surface. Therefore, we can set

a threshold γ. Any fragment that consists of less than γ nodes

is not considered as a boundary. To this end, each boundary

node simply initiates a local flooding packet with a TTL of

T , which will be forwarded by other boundary nodes but

not non-boundary nodes. By counting the number of such

flooding packets received, a boundary node learns the size

of its fragment. If less than γ flooding packets are received,

the node deems itself a non-boundary node. Appropriate γ and

T are chosen according to the minimum size of the holes to

be detected. For example, given the default value of r (i.e.,

r = 1+δ for an arbitrary small δ), a minimum hole will have

at least 20 nodes on its surface, forming an icosahedron, where

the maximum hop distance between two boundary nodes is 3.

Thus we set γ = 20 and T = 3. Since IFF is based on a simple

local flooding, it has a complexity of O(1).
In addition, the boundary nodes can be easily grouped,

when there are multiple boundaries. Note that, the nodes

on a boundary are connected via boundary nodes. In other

words, there must exist a path between two nodes on the

same boundary, which involves boundary nodes only. For two

nodes on different boundaries, such path does not exist, and

their connection must go through at least one non-boundary

node. Therefore a straightforward scheme (similar to the local

flooding approach discussed above) can be employed to group

the boundary nodes.

C. Summary of Boundary Node Identification

By following the two phases elaborated above, a node

determines whether it is on the boundary based on local

information only. Its performance depends on the accuracy

in distance measurement, which is used to establish local

coordinates. As to be discussed in Sec. IV, our simulations

demonstrate that the proposed algorithms are effective, able to

identify almost all boundary nodes with low miss and mistaken

rate, when the distance measurement errors are moderate (as

shown Fig. 1(g)). Under high distance measurement errors,

the mistaken and missing rates naturally increase. But the

mistakenly identified boundary nodes are all close to the true

boundary, mostly within one or two hops (see Fig. 1(h)). At the

same time, the missed boundary nodes are uniformly scattered.

A

C

B

≤1

(a) Non-boundary node.

A

C

B

>1

(b) Missed boundary node.

Fig. 4. Illustration of a missed boundary node. (a) Node A is not a boundary
node. (b) Node A is a boundary node but cannot be identified by UBF.



Over 95% of such missed boundary nodes can always find at

least one correctly identified boundary node within its one

hop neighborhood (as illustrated in Fig. 1(i)). Therefore, the

identified boundary nodes can well represent the network

boundaries. More discussion will be presented in Sec. IV.

III. TRIANGULAR BOUNDARY SURFACE CONSTRUCTION

The boundary nodes identified so far are discrete. They

largely depict the network boundaries. However, many applica-

tions require not only discrete boundary nodes, but also closed

boundary surfaces. Moreover, it is highly desirable that such

surfaces are locally planarized 2-manifold in order to apply

available 2D graphic tools on 3D surfaces.

In this research we implement an algorithm that constructs

locally planarized triangular meshes on the identified 3D

boundaries. We adopt the method proposed in [25] that can

produce a planar subgraph in a 2D network, and extend

it to 3D surfaces to achieve complete triangulation without

degenerated edges. The algorithm is localized and based on

connectivity only. It consists the following five steps.

(I) Landmark Selection: The boundary nodes employ a

distributed algorithm (e.g., [32]) to elect a subset of

nodes as “landmarks”. Any two landmarks must be k-

hops apart. k determines the fineness of the mesh. It is

usually set between 3 to 5 in our implementation. A non-

landmark boundary node is associated with the closest

landmark. If it has the same distance (in hop counts) to

multiple landmarks, it chooses the one with the smallest

ID as a tiebreaker. This step creates a set of approximate

Voronoi cells on each boundary (as shown in Fig. 1(c)).

(II) Construction of Combinatorial Delaunay Graph (CDG):

Each non-landmark boundary node checks if it has a

neighboring boundary node that is associated with a

different landmark. If it has, a message is sent to both

landmarks to indicate that they are neighboring land-

marks. If we simply connect all neighboring landmarks,

we arrive at a Combinatorial Delaunay Graph (CDG)

as illustrated in Fig 1(d), which is the respective dual

of the Voronoi cells on a boundary found in Step I.

However, such a CDG is not planar (see the crossing

edges highlighted in Fig 1(d)).

(III) Construction of Combinatorial Delaunay Map (CDM):

Each landmark node decides whether it connects to a

neighboring landmark as follows. It sends a packet to a

neighboring landmark through the shortest path (based

on the identified boundary nodes only). The packet

records the nodes along the path. The two landmarks

are said to be connected if and only if the following

two conditions are satisfied. First, all of nodes visited

by the packet are associated to these two landmarks

only. Second, assume the packet is sent from Landmark

i to Landmark j. Then the packet must visit the nodes

associated with Landmark i first, and then followed by

the nodes associated with Landmark j, without interleav-

ing. If the above two conditions are satisfied, Landmark

A

B

C E

D

(a) Before edge flip.

A

B

C E

D

(b) After edge flip.

Fig. 5. Illustration of edge flip. Edge AB has three faces before edge flip. It
is removed and replaced by Edges CD and DE .

j sends an ACK to Landmark i and a virtual edge is

added between them. The boundary nodes that receive

such ACK records that they are on the shortest path

between two connected landmarks. This step yields a

Combinatorial Delaunay Map (CDM). It is proven that

CDM is a planar graph [25].

(IV) Construction of Triangular Mesh: The CDM obtained so

far is planar, but not always a triangular mesh. Polygons

with more than three edges may exist (see the polygon

highlighted in Fig 1(e)). To achieve complete triangula-

tion, appropriate edges should be added between some

neighboring landmarks. If a landmark, e.g., Landmark i,

has a non-connected neighboring landmark (e.g., Land-

mark j), it sends a connection packet to the latter (via

the shortest path based on the identified boundary nodes).

The packet will be dropped if it reaches an intermediate

node that is already on the shortest path between two

connected landmarks, in order to avoid crossing edges.

If the connection packet arrives at Landmark j, a virtual

edge can be safely added and an ACK is sent back to

Landmark i. Similarly, the boundary nodes that receive

the ACK records that they are on the shortest path

between two connected landmarks. This step adds all

possible virtual edges to divide polygons into triangles.

(V) Edge Flip: To ensure the mesh to be a 2-manifold, each

virtual edge must be associated with two triangles. After

the above step, there still possibly exist edges (like Edge

AB in Fig. 5(a)) with three triangular faces, formed with

three corresponding nodes (i.e.,C, D, and E). Such edges

can be detected by trivial local signaling. For each such

edge, a transformation is done as follows. First, Edge

AB is removed. Second, two shortest edges are added

between the corresponding nodes, i.e., Nodes C, D, and

E . For example, assume CE is longer than CD and DE .

Then two virtual edges CD and DE are added, resulting

in Fig. 5(b), where no edge has more than two faces.

Note that the polygon ACBE is not a face on the surface.

Till now, we arrive at a planar triangular mesh for each

3D boundary surface, as illustrated in Fig. 1(f).

The above algorithm is able to form a closed triangular mesh

surface for each boundary. The established triangular mesh is a

locally planarized 2-manifold, although the whole 3D surface



is not planar. A virtual edge on a mesh surface has exactly two

triangular faces. Such salient properties enable application of

many useful graph theory tools on 3D boundary surfaces, in-

cluding embedding, localization, partition, and greedy routing

among many others.

Note that since the triangular mesh is established based

on landmarks only, a small number of nodes (that are on

or close to the boundaries) may be located outside the mesh

surfaces. The number of such nodes is determined by k and

the curvature of the boundary. The larger the k, the coarser

the mesh surfaces, resulting in more nodes left outside. An

appropriate k can be chosen according to the needs of specific

applications. For example, Fig. 1(f) shows the results with

k = 3.

In addition, we observed that the triangular mesh is not

seriously deformed under distance measurement errors. As

discussed in the previous subsection, the mistakenly identified

boundary nodes are close to the true boundary and the miss-

ing boundary nodes are uniformly distributed. Therefore, the

identified boundary nodes can still well represent the network

boundaries, even under distance measurement errors. This is

verified by our simulations. For example, Figs. 1(j)-1(l) show

results under 20%, 30% and 40% distance measurement errors,

respectively. They exhibit similar triangular meshs as Fig. 1(j),

which is free of distance measurement errors.

IV. SIMULATIONS

To evaluate the effectiveness of our proposed boundary de-

tection algorithms, we have carried out extensive simulations

under various 3D wireless networks and studied the impact of

a wide range of distance measurement errors. In this section,

we will first introduce our simulation setup. Then we present

the simulation results and discuss our observations.

A. Simulation Setup

The 3D networks used in our simulations are constructed

by using a set of 3D graphic tools (including TetGen [33]).

First, a 3D model is developed to represent a given network

scenario (e.g., an underwater network, a 3D network in space,

and general 3D networks with arbitrary shapes of our interest).

A set of nodes are randomly uniformly distributed on the

surface of the 3D model. They are marked as boundary

nodes, serving as ground truth to evaluate our algorithm.

A cloud of nodes are then deployed inside the 3D model.

Again the nodes are randomly uniformly distributed. Once

the nodes are determined, an appropriate radio transmission

range is chosen according to nodal density, such that the

network is connected. Each node connects to its neighbors

within its radio transmission range. In our simulated networks,

nodal degree ranges from 5 to 45, with an average of 18.5.

A node also estimates its distance to each neighbor. While

our simulations do not involve physical layer modeling, we

introduce a wide range of random errors, from 0 to 100% of

the radio transmission radius, in the distance measurement.

Till now, we have the input for our algorithm. For each

simulated network, the input includes a set of the nodes (both

interior and boundary nodes), the local 1-hop connectivity of

each node, and the distance measurement (with various errors)

within 1-hop neighborhood.

B. Simulation Results

We run our proposed distributed and localized algorithms

for boundary node detection and surface construction. First,

each node establishes a local coordinates system by using dis-

tributed multi-dimensional scaling [31] based on local distance

measurement. Then boundary node identification is performed,

followed by the triangular mesh algorithm.

Several examples of our simulated networks are given in

Figs. 6-10. Fig. 6 illustrates an underwater network, where

nodes are distributed from the surface to the bottom of the

ocean. As shown in Figs. 6(b) and 6(c), our algorithms

effectively identify the boundaries of both smooth water

surface and the bumpy bottom. Figs. 7 and 8 depicts a 3D

network deployed in the space (e.g., for chemical dispersion

sampling in 3D space). They have one and two internal holes,

respectively, due to uncontrolled drift of sensor nodes. These

examples demonstrate that our algorithm works for not only

outer boundary but also the boundaries of interior holes.

Figs. 9 and 10 show 3D networks deployed in a bended pipe

and a sphere, respectively. As can be seen, boundary nodes

are accurately identified and the triangular mesh surfaces are

well constructed in the both networks.

Fig. 11 illustrates the performance statistics obtained from

our simulations. The results are based on over 10,000 sample

boundary nodes. As can be seen in Fig. 11(a), our algorithm

performs almost perfectly to identify boundary nodes when

the distance measurement error is less than 30%. With more

errors introduced in distance measurement, noticeable errors

are yielded in local coordinates establishment, which naturally

lead to missing and mistaken boundary nodes. More specif-

ically, when the coordinates errors exceed certain level, an

original boundary node may become an interior node inside the

network under the established coordinates and thus is missed

by our boundary detection algorithm. At the same time, an

original interior node may appear on the boundary due to

the deformation of the coordinates of the node itself and its

neighbors, leading to a mistakenly identified boundary node.

However, as we have demonstrated in Fig. 1 and discussed

in Sec. II, such missing and mistaken boundary nodes do not

seriously affect our boundary identification, because they are

well distributed. For example, Fig. 11(b) illustrates the distri-

bution of mistaken boundary nodes. Specifically, we measure

the shortest distance (in hops) from a mistaken boundary node

to a correctly identified boundary node. As can be seen in

Fig. 11(b), such distance is always less than 3 hops, with

a majority of them in one (over 60%) and two hops (over

30%). These results clearly show that the mistakenly identified

nodes are very close to the true boundary. Therefore, the

triangular mesh surface does not deviate significantly from the

true boundary surface. Similarly, the distribution of missing

boundary nodes is given in Fig. 11(c). It is observed that al-

most 100% of the missing boundary nodes are within one-hop



(a) Network model. (b) Boundary nodes. (c) Triangular mesh.

Fig. 6. An example of under water network. (In contrast to Figs. 7-10 where the network model, i.e., subfigure (a), shows a set of wireless nodes deployed,
the network model in this figure gives the actual 3D model for better visualization.)

(a) Network model. (b) Boundary nodes. (c) Triangular mesh.

Fig. 7. An example of a 3D space network with an internal hole.

(a) Network model. (b) Boundary nodes. (c) Triangular mesh.

Fig. 8. An example of a 3D space network with two internal holes.

(a) Network model. (b) Boundary nodes. (c) Triangular mesh.

Fig. 9. An example of a 3D network in a bended pipe.



(a) Network model. (b) Boundary nodes. (c) Triangular mesh.

Fig. 10. An example of a 3D network in a sphere.
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(c) Missing distribution.

Fig. 11. Performance statistics.

neighborhood of correctly identified boundary nodes. In other

words, the missing boundary nodes are uniformly distributed

on the boundary surfaces (without forming large “holes”) and

thus do not affect the election of landmarks significantly. As a

result, triangular mesh can be well constructed based on the set

of landmark nodes sampled from identified boundary nodes.

V. CONCLUSION

We have proposed distributed and localized algorithms for

precise boundary detection in 3D wireless networks. Our

objectives have been in two folds. First, we have aimed to iden-

tify the nodes on the boundaries of a 3D network, which serve

as a key attribute that characterizes the network, especially

in such geographic exploration tasks as terrain and under-

water reconnaissance. Second, we have intended to construct

locally planarized 2-manifold surfaces for inner and outer

boundaries, in order to enable available graph theory tools to

be applied on 3D surfaces, such as embedding, localization,

partition, and greedy routing among many others. To achieve

the first objective, we have proposed a Unit Ball Fitting

(UBF) algorithm that discovers a set of potential boundary

nodes, followed by a refinement algorithm, named Isolated

Fragment Filtering (IFF), which removes isolated nodes that

are misinterpreted as boundary nodes by UBF. Based on the

identified boundary nodes, we have developed an algorithm

that constructs a locally planarized triangular mesh surface

for each 3D boundary. Our proposed scheme is localized,

requiring information within one-hop neighborhood only. Our

simulation results have shown that the proposed algorithms

can effectively identify boundary nodes and surfaces, even

under high measurement errors. As far as we know, this is the

first work for discovering boundary nodes and constructing

boundary surfaces in 3D wireless networks.
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