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Abstract—The recent advances in sensors, actuators, robots,
and mobile wireless communication technologies have accelerated
interest in autonomous networked robots (ANRs), where the
individual robots coordinate among themselves to complete a
task, e.g., to explore or monitor a Field of Interest (FoI). By
teamwork, which is especially important in complex tasks, ANR
system expresses much more capacity than traditional static
sensor networks. Existing work focuses on improving the coverage
performance of a group of ANRs within a single FoI. In this
research, we consider a group of ANRs that are instructed to
explore a number of FoIs. After they complete a task at current
FoI, they move to the next one, which may be far away from
current one and the shape can also vary dramatically. Our
research focuses on how to efficiently enable such transition. The
ANRs must be able to redeploy themselves to desired positions
in the new FoI based on distributed algorithms. Besides, to avoid
unexpected event breaks network’s integrity, the ANRs should
preserve their local connectivities as much as they can and
organize themselves as a whole network without any isolated
nodes during the transition. Furthermore, considering energy
consumption, such relocation algorithm should work at the cost
of reasonable total moving distance. We study this problem
and call it optimal marching of autonomous networked robots.
The proposed algorithms guarantee global connectivity, and
preserve local connectivities as much as possible at negligible
cost of moving distance. Additionally, ANRs can automatically
adjust their deployment density in the new FoI based on the
requirements of various tasks or regions.

I. INTRODUCTION

The recent development in sensors, actuators, robots, and
mobile and wireless communication technologies has enabled
a paradigm shift in robotic systems, named autonomous net-
worked robots (ANRs), where the individual robots coordinate
among themselves to complete a task, e.g., to explore or
monitor a Field of Interest (FoI). Such an ANR system is
extremely valuable in situations where a traditional static
sensor network fails or is inapplicable, for example, in disaster
areas or toxic urban regions where sensor deployment cannot
be performed manually, or hostile environment where sensors
can be neither manually deployed nor air-dropped. On the
contrary, ANRs can move to correct positions by themselves to
provide the required coverage. Compared with the static sensor
network that is deployed for a given FoI, an ANR system
offers great flexibility to explore different fields as needed.
Additionally, an ANR system is more reliable since the failure
of an individual robot can be recovered by its peers.

Algorithms have been developed to enhance the perfor-
mance of coverage from random initial positions of ANRs
as an end result of robots movement. Virtual-force based
algorithms [1]–[3] are among the earliest endeavors. The

work in [4] enables an ANR system to arrange themselves
to a regularly spaced square or rectangle lattice pattern by
exploiting a common reference orientation. In [5], algorithms
are proposed to discover the existence of coverage holes and
then compute the desired target positions to move robots
from densely deployed areas to sparsely deployed areas to
increase the coverage. Later, in [6], [7], decentralized motion
control algorithms are proposed to deploy an ANR system in
the so-called triangular lattice pattern, namely a network of
equilateral triangles within a given area that is proved optimal
in terms of minimum number of sensors required for complete
coverage of a bounded area. Centroidal Voronoi Diagram based
algorithms [8]–[10] can also achieve the layout of an ANR
system close to equilateral triangulation, at the same time,
easily encoding optimal coverage and sensing policies into the
utility function.

Existing research focuses on improving the coverage per-
formance of a group of ANRs as an end result of robots
movement within a FoI. In this research, we consider a group
of ANRs that are instructed to explore a number of FoIs.
After they complete the task at a FoI, they move to the next
FoI. Our research focuses on how to efficiently enable such
transition. The new FoI may be far away from the previous
one and its shape can also vary dramatically. Of course, a
complete map can be loaded into the memory of each ANR,
but the ANRs must be able to redeploy themselves to desired
positions in the new FoI based on distributed algorithms.
An efficient relocation algorithm wants to minimize the total
moving distance for reducing energy consumption. However,
it is more important that the ANRs preserve their local
connectivities and organize themselves as a whole network
without any isolated nodes during the transition to the new FoI.
The global connectivity requirement is mandatory in order to
make sure timely coordination among the ANRs. For instance,
an unexpected event (such as the change of terrain or weather
conditions) may happen during the relocation. As a result, the
ANRs must cooperatively determine how to adapt to the event.
If an ANR is isolated at this time, it may be excluded from the
new plan and thus become permanently lost. The preservation
of local connectivity is also highly preferred to reduce the
overhead and avoid the delay for pairing the wireless devices.
Two ANRs can communicate with each other only if they
are paired and have established a secure link. The extensive
change of local connectivity may result in significant overhead
and delay for re-pairing the wireless links, thus degrading the
system performance and even hindering the system function.

We study this problem and call it optimal marching of
autonomous networked robots. We assume a group of ANRs



initially deployed on a general 2D surface. They are required
to redeploy to a new FoI, which is not necessarily close to the
current one and may have complicated and concave boundary
shapes, with inner obstacles or holes. The challenge to solve
this problem is that it is impossible, as we prove in the paper, to
preserve connectivities and minimize the total moving distance
at the same time. To preserve connectivities, a straightforward
approach is to keep robots move in a parallel way to a new
FoI. However, this method would potentially produce longer
total moving distance, and some robots may still get isolated
if the new FoI has complex shape as mentioned above. To
minimize the total moving distance, local connectivities will
be dramatically broken during the movement and the global
connectivity will also be an issue. We also prove in the paper
that it is impossible to maintain all the local connectivities for
general cases. Based on the insights from harmonic map, we
propose a modified harmonic map algorithm to find moving
path for each ANR to target FoI such that both local and
global connectivities are maintained. Each ANR then follows
a specified rule inside the target FoI to do minor adjustment
towards its optimal coverage position. We show that the pro-
posed algorithms guarantee global connectivity, and preserve
local connectivities as much as possible at negligible cost of
the total moving distance.

The main results and contributions of this work are sum-
marized as follows:

• We formulate the optimal marching problem of a
group of ANRs.

• We show that it is generally impossible to maintain
all the local connectivities for a group of ANRs that
are redeployed to a new FoI. We also show that it
is a trade-off between preserving connectivities and
minimizing the total moving distance to the desired
coverage positions in the new FoI.

• We propose a series of distributed algorithms to
solve the optimal marching problem. The proposed
algorithms guarantee global connectivity, and preserve
local connectivities as much as possible at negligible
cost of the total moving distance.

• Additionally, ANRs can automatically adjust their
deployment density in the new FoI based on the
requirements of various tasks or regions.

The rest of the paper is organized as follows: Sec. II
formulates the problem and reveals the insight of the proposed
algorithms. Sec. III elaborates the proposed algorithms, fol-
lowed by simulation results in Sec. IV. Sec. V concludes the
paper and discusses our future work.

II. PROBLEM FORMULATION

We assume that an ANR system consists of a group of
identical mobile robots. Each mobile robot has an equipped
GPS and has the capacity to move in a straight line. The
sensors mounted on mobile robots are assumed to have disk
sensing model, identical sensing range and capability.

A. Optimal Marching Problem

Let there be n mobile robots in a known region - the current
FoI denoted by M1. Denote pi the position of the ith mobile

robot in M1, and denote P = {p1, · · · , pn} the positions of the
group of mobile robots in M1. Following an instruction, the
group of mobile robots moves to the target FoI denoted by M2.
They automatically redeploy themselves to optimal coverage
positions in M2 denoted by Q = {q1, · · · ,qn}.

Denote di the moving distance of the ith mobile robot from
pi in M1 to q j in M2. The total moving distance of the group
of mobile robots redeployed from M1 to M2 is defined as:
D = ∑n

i=1 di.

Assume the total transition time from M1 to M2 is T .
Denote ei j(t) the communication link between the ith and jth
mobile robots at time t. We assign a value to ei j(t) such that

ei j(t) =


1 if the ith and jth mobile robots (i ̸= j) are

connected at time t,0 ≤ t ≤ T
0 otherwise.

Denote ei j the communication link between the ith and jth
mobile robots during the whole transition time from M1 to M2.
Similarly, we can assign a value to ei j such that

ei j =

{
1 if ei j(t) = 1,∀t,0 ≤ t ≤ T
0 otherwise.

Then we can define the total stable link ratio to evaluate
the preservation of local connectivity of a transition.

Definition 1 (Total Stable Link Ratio). Let there be n mobile
robots relocating from the current FoI M1 to the target one M2.
Denote mi the number of neighbors of the ith mobile robot
within its communication range in M1. The total stable link
ratio of the group of mobile robots relocating from M1 to M2,
denoted by L, is defined as:

L =
∑n

i=1 ∑mi
j=1 ei j

∑n
i=1 mi

.

We now can define the global connectivity of a group of
mobile robots during a transition between FoIs.

Definition 2 (Global Connectivity). Let there be n mobile
robots relocating from the current FoI M1 to the target one
M2. The global connectivity of the group of mobile robots
during the transition time T ,denoted by C, is defined as:

C =


1 given any mobile robot, there exists a path

to network boundary for ∀t,0 ≤ t ≤ T
0 otherwise

The details of the above definition is addressed in Sec. III.

If we consider only the minimization of the total moving
distance D during a relocation, we can show that the minimum
moving distance marching problem can be converted to the
well-known minimum cost bipartite matching problem and
solved. Before we continue, we will first introduce some
concepts of graph theory.

Definition 3 (Matching). Given a graph G = (V,E) with a set
V of vertices and a set E of edges, a matching M ∈ E is a
collection of edges such that every vertex of V is incident to
at most one edge of M. If a vertex v has no edge of M incident



to it then v is said to be exposed. A matching is perfect if no
vertex is exposed.

Definition 4 (Bipartite Graph). A graph G = (V,E) is
bipartite if the vertex set V can be partitioned into two sets
V1 and V2 such that no edges in E has both endpoints in the
same set of the bipartition. A bipartite graph G is balanced if
|V1|= |V2|= n. The bipartite graph G is complete when there
are all possible edges between V1 and V2.

Definition 5 (Minimum Cost Bipartite Matching Problem).
Given a balanced and complete bipartite graph and a cost ci j
for all e(i, j) ∈ E, find a perfect matching with minimum cost
where the cost of a matching M is given by c(M)=∑e(i, j)∈E ci j.

Consider the positions of the group of mobile robots
P = {p1, · · · , pn} in M1 as the vertex set V1, and the positions
Q= {q1, · · · ,qn} in M2 as the vertex set V2. We can construct a
balanced and complete bipartite graph G. The cost associated
with each edge is the Euclidean distance between the two
incident vertices. The minimum moving distance problem
equals to the minimum cost bipartite matching problem of G.

However, we show by the following Lemma that there is
a contradiction between minimizing the total moving distance
D and maximizing the total stable link ratio L.

Lemma 1. During the process of sensors moving from M1
to M2, maximizing stable link ratio L and minimizing total
moving distance D cannot be achieved at the same time.

Proof: We can demonstrate the contradiction of maximiz-
ing L and minimizing D by an example given in Fig. 1(a).

Suppose M1 is a slim rectangle shaped FoI along the x-
axis. An optimal deployment of seven mobile robots in M1
is to form a network of a triangular lattice pattern, namely a
network of equilateral triangles as the one shown in the left in
Fig. 1(a). Such way of deployment can achieve optimal area
coverage in terms of minimum number of sensors required
for complete coverage of a bounded region [11]. Furthermore,
denote rc the communication range, and rs the sensing range. If
rc ≥

√
3rs, every point in the region can be covered by at least

one sensor, and every sensor is connected to six neighboring
sensors [12]. In practice, the ratio of rc/rs has a wide range, not
necessarily greater than

√
3. Given different values of k and

rc/rs for different applications, the problem of determining
the optimal deployment pattern that achieves both coverage
and k-connectivity is still an open problem [13]–[15]. In this
paper we only consider triangular lattice pattern for optimal
coverage, so we have the assumption that rc ≥

√
3rs.

Suppose the FoI M2 is also slim rectangle shaped, but
along the y-axis. The optimal deployment of the same group
of mobile robots in M2 is the one shown in the right in
Fig. 1(a). To maximize the total stable link ratio, we would
choose a moving path with {A → a,B → b,C → c,D → d,E →
e,F → f ,G → g}. However, to minimize the total moving
distance, we would choose a totally different moving path with
{A → a,B → g,C → b,D → e,E → c,F → f ,G → d}.

Furthermore, the following Lemma shows that we cannot
preserve all local links during relocation in general cases.

Lemma 2. The local connectivity cannot be fully preserved
during relocation in general cases.

(a) (b)

Fig. 1. Two examples of a group of mobile robots redeployed from one FoI
to the other.

Proof: We still use contradiction to prove this Lemma.
Assume we can preserve all local connectivities during relo-
cation for general cases. Since we do not have restrictions
on the shape of a FoI, we can construct one as illustrated in
Fig. 1(b).

Suppose there are seven mobile robots deployed in M1,
a round shaped FoI. The optimal deployment for the seven
mobile robots is one in the central, and the other six circled
around to form a network of equilateral triangles as the one
shown in the left in Fig. 1(b).

Suppose the FoI M2 is slim rectangle shaped. The optimal
deployment of the group of mobile robots in M2 is the one
shown in the right in Fig. 1(b). The centered mobile robot
and two others circled around in M1 have to break at least
two communication links individually when they redeploy
themselves to M2.

Considering both Lemmas 1 and 2, we formulate the
optimal marching problem as the following one:

Definition 6 (Optimal Marching Problem). A group of
ANRs are instructed to explore a number of FoIs sequentially.
These FoIs are not necessarily close and may have complicated
and concave boundary shapes with inner obstacles or landscape
features that forbid mobile robot placement. The optimal
marching problem is to maximize the total stable link ratio
L subject to the requirement of the global connectivity C = 1
during the transition procedure between FoIs.

B. Our Method

We use a graph to model the connectivity of an ANR
system. A vertex represents a mobile robot. An edge represents
a communication link between two neighboring mobile robots.
With position information of each mobile robot, we can
easily extract a triangulation from such connectivity graph.
Denote G the connectivity graph of a group of mobile robots
deployed in M1, and T the triangulation extracted from G. To
redeploy the group of mobile robots from M1 to M2 with local
connectivities, i.e., edges in T well preserved, basically we
want to find a least stretched diffeomorphism of T mapped to
M2. A diffeomorphism is a one-to-one mapping keeping all
local neighborhood relationship unchanged. A least stretched
diffeomorphism preserves not just local neighborhood relation-
ship but also edge lengths, which are crucial to keep local
communication links unbroken during the transition.

To construct a least stretched diffeomorphism, we consider
T as a spring system. Each edge is a spring with stretching



energy. We deform T such that the boundary of T is along
the boundary of FoI M2, and then let the vertices settle in
equilibrium. Specifically, an inner vertex can move freely by
stretching energy coming from its incident edges, while a
boundary vertex can move only along the boundary edges.
When the spring system is stable - none of the vertices is
moving, the whole system achieves the minimum stretching
energy. Such deformation is also called discrete harmonic map.
Minimizing the spring stretching energy equals to minimizing
the discrete harmonic energy. Discrete harmonic map is proved
least-stretched and a guaranteed diffeomorphism with planar
convex shape boundary condition [16], [17].

However, there exists a big challenge to directly apply
discrete harmonic map method. The requirement of convex
shape boundary is too restrictive on the shape of a FoI. In the
paper we propose a modified harmonic map method. The basic
idea is that instead of directly computing a diffeomorphism of
T to M2, we first compute two harmonic maps of T and M2
to a unit planar disk respectively. Rotate either of the unit
disks with an angle, the two overlapped disks induce a unique
harmonic map between T and M2. We find one optimal rotation
angle such that the induced harmonic map gives the maximized
total stable link ratio. A linear combination of the position of
a mobile robot in M1 and its mapped position in M2 provides
both the moving path and speed for the mobile robot. Each
mobile robot then only needs a minor local adjustment inside
M2 to move to its optimal coverage position.

III. OUR ALGORITHMS

We take assumption that the communication range rc and
the sensing range rs of a mobile robot satisfy rc ≥

√
3rs.

The size of a FoI is bounded such that a system of ANRs
can achieve full area coverage. We use Fig. 2 to visualize
the major steps of the proposed algorithms when a group of
mobile robots has finished tasks in current FoI M1 and redeploy
themselves to target FoI M2. We first extract a triangulation
denoted by T as shown in Fig. 2(b) from the connectivity
graph of the group of mobile robots deployed in M1 as shown
in Fig. 2(a). A vertex represents a mobile robot, and an edge
represents a communication link between two neighboring
mobile robots. Fig. 2(c) shows the computed harmonic map
of T to a unit disk. Fig. 2(d) shows the surface data of FoI
M2 with a flower-shaped pond inside. Similarly, we can easily
grid and triangulate the surface data of M2, and then harmonic
map it to a unit disk. Rotate either of the unit disks with an
angle, the two overlapped disks induce a unique harmonic map
between T and M2. We find one optimal rotation angle such
that the induced harmonic map gives the maximized total stable
link ratio. The group of mobile robots then follow the moving
path and redeploy themselves to M2 as shown in Fig. 2(e).
After a minor local adjustment, each mobile robot moves to the
computed optimal coverage position as shown in Fig. 2(f). We
elaborate each step of the proposed algorithms in Sec. III-A,
Sec. III-B, and Sec. III-C respectively. We also discuss some
implementation issues in Sec. III-D.

A. Preprocessing

We apply the algorithm introduced in [18] to extract a trian-
gulation denoted by T from the connectivity graph of the group
of mobile robots deployed in M1. With position information

available at each mobile robot, each edge computes a weight
that measures the number of triangles shared by the edge and
the local neighbor sets of the edge. An iterative algorithm
keeps removing edges based on current edge weight and local
neighbor set information. The algorithm is fully distributed
with computational complexity linear to the size of the edges.

B. Modified Harmonic Map

We first compute the harmonic map of T to a unit disk.
Since a boundary edge incidents with only one triangle, we
can easily identify the boundary edges of T . A boundary
vertex with the smallest ID (a unique ID assigned to each
mobile robot) initiates a message with a counter that records
how many hops the message has travelled along the boundary.
The starting vertex sends the message to one of its neighbor-
ing boundary vertices. The receiver updates the counter and
records the number, and then forwards the message to its next
neighboring boundary vertex. The message will come back to
the starting vertex as the boundary vertices form a closed loop.
The starting vertex notifies other boundary vertices the size of
the boundary. Based on the recorded hop number and the size
of the boundary vertices, each boundary vertex then computes
a position along the boundary of a unit disk such that the
boundary vertices are uniformly and sequentially distributed
along the boundary. Inner vertices, i.e., non-boundary vertices,
initiate their positions at the center of the unit disk. Then at
each step, an inner vertex computes its position as the average
of the positions of its neighboring vertices. Note that only
inner vertices update their positions. We map T to the unit
disk when no inner vertex updates its position and each vertex
has a unique position in the unit disk. Similarly, we can add
grid points and triangulate the surface data of FoI M2, and
then harmonic map it to a unit disk. The computation of the
harmonic map of M2 to a unit disk can be done by each mobile
robot individually.

When T and M2 are both mapped to unit disks, we can
rotate either of the disks with any angle and the two overlapped
disks induces a unique harmonic map between T and M2. We
want to find the optimal rotation angle such that the induced
harmonic map gives the maximized total stable link ratio.
However, it is a non-linear problem. To avoid complicated
computation, each mobile robot applies a simple binary search
method to find the desired rotation angle with a pre-defined
search depth. At each step, a mobile robot divides current
search interval of angle into two and rotates its mapped
position in unit disk with the midpoint angle of the interval.
The mobile robot computes its mapped position in M2 and
exchanges the position with its one-range neighbors. After
calculating its own stable link ratio, the mobile robot then
floods the information to other mobile robots. We set the search
depth to 4 in our simulations in Sec. IV. The computed rotation
angle has been very close to the optimal one with the search
depth value.

After we rotate one mapped disk with the computed
optimal rotation angle, the two overlapped unit disks naturally
induce a harmonic map between T and M2. Specifically, a
vertex of T , denoted by v, locates three nearest grid points
of M2 in the overlapped unit disks. Denote gi, g j, and gk
the three nearest grid points, and q(gi), q(g j), and q(gk) the
original geographic coordinates of gi, g j, and gk in M2. Denote
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Fig. 2. Algorithm pipeline: (a) The connectivity graph of a group of mobile robots deployed in FoI denoted by M1. (b) A triangulation denoted by T extracted
from the connectivity graph. (c) The computed harmonic map of T to a unit disk. (d) The surface data of FoI denoted by M2 with a flower-shaped pond inside.
(e) The group of mobile robots follow the moving path of the harmonic map and redeploy themselves to M2. (f) After a minor adjustment, each mobile robot
moves to the optimal coverage position. Note that blue color marked edges represent local communication links preserved during the transition from M1 to M2.
Red color marked edges, on the contrary, are new communication links.

(t1, t2, t3) the Barycentric Coordinates of v in the triangle
formed by gi, g j, and gk when mapped to unit disk. 1 The
linear combination

q(v) = t1q(gi)+ t2q(g j)+ t3q(gk), (1)

gives the geographic coordinates where the mobile robot,
represented by v, should deploy itself in M2. Denote p(v) the
geographic coordinates of v in M1, T the transition time of the
group of mobile robots from M1 to M2, and t a time parameter.
A linear combination of p(v) and q(v) with t:

T − t
T

p(v)+
t
T

q(v), t ∈ [0,T ] (2)

gives the mobile robot both the moving path and speed to M2.

C. Minor Local Adjustment

After the group of mobile robots redeploy themselves
to M2, they only need a minor local adjustment to optimal
coverage positions. We adopt centroidal Voronoi diagram
based algorithms [8]–[10], [19] to compute optimal coverage
position. Informally speaking, a Voronoi diagram is a partition
of the space according to the distances to a discrete set of
objects, denoted by sites such that a Voronoi region of a site
is the region of points that are closer to the site than to any
other sites. A centroidal Voronoi diagram is a Voronoi diagram
such that each site is located at exactly the mass centroid of its
corresponding Voronoi region with respect to a given density
function. As proved in [20], centroidal Voronoi diagram always
has congruent regular hexagons as its Voronoi regions in R2

1Please check Appendix for the definition of Barycentric Coordinates.

space, which induces a layout of sites forming equilateral
triangulation.

Considering the group of mobile robots as sites, and the FoI
M2 as the partition space. We apply Lloyd algorithm [21], [22]
to compute the centroidal Voronoi diagram. Lloyd algorithm is
an iterative method. At each step, a mobile robot collects the
position information of its two-range neighbors, computing its
corresponding Voronoi region and the centroid of the Voronoi
region. The mobile robot then moves to the centroid position.
Since mobile robots have already been very close to the
optimal coverage positions after redeploying to M2, Lloyd
algorithm only needs a few steps to converge when no mobile
robot needs to update its position.

D. Discussions

1) Global Connectivity: If the shapes of the two FoIs M1
and M2 differ too much, some edges of T will be largely
stretched when T is mapped to M2 even though harmonic map
is already a least stretched diffeomorphism. Such a largely
stretched edge means a broken communication link between
the two mobile robots represented by the two ending vertices
of the edge. It is possible that all communication links of a
vertex will be broken and the vertex will be isolated from the
network.

To guarantee global connectivity during the transition pro-
cedure, we need a few modifications of the proposed modified
harmonic map algorithm in Sec. III-B. Right after computing
the harmonic map of T to M2, a straightforward solution is that
each mobile robot exchanges its mapped position with its one-
range neighbors and checks whether all of its communication



links will be broken. For an isolated vertex, it chooses the
closest one-range neighbor as reference and adjusts its moving
path to M2 parallel to the path of the neighbor and with the
same speed.

However, in extreme case, a subgroup of mobile robots
instead of a single one will get disconnected from the network.
Considering that boundary vertices of T are mapped to the
boundary of M2 and form a closed loop, it is easy to check
and require that the boundary vertices of T are still connected
when mapped to M2. A boundary vertex of T compares the
mapped positions of its one-range neighbors with itself and
initiates a packet with a counter set to zero to its one-range
neighbors with communication links still preserved in M2. If
there exists at least a communication path connecting a vertex
and a boundary vertex when mapped to M2, the vertex will
receive such a packet. When a vertex receives a packet from
a boundary vertex that is further away from its current nearest
boundary vertex, it stops forwarding this packet. Otherwise, the
vertex updates the counter and record the number. Similarly,
the vertex forwards the package to its neighbors with com-
munication links still preserved in M2. Assume the boundary
vertices initiate their packages at approximately the same time,
and each packet travels at approximately the same speed, the
flooding of such packets in the network will then stop quickly
depending on the diameter of the network. As a result, we can
identify the isolated subgroups vertices.

For each isolated subgroup vertices, we choose a vertex
with one of its one-range neighbors not just connecting but
also nearest to a boundary vertex and set the vertex as root
of the isolated subgroup vertices. The root vertex will then
choose the neighbor as reference and adjusts its moving path
to M2 parallel to the path of the neighbor and with the same
speed. The root will broadcast its moving path and speed to
the subgroup vertices. Each vertex inside the subgroup will
then adjust its moving path parallel to the path of the root one
and with the same speed.

After the group of mobile robots redeploy themselves to
M2, we also need to guarantee global connectivity at each step
of Lloyd algorithm when a mobile robot moves to the updated
centroid position. At each step, a mobile robot collects the
computed centroid positions of its one-range neighbors and
compares with its own. If no mobile robot will disconnect
from the network, every robot simply moves to its centroid
position; otherwise, each robot checks whether it is safe to
move to half of the distance to the centroid position and so
on.

2) Moving Distance : As we have proved in Lemma 1, it is
a contradiction between minimizing the total moving distance
and maximizing the total stable link ratio during the relocation
of a group of mobile robots. Although the proposed algorithm
targets the optimal marching problem, maximizing the total
stable link ratio, we can modify the proposed algorithm slightly
to find transition paths with less total moving distance with the
cost of a little bit lower of the total stable link ratio. When
T and M2 are both mapped to unit disks, we want to find an
rotation angle such that the induced harmonic map gives the
moving path of a group of mobile robots with the minimized
total moving distance. Similarly, each mobile robot divides
current search interval of angle into two and rotates its mapped
position in unit disk with the midpoint angle of the interval.

The mobile robot computes its mapped position in M2 and the
moving distance to the mapped position, and then floods the
distance information to other mobile robots. We can also set
the search depth to 4.

3) Holes : A FoI can have complex shape. It may also
contain obstacles or landscape features that forbid mobile robot
placement. For simplicity, we call them holes of a FoI.

Harmonic map assumes not just convex boundary condition
of the target FoI, but also topological disk shape for both
current and target FoIs. For a FoI with holes, we cannot
directly compute its harmonic map to a unit disk. A solution
is to add a virtual vertex for each hole and fill all holes
with virtual triangulations. Specifically, we apply the rule that
a boundary edge incidents with only one triangle to detect
boundary vertices along an inner hole. The position of an
virtual vertex assigned to the hole is computed as average
of the positions of boundary vertices along the hole. Each
boundary vertex along the inner hole stores the position of
the virtual vertex and adds one virtual edge connecting to it.
At each step of harmonic map, boundary vertices along the
inner hole exchange information to compute updated position
of the virtual vertex.

With all holes filled with virtual triangulation, we can
construct the harmonic map from T to M2 as introduced in
Sec. III-B. Note that it is possible that a mobile robot in T
is mapped to a hole in M2. The robot can simply choose the
nearest grid point in M2 as the mapped position. It is also
possible that the moving path of a mobile robot computed by
Eqn. 2 passes through a hole. When the mobile robot hits the
boundary of the hole, the robot goes along the boundary until
it can follow its computed moving path again.

A FoI with holes can also affect the computation of the
centroidal Voronoi diagram. At each step, if the computed
centroid falls into a hole, we choose the nearest grid point
along the hole boundary as the centroid. It is also possible
that a mobile robot hits a hole when moving to the computed
centroid. Similarly, the robot goes along the boundary of the
hole until it can follow the straight line to the computed
centroid.

IV. PERFORMANCE EVALUATION

We test on models of FoI with different shapes and conduct
extensive simulations to evaluate how well our algorithms
perform. The parameters to evaluate the performance include
the total stable link ratio, the total moving distance, and the
global connectivity. The scenarios for testing include marching
of a group of ANRs from a non-hole FoI to a non-hole
FoI, a non-hole FoI to a FoI with holes, and a FoI with
holes to a FoI with holes. We implement our algorithms in
two versions. One version, represented by our method (a),
maximizes the total stable link ratio subject to the requirement
of the global connectivity during the transition. The other
version, represented by our method (b), sacrifices a little total
stable link ratio to achieve a less total moving distance.

Additionally, we implement two different methods for
comparison. One method, represented by direct translation,
computes the centroids of both the current and target FoIs
M1 and M2 and a rigid translation from the centroid of



M1 to the centroid of M2. The mobile robots move from
M1 to M2 based on the rigid translation, and then adjust
themselves to optimal coverage positions in M2 based on
Hungarian method [23]–[25]. The other method, represented
by Hungarian method, directly applies Hungarian algorithm to
find the moving path of the group of mobile robots from M1 to
the optimal coverage positions in M2, which should achieve the
minimum total moving distance among all possible methods.
For the two comparison methods, we assume the mobile robots
have computed the optimal coverage positions in M2 before the
transition procedure.

A. Non-Hole to Non-Hole Scenarios

We first consider some relatively simple scenarios where
both FoIs, M1 and M2, have no hole inside.

For the first scenario, the current FoI M1 given in Fig. 2(a)
has size 308,261 m2 with 144 mobile robots deployed. We
assume the communication range of a mobile robot is 80
m. The target FoI M2 shown in the first row of Fig. 3(a)
has size 289745 m2. The second row of Fig. 3(a) shows the
connectivity graph of the group of mobile robots redeployed
to M2 following the path computed by our method (a). Note
that blue color marked edges represent local communication
links preserved during the transition from M1 to M2. Red
color marked edges, on the contrary, are new communication
links in M2. The third row of Fig. 3(a) shows that the group
of mobile robots have adjusted themselves to the optimal
coverage positions in M2. It is obvious that the positions of
mobile robots have been very close to the optimal coverage
positions after harmonic map. Therefore the moving cost in
the minor adjustment step as introduced in Sec. III-C is low.
The fourth and fifth rows of Fig. 3(a) compares the perfor-
mance of our algorithms with others. We first compare the
total moving distance. Since Hungarian method achieves the
minimum total moving distance, we compare direct translation
method and ours with Hungarian method. Note that we have
included the adjustment cost of mobile robots in Sec. III-C
into our methods. The forth row of Fig. 3(a) shows that as
the distance between M1 and M2 increases, ranging from 10×
to 100× communication ranges, the total moving distances of
all methods converge to Hungarian method, but our methods
always achieve less moving distance compared with direct
translation method. It is obvious as shown in the fifth row
of Fig. 3(a) that our methods can preserve most of the local
communication links, which saves a lot of energy on updating
new connections and benefits the network for security reasons.

The second scenario shares the same FoI M1 given in
Fig. 2(a). The FoI M2 shown in the first row of Fig. 3(b)
has size 173057 m2. Compared with the first scenario, the
boundary shapes of M1 and M2 in the second scenario differ
a lot, so we can see an increased total moving distance for
direct translation method in the second scenario. As for the
total stable link ratio, our methods still performs much better
than others.

B. Non-Hole to Hole Scenarios

We then consider more complicated scenarios where the
FoI M2 has inner holes. We still assume the FoI M1 given in
Fig. 2(a). The FoI M2 in the third scenario has size 239987
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Fig. 4. The performance of the proposed algorithms on target FoI model
shown in Fig. 2(d). (a) The comparison of the total moving distance of our
methods with others. (b) The comparison of the total stable link ratio of our
methods with others.

m2 with a concave hole inside as shown in Fig. 2(d). Fig. 4
gives the comparison of the performance of our methods with
others for this scenario. The FoI M2 in the forth scenario has
size 233342 m2 with a big convex hole inside as shown in the
first row of Fig. 3(c). The FoI M2 in our fifth scenario has
size 253578 m2 with multiple small holes inside as shown in
the first row of Fig. 3(d). The comparison of both scenarios is
still given in the forth and the fifth rows of Fig. 3(c) and (d)
respectively.

The FoIs M2 in the three scenarios share similar sizes and
boundary shapes with M1. As we can see that such similarity
benefits the direct translation method, which reduces the total
moving distance. However, our method still achieves less the
total moving distance and the highest total stable link ratio
among all comparison methods.

C. Hole to Hole Scenarios

The more complex scenarios are both M1 and M2 with
complicated shapes and inner holes as shown in Fig. 5. In
the sixth scenario, the FoI M1 is deployed with 144 mobile
robots as shown in the first row of Fig. 5(a). In the seventh
scenario, the FoI M1 is also deployed with 144 mobile robots
as shown in the first row of Fig. 5(b). Similarly, The second
row of Fig. 5 shows the connectivity graphs of the group of
mobile robots redeployed to M2 following the path computed
by our method (a). The third row of Fig. 5 shows the optimal
coverage positions of the group of mobile robots in M2. The
fourth and fifth rows of Fig. 5 compare the performance of
our methods with others.

It is obvious that our methods still achieve less the total
moving distance and the highest total stable link ratio among
all comparison methods.

D. Global Connectivity

Table I shows the status of the global connectivity of a net-
work during the transition procedure. Our proposed methods
always maintain the global connectivity of the network, while
it is highly possible for the other two methods that some mobile
robots lose communication with neighbors and are isolated
from the network during the relocation.

E. Adjusted Deployment Density

We can encode sensing policies or task requirements
into the computation of the centroid of a Voronoi region in
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Fig. 3. The performance of the proposed algorithms on various target FoI models. The first row shows the surface data of different FoIs. The second row
shows the connectivity graphs of a group of mobile robots redeployed in target FoIs following the paths computed by our method (a). Blue color marked edges
represent local communication links preserved during the transition to a new FoI. Red color marked edges, on the contrary, are new communication links. The
third row shows the connectivity graphs after mobile robots move to optimal coverage positions in target FoIs. The fourth row compares the total moving distance
of our methods with others. The fifth row compares the total stable link ratio of our methods with others.

TABLE I. GLOBAL CONNECTIVITY DURING TRANSITION PROCEDURE

Our Method (a) Our Method (b) Direct Translation Hungarian
Scenario 1 Y Y Y N
Scenario 2 Y Y N N
Scenario 3 Y Y Y N
Scenario 4 Y Y Y N
Scenario 5 Y Y Y N
Scenario 6 Y Y N N
Scenario 7 Y Y N N

Sec. III-C, such that mobile robots can automatically adjust
their deployment density inside target FoI. For example, we
can add the temperature into the density function when com-

puting the centroid of a Voronoi region, so more robots will
be deployed near the center of a fire with higher temperature,
while less robots in regions far away from the fire. Fig. 6 shows
the modified forth scenario. A group of mobile robots with size
144 redeploys themselves from FoI M1 given in Fig. 2(a) to
FoI M2 given in Fig. 2(d). We add the requirement that the
closer to the hole, the more mobile robots are needed.

V. CONCLUSION AND FUTURE WORKS

We study the optimal marching problem in the paper. After
a group of mobile robots finishing task on current FoI, they
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Fig. 5. The performance of the proposed algorithms on various target FoI
models. The first row shows the connectivity graphs of a group of mobile
robots deployed in current FoIs. The second row shows the connectivity
graphs of the group of mobile robots redeployed in target FoIs following the
paths computed by our method (a). Blue color marked edges represent local
communication links preserved during the transition to a new FoI. Red color
marked edges, on the contrary, are new communication links. The third row
shows the connectivity graphs after mobile robots move to optimal coverage
positions in target FoIs. The fourth row compares the total moving distance
of our methods with others. The fifth row compares the total stable link ratio
of our methods with others.

are instructed to redeploy themselves to a new FoI, which
may be far from current one. Besides, the new FoI may have
complicated and concave boundary shape, with inner obstacles
or holes. We show that it is impossible to maintain all local
connectivities for general case. We also show that it is a
trade-off between preserving connectivities and minimizing the
total moving distance to desired optimal positions in the new
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Fig. 6. Mobile robots automatically adjust their deployment density inside
a FoI.

FoI. Based on the insights from harmonic map, we propose a
modified harmonic map algorithm to find transition path for
each mobile robot to target FoI such that both local and global
connectivities are maintained. Each mobile robot then follows
a specified rule inside the target FoI to do minor adjustment
towards its optimal coverage position. Extensive simulations
and comparisons with other methods show that the proposed
algorithms guarantee global connectivity, and dramatically
reduce the broken link ratio at negligible cost of the total
moving distance. For the future works, we will consider the
optimal marching problem in more complex settings including
indoor and 3D surface cases.
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APPENDIX

A. Barycentric coordinates

Barycentric coordinates are triples of numbers (t1, t2, t3)
corresponding to masses placed at vertices of va, vb, and vc of
a reference triangle denoted by ∆abc. Barycentric coordinates
provide a convenient way to interpolate functions on triangles
as long as a function’s value is known at vertices.

Let’s consider a function f defined on a triangle ∆abc with
f (va), f (vb), and f (vc) known. Denote Area|∆abc| the area of
triangle ∆abc. The function value of any point p located inside
this triangle can be written as a weighted sum of the function
value at the three vertices:

f (p) = t1 f (va)+ t2 f (vb)+ t3 f (vc),

where t1 =
Area|∆pbc|
Area|∆abc|

, t2 =
Area|∆pca|
Area|∆abc|

, and t3 =
Area|∆pab|
Area|∆abc|

. It is
obvious that t1, t2, and t3 are subject to the constraint:

t1 + t2 + t3 = 1.

t1, t2, and t3 are called Barycentric Coordinates of Point p on
∆i jk.


