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Abstract—This work proposes a novel connectivity-based lo-
calization algorithm, well suitable for large-scale sensor networks
with complex shapes and non-uniform nodal distribution. In
contrast to current state-of-art connectivity-based localization
methods, the proposed algorithm is fully distributed, where
each node only needs the information of its neighbors, without
cumbersome partitioning and merging process. The algorithm
is highly scalable, with limited error propagation and linear
computation and communication cost with respect to the size of
the network. Moreover, the algorithm is theoretically guaranteed
and numerically stable. Extensive simulations and comparison
with other methods under various representative network settings
are carried out, showing superior performance of the proposed
algorithm.

I. INTRODUCTION

Geographic location information is imperative to a variety
of applications in wireless sensor networks, ranging from
position-aware sensing to distributed data storage and process-
ing, geographic routing, and nodal deployment. While global
navigation satellite systems (such as GPS) have been widely
employed for localization, integrating a GPS receiver in every
sensor of an entire large-scale sensor network is unrealistic.
Moreover, some application scenarios prohibit the reception
of satellite signals by part or all of the sensors, rendering it
impossible to solely rely on global navigation systems.

Even for those ranging information based localization
schemes, extra equipments installed to measure the distance
or the angle between nodes, can also lead to a dramati-
cally increase of network cost. To this end, many interesting
approaches have been proposed for localization with mere
connectivity information. Each node only knows what nodes
are nearby under its local communication range, but not know
how far away and what direction its neighbors are.

Previous localization methods with mere connectivity have
mainly focused on dimension reduction of multidimensional
data sets based on the input distance matrix, which is approxi-
mated by hop counts between each possible pair of nodes. The
two major methods, multi-dimensional scaling (MDS) based
[1]–[3] and neural network based [4], [5] achieve the highest
localization accuracy and yield coordinates of sensor nodes
that preserve the distance matrix between the data points of
the input space and the output space (i.e., a 2D plane) as much
as possible.

One of the major problems for MDS based methods is
their low scalability. The time complexity for obtaining the

distance matrix is (O(n3)); Eigen decomposition is also with
(O(n3)) complexity. With the increase of network size n, the
computational cost is prohibitive. Another issue is that they
are inherently centralized. While for general wireless sensor
networks, with the limited power and computation capability
of each sensor node, distributed algorithm is highly preferred.
Different algorithms have been proposed to overcome these
disadvantages. One approach is to partition the network to
many subnetworks, and compute the localization of each
subnetwork, and then merge these subnetworks together. This
method requires delicate strategies and great caution in the
merging stage.

For neural network based methods, stability is their major
problem due to the non-convex shape of their minimized
energy. Although several approaches have been proposed to
increase the possibility to escape from local minima of the
minimized energy, the selection of initial values are still crucial
for the final localization results [5].

A. Our Approach

We propose a novel localization algorithm which overcomes
the major difficulties of conventional MDS and neural network
based methods. We explain our intuitions in the smooth setting
first, then formulate the problem and design the algorithm
in the discrete setting. We treat dense network as a smooth
surface. The distance among points are determined by the
Riemannian metric of the surface. The ground truth is that
the surface is flat, therefore the Gaussian curvature which
measures how much the surface is non-flat, should equal to
zero everywhere. The metric can be estimated by measuring
the distances among the points. Due to the measurement
error, the estimated metric is curved. Our goal is to distort
the estimated metric to make it flat with minimal distortion
involved.

The method to distort a curved Riemannian metric to a flat
one is the Ricci flow method. Basically, the Riemannian metric
at each point is scaled proportional to the curvature at that
point, which makes the Gaussian curvature evolve according to
a heat diffusion process. Eventually, the surface becomes flat.
By controlling the boundary condition of the curvature flow,
one can minimize the overall metric distortion introduced.

In practice, given a large-scale sensor field, a subset of
nodes can be uniformly selected in a distributed way and de-
noted as landmarks, such that any two neighboring landmarks



are approximately a fixed K hops away. Then a triangular
mesh structure can be constructed based on mere connectivity
information with a simple distributed scheme (as discussed
in [6], [7]), where vertices of the triangular mesh is the
set of landmarks, an edge between two neighboring vertices
is a shortest path between the two landmarks in the given
sensor network. The extracted mesh structure approximates
well the sensor network. Then the Riemannian metric of the
discrete sensor network is represented by the edge lengths.
The curvature at each vertex is approximated by the discrete
angle deficit. Each vertex has its own scaling factor, which is
proportional to its curvature. The edge length is scaled by the
product of the scaling factors of its two ending vertices. This
process could induce an infinite number of flat metrics which
isometrically embed the whole network onto the plane with
theoretical guarantee. But the key is which one of those flat
metrics induces the isometrically planar embedding to achieve
the minimal localization error. We prove that by controlling
the scaling factors on the boundary vertices, one can obtain the
exact flat metric with the least distortion from the estimated
metric. So the key step of our algorithm is to compute the
optimal flat metric. Based on the computed flat metric, the
next step of isometric embedding is trivial.

In our algorithm, all the involved computations for each
node only require information from its direct neighbors, there-
fore it is fully distributed without cumbersome cutting and
merging process. The proposed method is numerically stable,
free of the choice of initial values and local minima with theo-
retical guarantee. The computational cost and communication
cost are both linear to the size of the network, so the method is
scalable, suitable for large ad-hoc networks with thousands of
highly resource-constrained sensor nodes (processor, memory,
and power) which have limited communication range. Further-
more, if there is some measurement error occurred at one node,
the impact to another node decreases dramatically in terms of
the distance between them. This limited error propagation also
contributes to the high scalability. The method is general to
planar networks with complex shapes and topologies. These
merits are demonstrated in our experimental results.

B. Related Works

With merely connection information available, three major
techniques are employed in current state-of-the-art localization
schemes: multi-dimensional scaling (MDS), neural networks,
and graph rigidity test.

MDS is a non-linear dimension reduction and data projec-
tion technique that transforms distance matrix into a geometric
embedding (e.g., a planar embedding for 2D sensor network
localization). MDS-based localization is originally proposed
in [1]. It constructs a proximity matrix based on the shortest
path distance (approximated by hop counts) between all pairs
of nodes in the network. The singular value decomposition
(SVD) is employed to produce the coordinates matrix that
minimizes the least square distance error. Finally, it retains
the first 2 (or 3) largest eigenvalues and eigenvectors as 2D
(or 3D) coordinates. Subsequent improvements on MDS are

made by dividing the graph into patches to enable distributed
calculation [2], [3]. In addition [8] proposes to apply SVD
to the matrix based on a set of beacon nodes only and thus
reduces complexity. A similar idea is adopted in [9], with the
simplex method (instead of SVD) for error minimization.

The second method is based on neural networks [4], [5],
where non-linear mapping techniques and neural network
models such as self-organizing map (SOM) are employed for
dimension reduction of multidimensional data sets, yielding
coordinates of sensor nodes that preserve the distances (also
approximated by hop counts) between the data points of the
input space and the output space (i.e., a 2D plane) as much
as possible.

The localization algorithms based on graph rigidity theory
[10]–[12] aim to create a well-spread and fold-free graph that
resembles the given network. They focus on finding a globally
rigid graph which can be embedded without ambiguity in
plane. While with mere globally rigid structure, like a topolog-
ical disk triangulation in [10], there exist infinite number of flat
metrics which induce different planar embedding as long as
the total Gaussian curvatures satisfy the discrete Gauss-Bonnet
Theorem, which will be introduced in Sec. II. A brut force way
is applied to find one planar embedding of the extracted global
structure, which in general can not be easily guaranteed. So
compared with MDS and neural network-based approaches,
the graph rigidity-based methods exhibit lower localization
accuracy in general.

II. FLAT METRIC

To find the ’optimal’ flat metric which induces isometrically
planar embedding of the triangular mesh (the sensor network)
with the minimal localization error, we need to introduce first
the concepts of metric and Gaussian curvature (Sec. III-A),
surface Ricci flow in discrete setting (Sec. II-B), and then the
condition to find an optimal flat metric (Sec. II-C).

A. Discrete Metric and Gaussian Curvature

In discrete setting, we let M = (V,E,F) to represent a
triangular mesh (or mesh in short), consisting of vertices (V ),
edges (E), and triangle faces (F).

Definition 1 (Discrete Metric): A discrete metric on M is a
function l : E →R+ on the set of edges, assigning to each edge
ei j ∈ E a positive number li j such that the triangle inequalities
are satisfied for all triangles ti jk ∈ F : li j + l jk > lki.

If M is embedded in the Euclidean space R3, a discrete
metric of M can be defined by its edge lengths.

Definition 2 (Discrete Gaussian Curvature): The discrete
Gaussian curvature Ki on a vertex vi ∈ V is defined as the
angle deficit:

Ki =

{
2π−∑ fi jk∈F θi j

i , vi ̸∈ ∂M,

π−∑ fi jk∈F θ jk
i , vi ∈ ∂M,

(1)

where θ jk
i represents the corner angle attached to Vertex vi in

Face fi jk and ∂M is the boundary of the mesh.



(a) (b)
Fig. 1. Circle Packing Metric. (a) Flat circle packing metric on a triangular
mesh (b) Circle packing metric on a triangle.

Since corner angles can be directly computed from edge
lengths. It is obvious that the discrete Gaussian curvatures are
determined by the discrete metric.

The following theorem says the total Gaussian curvature of
M is solely determined by its topology:

Theorem 1 (Discrete Gauss-Bonnet Theorem): For a topo-
logical disk mesh M = (V,E,F) with or without inner holes,
the total Gaussian curvature of M is a topological invariant. It
holds as follows:

∑
vi∈V

Ki = 2πχ(M), (2)

where χ(M) = 2−b, b is the number of boundaries.

B. Discrete Surface Ricci Flow

Ricci flow was first introduced by Richard Hamilton for
Riemannian manifolds of any dimension in his seminal work
[13] in 1982. Chow and Luo [14] proved a general existence
and convergence theorem for the discrete Ricci flow on sur-
faces. Jin et al. provided a computational algorithm in [15].
In [7], Ricci flow was applied in wireless sensor network for
greedy routing.

To briefly introduce the concept of discrete surface Ricci
flow, we start from the concept of the circle packing metric
which was introduced by Thurston in [16] as shown in Fig. 1.
Each vertex vi is assigned a circle with radius γi. The radius
function is denoted as Γ : V → R+. The two circles at the
ending vertices vi and v j of edge ei j intersect with an acute
angle ϕi j, which is called the weight on the edge. The edge
weight function is denoted as Φ : E → [0, π

2 ].
The length of an edge ei j can be computed from the vertex

circle radii γi,γ j and the weight ϕi j by the cosine law:

lei j
2 = γi

2 + γ j
2 +2γiγ j cosϕi j. (3)

Definition 3 (Circle Packing Metric): A circle packing
metric of a mesh M includes the circle radius function and
the edge weight function.

Suppose mesh M has an initial circle packing metric (Γ0,Φ).
Let ui be the logarithm of γi associated with vertex vi. The
discrete Ricci flow is defined as follows:

dui(t)
dt

= (K̄i −Ki), (4)

where K̄i and Ki are the target and current Gaussian curvatures
at vi and t is the time. Discrete Ricci flow continuously
deforms the circle packing metric according to the difference
between the current and target Gaussian curvatures, such that
the curvature evolves like a heat diffusion process. Conver-
gence of discrete surface Ricci flow is proved in [14]. The
final circle packing metric induces the metric which satisfies
the target Gaussian curvature.

Discrete Ricci flow is a negative gradient flow of a special
energy form, the so called discrete Ricci energy:

f (u) =
∫ (Γ,Φ)

(Γ0,Φ)

n

∑
i=1

(K̄i −Ki)dui, (5)

where (Γ0,Φ) is the initial circle packing metric, which
induces the surface original metric. It has been shown in [14]
that the Ricci energy is convex, therefore it has a unique
global minimum. The minimum corresponds to the desired
metric (Γ,Φ), which induces the target Gaussian curvature.
Therefore the discrete Ricci flow converges to this unique
global minimum. Furthermore, the speed of convergence can
be estimated by the following formula [14]:

|Ki(t)− K̄i|< c1e−c2t ,c1,c2 > 0,

namely the convergence is exponentially fast.

C. Optimal Flat Metric

Analytically, the distortion of the metric at each vertex is
given by ui. This motivates us to define the total distortion
energy as

E(K) =
∫ K̄

K0

n

∑
i=1

uidKi,

where K̄ and K0 represent the set of vertex target and initial
Gaussian curvatures, and n is the number of vertices of mesh
M. The integration is along an arbitrary path from K0 to the
target curvature K̄. This energy is the Legendre dual to the
Ricci energy given in Eqn. 5. Therefore it is also convex and
there exists a unique global minimum for a given K̄. Define

Ω =
∩

{∑Ki = 2πχ(M)}
∩

{k j = 0,v j ̸∈ ∂M},

where χ(M) is the Euler characteristic number of M. Our
problem is now formulated as:

min
K∈Ω

E(K), (6)

which is among all possible flat metrics of M satisfying
the Gauss-Bonnet Theorem, which one introduces the least
distortion from the estimated curved metric of M?

Theorem 2: The solution to the optimization problem 6 is
unique, and satisfies

u j = const,∀v j ∈ ∂M. (7)

Proof: The distortion energy E(K) is convex. The domain Ω is
a linear subspace of the original domain {K|∑i Ki = 2πχ(M)}.
Therefore the restriction of E(K) on Ω is still convex, it has
a unique global optimum at an interior point. The gradient of



the energy is ∇E(K) = (u1,u2, · · · ,un). At the optimal point,
the gradient is orthogonal to Ω. Assume vi ∈ ∂M,1 ≤ i ≤ m,
then the normal vector to Ω is given by (1,1, · · ·1,0, · · · ,0).
Therefore the gradient is along the normal vector. So equation
7 holds. If we set the constant as 1, the optimal flat metric is
the one which satisfies the two conditions: during the process
to distort the estimated metric to a flat one, we only distort the
metric of interior vertices; at the end of the process, Gaussian
curvatures of all interior vertices equal to zero.

III. ALGORITHM

In this section we give the implementation details of our
proposed localization algorithm.

A. Computing Optimal Flat Metric

The estimated metric (edge length) of the triangular mesh M
can be considered as a set of unit edge length since each edge
is approximately a fixed K=4 hops in out experiments. If the
distances between neighboring nodes can be more accurately
estimated, the approximated unit edge length can be replaced.
The initial circle packing metric (Γ0,Φ) of M can be easily
constructed by assigning each vertex vi a circle with radius
equal to the unit edge length which forms Γ0, and computing
the intersection angle of circles assigned to vi and v j for each
edge ei j which forms the Φ.

Then boundary vertices located on the boundary edges of M
which adjacent with only one face are detected and marked.
For those non-marked vertices (interior vertices), their target
Gaussian curvatures K̄ are set to zero. For all vertices of M,
the logarithm of the circle radius γi assigned to vertex vi is
initialized to zero. In each iteration of discrete Ricci flow,
only non-marked vertices are involved. Specifically, an interior
vertex vi collects the u values from its direct neighbors and
update its adjacent edge length with li j = e(ui+u j). For each
triangle fi jk adjacent with vertex vi, vi can easily compute the
corner angle ∠ jk

i based on inverse cos law:

∠ jk
i = cos−1 l2

ki + l2
i j − l2

jk

2l2
kil

2
i j

.

Therefore, current discrete Gaussian curvature Ki at vi can be
computed as the excess of the total angle sum at vi (Eqn. 1).
If for every interior vertex vi, the difference between its target
Gaussian curvature K̄i (that is set to zero) and current Gaussian
curvature Ki is less than a threshold (we set to 1e−5 in our
experiments), the discrete Ricci flow converges. Otherwise,
each interior vertex vi updates its ui: ui = ui+δ(K̄i−Ki), where
δ is the step length (we set to 0.1 in our experiments).

When the algorithm stops, all the curvature flux has been
absorbed by boundary vertices, such that the interior ver-
tices have zero Gaussian curvature, which induces a flat
metric. Since in each step of the algorithm, there is always
no deformation of circle radii for boundary vertices (e.g.,
ui −u0

i = 0,vi ∈ ∂M). According to Theorem 1, the computed
flat metric introduces the least distortion from the estimated
metric to be planar.

B. Isometrically Planar Embedding

Isometric embedding is a propagation process, starting from
one vertex, embedding the whole triangular network into
plane with computed flat metric (edge length) preserved. For
simplicity, we let the vertex with the smallest ID (denoted as
v0) initiate the embedding process. Its coordinates are set to
(0,0). Then it arbitrarily selects one of its direct neighbors,
e.g., v j, and sets its coordinates to (0, li j). For vertex vk, which
is adjacent to both vi and v j, it calculates the intersection points
of the two circles with centers at vi and v j, and radii of lik
and l jk, respectively. Then, one of the intersection points that
satisfies (uv(v j)−uv(vi))× (uv(vk)−uv(vi))> 0 is chosen as
the coordinates of vk. The procedure continues until all vertices
of M have computed their planar coordinates.

Note that if the triangular network has more than one
boundary (e.g., inner holes), we need to slice holes open to
change the triangular network to a topological disk before
embedding. First an initiator is elected on each boundary. The
initiator will advertise the size of its boundary in terms of
the number of boundary edges via simple flooding on the
triangular network. As a result, each initiator learns a set of
boundaries and their sizes. Let B0 denote the longest boundary,
and vi the initiator of other Boundary Bi (i > 0). For each Bi,
through a local flooding, its initiator vi finds a shortest path Li
to B0. Then holes are ’sliced’ open along the set of shortest
paths (L1,L2, ...), where each vertex on Li is split to two virtual
vertices with one on each side. Such spliced vertex will have
two sets of coordinates after embedding and it will use the
average as its planar coordinates.

For planar embedding of non-landmark nodes, each node ni
first finds its three nearest landmarks, denoted as v1, v2, v3 with
planar coordinates (x1,y1),(x2,y2), and (x3,y3) respectively.
Let d1, d2, and d3 be the shortest distances (hop counts) of
node ni to the three landmarks v1, v2, v3 respectively. Then
node ni computes its planar coordinates (xi,yi) simply by
minimizing the mean square error among the distances:

3

∑
j=1

(
√

(xi − x j)2 +(yi − y j)2 −d j)
2. (8)

It deserves special note that the planar embedding step of
the proposed approach is fundamentally different with graph
rigidity based localization methods [10]. For an extracted
global planar structure, the proposed algorithm computes
first the optimal flat metric with discrete Gaussian curvature
equals to zero for all interior vertices, which guarantees that
the embedding process can be determined at each step for
every single edge. While in [10], the extracted structure is
embedded to plane by minimizing a least square energy which
can’t guarantee a global planar embedding and the embedded
network can still curve around and self intersect.

C. Discussion

1) Time Complexity and Communication Cost: The time
complexity of triangulation a sensor network is linear to the
size of the network n. Its communication cost, measured by



the number of messages, is also O(n), since it is a completely
local algorithm.

Computing the optimal flat metric is based on discrete
Ricci flow. Theoretically, its time complexity (the number
of iterations) is independent of the size of the network size,
given by −C logε

λ , where C is a constant, ε is the threshold
of curvature error, and λ is the step length of each iteration
[14]. Since each vertex only needs to exchange u values with
its direct neighbors, the communication cost is linear to the
triangular mesh size m, with O(−C logε

λ gm), where g is the
average degree of vertices of the triangular mesh. Note that
for a general network, m << n, and g is less than eight.

During the isometric planar embedding step, two rounds
of flooding are involved to slice holes of a triangular mesh
open with communication cost O(m). The embedding of the
triangular mesh is a propagation process, with time complexity
and communication cost both linear to O(m).

2) Error Propagation: If error is introduced to the esti-
mated or measured metric in a small area, we can estimate the
error propagation on the entire network with our algorithm.
Here we show that this problem is closely related to the
discrete Green’s function defined on the triangular mesh with
a circle packing metric.

As shown in figure 1 (b), there is a unique circle marked
with red orthogonal to all three vertex circles. The center of the
circle is called the power center for triangle fi jk. Denote the
distance from the power center to edge [vi,v j] as hk

i j. Suppose
[vi,v j] is also adjacent to another triangle [v j,vi,vm], then we
define the edge coefficient

wi j =
hk

i j +hm
ji

li j
,

where li j is the length of the edge. The discrete Laplace-
Beltrami operator for the circle packing metric is defined as
∆ = (di j)

di j =

 −wi j [vi,v j] ∈ E
∑ j wi j i = j

0 otherwise

By direct computation, it shows the differential relation be-
tween the curvature dK and the radii du is given by

dK = ∆du.

Suppose, there is only one node vi which has the measurement
error, the other nodes have no error, dK = δvi, δ is the Dirac
function. We want to estimate the impact on du = ∆−1δ(vi),
namely, the discrete Green’s function.

If the mesh and its circle packing metric are given, the dis-
crete Green’s function can be computed directly. For general
cases, we can only give rough estimations. Assume a planar
triangle mesh satisfies the following condition:

1
C

<
lmax

lmin
<C,C > 1,

and the diameter for each triangle is less than ε, which is
sufficiently small comparing to the diameter of the whole

Fig. 2. Networks with variant nodal density: (a)-(d) the original network
with increased nodal density; (e)-(h) the embedding results of our algorithm.
All the networks have the same communication range and under the same
transmission model. (a) Average nodal degree d = 9.4, with localization error
0.514 in (e); (b) Average nodal degree d = 12.6, with localization error 0.322
in (f); (c) Average nodal degree d = 15.2, with localization error 0.28 in (g);
(d) Average nodal degree d = 18.5, with localization error 0.246 in (h).

network, then the discrete Green’s function is similar to the
smooth Green’s function

G(p,q) =
1

|p−q|
,

where p and q are two points far away from the boundary.
This formula shows that the impact to point q of a wrong
measurement at point p decreases quickly with their distance.

IV. SIMULATIONS AND COMPARISON

We carry out extensive simulations under various scenarios
to evaluate how well our algorithm performs under different
topologies and how performance is affected by different factors
such as node density, communication model (UDG, quasi-
UDG, log-Norm model, and probability model), and non-
uniform node distribution. We compare our algorithm with
those achieving the highest localization accuracy, which in-
clude the centralized MDS approach (MDS-MAP) [1], the
distributed MDS approach (MDS-MAP(P)) [2], the centralized
(C-CCA) neural network and the distributed (D-CCA) neural
network approaches [5]. Our approach exhibits superior per-
formance over other localization schemes. Note that we use red
points to represent the selected landmark nodes and grey points
for those non-landmark nodes. The localization error used
in simulations is computed as the ratio of the average node
distance error (all sensors in the network) and the averaged
transmission range.

A. Networks with Variant Nodal Density

In general, connectivity based localization schemes favor
high nodal density, with hop counts approximating well the
true shortest distance. Figure 2 (a)-(d) gives the testing
networks: reverse C-shape with the same communication range
but average nodal degree increased from 9 to 18. We apply our
scheme to localize the selected landmarks, then non-landmark
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Fig. 3. Localization error for the reverse C-shape network as shown in Figure
2 decreases when the nodal degree is increased.

nodes in the network find their 3 nearest landmarks to compute
their own coordinates. The localization error decreases with
the increase of nodal density, which is shown in Figure 3.

B. Networks with Different Transmission Model

We still use the same reverse C-shape network to evaluate
the performance of our algorithm under different transmission
models, with average nodal degree d = 16.5 (under UDG
model). For a network with the same number of nodes and
the same communication range, different transmission models
induce different sets of landmarks (each node has different
neighborhoods), thus different triangular meshes are generated.
In our experiments, the transmission range of a UDG model
is 1. Two nodes are definitely connected when their distance
is less than 1. Under the Quasi-UDG model, two nodes are
definitely connected when their distance is less than α set to
0.75, definitely not connected when their distance is larger than
1, while they have a probability of ρ set to 0.5 to be connected
when the distance is between α and 1. For Log-Norm model
[17], since the receiving power is log-normally distributed, we
simplify it as when the distance between two nodes is larger
than 1, they are not connected; when the distance is less than
1, they have a probability P(d) to be connected, where d is
the distance and P(d) satisfies the log-normal distribution with
α = 2 and σ = 4. For Probability model, when the distance of
two nodes are less then 1, they have a probability equal to
constant set to 0.65 to be connected. The results shown in
Fig. 4 all give small localization errors.

C. Networks with Non-uniform Nodal Distribution

We also test our algorithm on network with non-uniform
node distribution. The reverse C-shape network has the nodal
density increased from the bottom to the top with nodal
degree ranging from 11.3 to 18.7, as shown in Figure 5. Our
algorithm also gives a reasonable good localization result.

D. Comparison with Other Methods on Networks With Differ-
ent Topologies

A set of representative networks with irregular outside
boundary shapes and different topologies are listed in Figure

Fig. 4. Networks with different transmission models: (a)-(d) the original
networks with different transmission models which result in different nodal
degrees and constructed triangular meshes; (e)-(h) the embedding results of
our algorithm. All the networks have the same number of nodes and the
same communication range. (a) UDG model with transmission range 1, and
localization error 0.25 in (e); (b) QUASI-UDG model with α = 0.75 and
ρ = 0.5, and localization error 0.34 in (f); (c) Log-Norm model with µ = 0.5
and ρ = 4, and localization error 0.42 in (g); (d) Probability model with
p = 0.65, and localization error 0.43 in (h).

(a) (b)

Fig. 5. (a) The original network with non-uniform node distribution. The
nodal degrees rang from 11.3 to 18.7. (b) The embedding result of our
algorithm with the localization error 0.46.

6. A red line segment is drawn for each node, starting from its
real coordinates marked with red and ending at the computed
coordinates marked with grey. Clearly, the length of the line
segment represents the error of localization at that node.
Overall, the more and the longer the red lines are, the worse
the performance of the localization is.

As can be observed in Figs. 6 a(1) and c(1), a(3) and c(3),
C-CCA and MDS-MAP both yield large distortions for the
nodes on those branches. This is because the pair wise hop
count approximated distances among those nodes are much
longer than their actual Euclidean distances due to the reversed
C and the star shapes, which leads to noticeable errors around
those areas.

MDS-MAP(P) and D-CCA compute local maps first, and
then merge them to a global map. Since local maps are
“smooth” and do not have large “tentacles” in general, the
shortest paths are free of significant distortions. Therefore,



Fig. 6. Comparison of different localization approaches on networks with general topologies. a(1)-a(5): C-CCA scheme; b(1)-b(5): D-CCA scheme; c(1)-c(5):
MDS-MAP scheme; d(1)-d(5): MDS-MAP(P) scheme; e(1)-e(5): Ricci scheme. A red line segment is drawn for each node, starting from its real coordinates
marked with red and ending at the computed coordinates marked with grey.

Scenario C-CCA D-CCA MDS-MAP MDS-MAP(P) Ricci
Topology 1 (Fig. 6 a(1)-e(1)) 2.10 0.88 2.52 0.89 0.29
Topology 2 (Fig. 6 a(2)-e(2)) 0.71 0.69 0.56 0.68 0.32
Topology 3 (Fig. 6 a(3)-e(3)) 0.72 0.64 0.62 0.75 0.48
Topology 4 (Fig. 6 a(4)-e(4)) 0.78 0.70 1.18 0.61 0.55
Topology 5 (Fig. 6 a(5)-e(5)) 1.17 0.8 1.27 0.99 0.63

TABLE I
AVERAGE LOCALIZATION ERRORS WITH DIFFERENT APPROACHES ON NETWORK MODELS SHOWN IN FIGS. 6.



both methods achieve better performance (i.e. less distortion
and lower errors) than the centralized approaches in networks
with irregular boundary conditions. This can be clearly seen
in Figs. 6 b(1) and d(1). However, if a network has smooth
boundary (e.g., Figs. 6 a(2)-e(2)), the shortest paths are
not seriously distorted and thus the centralized schemes can
perform better since they utilize more constraints to localize
the nodes.

For networks with holes, similar as the reverse C-shape
network, MDS-MAP(P) and D-CCA perform better (shown
in Figs. 6 b(4) and d(4), b(5) and d(5)) compared with their
centralized counterparts MDS-MAP and C-CCA (shown in
Figs. 6 a(4) and c(4), a(5) and c(5)). But they have to pay
the cost to merge different subnetworks together.

The proposed discrete Ricci flow based approach, on the
contrary, always achieves the least overall localization errors
in all simulated scenarios as demonstrated in Figs. 6 e(1),
e(2), e(3), e(4) and e(5). The average localization errors
with different approaches on models shown in Figs. 6 are
summarized in Table I. The distribution of localization errors
on the reverse C-shape network is illustrated in Fig. 7 for
different approaches. Since the results under other networks
show similar statistics, we omitted them here. As can be seen,
the localization errors of the Ricci-based approach are nicely
distributed at the lower range.

E. Testing of Error Propagation

We conduct the following experiments to test the propa-
gation rate of errors resulting from bad estimation or wrong
measurements. Two triangular networks are shown in the right
top of Figure 8 (a) and (b). If all the edge lengths can
be accurately measured and considered as input to construct
the initial circle packing metric, the triangular network can
be embedded to plane with very high localization accuracy,
with errors 2.8e − 5 and 1.64e − 5 for the two networks
respectively. While if the measurement around one vertex is
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Fig. 7. The distribution of localization errors on the reverse C-shape network
with different approaches: C-CCA, D-CCA, MDS-MAP, MDS-MAP(P) and
Ricci.

wrong, for example, much slower response of the node to
its neighboring nodes’ signals will result in a much longer
distance approximation. The input error will affect not just
this node, but also other nodes in the network (e.g., error
will be propagated). We introduce such measurement error at
one selected vertex (marked with green in the two triangular
networks) by multiplying some constant K (K=2.5 in the tests)
with the lengths of its neighboring edges (marked with green
too), such that the vertex is no longer planar based on the
wrong measurement. We measure the effect of the ”one vertex
measurement error” by comparing the change of the circle
radius of each vertex with the correct input and with the
distorted input. Figure 8 (a) and (b) shows the changes of circle
radii of vertices of the two testing networks respectively. The
closer a vertex is to the distorted vertex, the bigger the change
of its circle radius is. Green dots are vertices with changed
radii, while red dots are those without any change of radii.
It is obvious that the error propagation decreases dramatically
with the increase of the distance to the distorted vertex. The
localization error of the two triangular networks with distorted
vertices are 0.0107 and 0.0081 respectively.

F. Computing Time

As we analyzed in Section III-C1, the time complexity of
our overall algorithm is linear to size of the network. The
convergence rate of computing flat metric using Ricci flow
is exponentially decreasing with the curvature error. In our
experiments, we set the step length to 0.1, and the error
threshold to 1e− 5. Figure 9 gives the convergence of Ricci
flow for part of our simulation networks.

V. CONCLUSION AND FUTURE WORKS

This work proposes a novel localization method based on
mere connectivity. The method is theoretically guaranteed and
numerically stable. The computation is fully distributed and
highly scalable, with its computation time and communication
cost linear to the size of the network. If there is some error
occurs at a node, the error propagation decreases dramatically
with respect to the distance from the node to others.

A limitation of the proposed solution is that it works only for
a target field that is flat everywhere. In our future work we will
relax our assumption and develop new algorithms for a large-
scale sensor network deployed on general 3D surface instead
of ideal 2D plane. In addition, the accuracy of our proposed
solution depends on the quality of the extracted triangular
mesh from a sensor network. We are working on distributed
algorithms for building highly reliable triangulation mesh for
general sensor networks.
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Fig. 9. Convergence rate of the proposed discrete Ricci flow based approach under different networks, with step length 0.1, error threshold 1e−5. (a) The
inverse C shape network with the number of landmarks 424, and the convergence time 2 seconds; (b) The network with one hole, the number of landmarks
283, and the convergence time 1 second; (c) The network with two holes, the number of landmarks 297, and the convergence time 1 second.
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