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Abstract—Triangulation serves as the basis for many geometry-
based algorithms in wireless sensor networks. In this paperwe
propose a distributed algorithm that produces a triangulation
for an arbitrary sensor network, with no constraints on com-
munication model or granularity of the triangulation. We pr ove
its correctness in 2D, and further extend it to sensor networks
deployed on 3D open and closed surfaces. Our simulation
results show that the proposed algorithms can tolerate distance
measurement errors, and thus work well under practical sensor
network settings and effectively promote the performance arange
of applications that depend on triangulations.

I. I NTRODUCTION

A wireless sensor network can be represented by a graph,
where a node corresponds to a sensor and an edge indicates the
communication link between two sensors. A network graph
under practical experiment settings or theoretical communi-
cation models1 usually exhibits undesired randomness and
intractability, calling for effective techniques that yield a well
structured network subgraph to support target applications.
For example, triangulation [2], [3] serves as the basis for
many geometry-based routing [2], [4]–[6], localization [7],
[8], coverage [9], segmentation [10], and data storage and
processing [11] algorithms in wireless sensor networks.

In advanced geometry, a triangulation of a discrete set of
points is a subdivision of the convex hull of the points into
simplices such that any two simplices intersect in no more
than one common face and the vertices of the subdividing
simplices coincide with the points [12]. For a sensor network
deployed on 2D or 3D surface, triangulation means removal
of some edges in the network graph, yielding a subgraph
that is a triangular subdivision. A network graph may have
multiple triangulated subgraphs. Each of them is a maximal
planar subdivision, where the addition of any edge results in a
nonplanar graph [13]. A network graph is not triangulated in
general. For example, Fig. 1(a) shows a 2D network graph, and
its triangulation is given in Fig. 1(d). Similarly, Figs. 1(b) and
1(c) depict a 3D open surface network and a 3D closed surface
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1Several communication models have been adopted for theoretic studies of
sensor networks. For example, theunit disk graph (UDG)model assumes two
nodes are connected if and only if their Euclidian distance is no greater than
a unit. A more practical model, namedquasi unit disk graph (Quasi-UDG),
sets a parameterα < 1. Two nodes are connected if their distance is less than
α, or disconnected if they are separated greater than one, or connected with
a probability if their distance is betweenα and one. In another model based
on log-normal shadowing channel [1], the received signal power is described
by a Gaussian-distributed stochastic variable, and two nodes are connected if
the received signal power is greater than a given threshold.

network. Their triangulations are shown in Figs. 1(e) and 1(f),
respectively. In addition, a triangulation can also be established
based on a backbone structure as illustrated in Figs. 1(j)-1(l).

The salient properties of triangulated subgraphs support a
wide range of 2D and 3D graphic tools that deliver theoret-
ically sound and practically viable solutions. However, itis
nontrivial to achieve distributed triangulation without location
information. The best known solution is introduced in [2],
[3], for 2D and 3D surface networks, respectively. They are
based on the planarization algorithm proposed in [14]. While
they have been employed to produce triangulation for several
works [2], [4]–[6], [8], [11], they can only create a triangulated
virtual backbone that is based on a set of landmarks and thus
too coarse for many applications (see Figs. 8-10 for example).
Moreover, as to be discussed in Sec. II, they do not ensure
successful triangulation in polynomial time. They performwell
under the Quasi-UDG model with 1≥ α ≥ 1/

√
2 and for

sparsely selected landmarks only.
This research aims to develop efficient triangulation algo-

rithms for wireless sensor networks. Our key contributionsare
summarized below:

• We propose a distributed algorithm that produces a tri-
angulation for any arbitrary 2D sensor network, with no
constraints on the communication model or the granular-
ity of the triangulation (see Figs. 1(a), 1(d), and 1(g)-1(l)
for examples).

• We prove the correctness of the algorithm in 2D networks.
• We further extend the algorithm to sensor networks

deployed on 3D open and closed surfaces (as shown in
Figs. 1(b)-1(c) and 1(e)-1(f)).

• Our simulation results show that the proposed algorithms
can tolerate distance measurement errors up to 30% (as
demonstrated in Figs. 1(m)-1(o)), and thus work well
under practical sensor network settings and effectively
promote the performance of a range of applications that
depend on triangulations.

Sec. II of the paper discusses challenges and related work.
Sec. III elaborates the proposed triangulation algorithm and
proves its correctness. Sec. IV extends the algorithm to 3D
surface networks. Sec. V presents the results of triangulation
and its application. Finally, Sec. VI concludes the paper.

II. CHALLENGES AND RELATED WORK

Based on the planarization algorithm proposed in [14],
heuristic approaches have been introduced in [2], [3] for sensor
networks deployed on 2D and 3D surface. The basic idea
is to employ a distributed algorithm (e.g., [15]) to elect a



2

(a) A 2D network graph. (b) A 3D open surface network graph. (c) A 3D closed surface network graph.

(d) Triangulation of Fig. 1(a). (e) Triangulation of Fig. 1(b). (f) Triangulation of Fig. 1(c).

(g) Triangulation under Quasi-UDG (α = 0.4). (h) Triangulation under Quasi-UDG (α = 0.6). (i) Triangulation under Log-normal.

(j) Triangulation withk= 1. (k) Triangulation withk= 2. (l) Triangulation withk= 3.

(m) Triangulation under 10% distance errors. (n) Triangulation under 20% distance errors. (o) Triangulation under 30% distance errors.

Fig. 1. Examples of triangulation by using the proposed algorithm. The default network setting is based the UDG communication model and the finest
triangulation granularity. Figs. 1(g)-1(l) are based on the same set of sensor nodes as shown in Fig. 1(b), while Figs. 1(m)-1(o) are based on Fig. 1(a). The red
lines in Figs. 1(g)-1(i) indicate different triangulationedges compared with Fig. 1(e) (under UDG model). The red lines in Figs. 1(m)-1(o) indicate incorrect
weights due to distance errors. With such incorrect weights, however, triangulation is still successful in Figs. 1(m)-1(o).
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(a) A 2D network graph. (b) Triangulation under ideal CDG.
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(c) CDG (k=1): not planar.

A

B

D

C

E

(d) CDM (k=1): planar but not triangulated.
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(e) Failed triangulation. (f) CDG (k=2): triangulated but coarse.

Fig. 2. Illustration of challenges in triangulation, wherethe circles indicate sensor nodes and the dashed lines are communication links. The solid black lines
illustrate virtual edges, which are realized by corresponding paths shown as solid grey lines. In subfigure (b), the red lines depict Voronoi cells. In subfigures
(c)-(f), the nodes with the same color belong to the same Voronoi cell, while the large circles (i.e.,A-E) stand for landmarks.

subset of nodes as “landmarks” where any two landmarks
are about 2k-hops apart, wherek is a given constant. A node
is associated to its closest landmark, resulting in a landmark
Voronoi complex (LVC). The respective dual of LVC, i.e.,
the combinatorial Delaunay graph (CDG), is obtained by
connecting two landmarks by a virtual edge if a pair of their
associated nodes are neighbors (i.e., their Voronoi cells share a
side). In the ideal case where the nodal density is high and the
Euclidian distances from a node to its nearby landmarks are
known, CDG is a triangulated virtual backbone (see Fig. 2(b)).
Under practical settings, however, CDG is not even planar,
because multiple sensors associated with different landmarks
may be adjacent to each other, leading to cross edges in CDG
(as shown in Fig. 2(c) whereAC intersectsBD andBE).

To planarize CDG, each landmark sends a packet to a neigh-
boring landmark through the shortest path. Two landmarks
are said to be connected by a virtual edge if and only if the
following two conditions are satisfied. First, all of the nodes
visited by the packet and their 1-hop neighbors are associated
to these two landmarks only. Second, assume the packet is sent
from Landmarki to Landmark j. Then the packet must visit
the nodes associated with Landmarki first, and then followed
by the nodes associated with Landmarkj, without interleaving.
The resulting subgraph is aCombinatorial Delaunay Map
(CDM). It is proven that CDM is a planar graph under the
Quasi-UDG communication model with 1≥ α ≥ 1/

√
2 [14].

However CDM is not always triangulated. Polygons with
more than three edges may exist (see PolygonABCDE in
Fig 2(d)). To this end, heuristics are proposed in [2] and
[3] to construct triangulated subgraphs by adding appropriate
virtual edges in CDM. More specifically, if a landmark, e.g.,
Landmarki, has a non-connected neighboring landmark (e.g.,

Landmark j), it sends aconnectionpacket to the latter. The
packet will be dropped if it reaches an intermediate node that is
already on the shortest path between two connected landmarks,
in order to avoid cross virtual edges. If theconnectionpacket
arrives at Landmarkj, a virtual edge can be safely added.

While the above scheme appears reasonable and has been
employed to produce triangulated virtual backbone in several
works, it does not ensure successful triangulation in polyno-
mial time. For example, if a virtual edge is added between
LandmarksA andC in Fig. 2(e), no other virtual edges can be
further added, resulting in a failure in triangulation. None of
the available heuristics [2], [3] can identify the appropriate
sequence in adding virtual edges. Instead, they reduce the
probability of failures by increasingk (i.e., by selecting a set
of sparse landmarks). The larger thek, the bigger the Voronoi
cells, and thus the lower the probability that multiple sensors
associated with different landmarks are adjacent to each other.
As a result, cross edges become rare in CDG (as demonstrated
in Fig. 2(f)). In practice,k is usually set to 3∼ 5 or higher.
Therefore, the triangulation is rather coarse, unsatisfactory for
applications that require fine network graph features.

III. T RIANGULATION FOR 2D NETWORKS

In this section, we introduce the proposed triangulation
algorithm for 2D networks.

A. Definitions

By following traditions, we represent a wireless sensor
network by a graphG(V,E), where V denotes the set of
nodes andE the set of edges in the network. To facilitate
our exposition, we first introduce several basic definitions.

Definition 1: The node neighbor set (NNS)of a node
includes all of its one-hop neighboring nodes.
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Let Nv(i) denote the NNS of Nodei. For example,Nv(i) =
{h,k, l ,m, j} and Nv( j) = {k, l ,m,n, i} for Nodes i and j in
Fig. 3(a), respectively.

Definition 2: The edge neighbor set (ENS)includes the
common one-hop neighbors of the two end nodes of an edge.

The ENS of Edgeei j is denoted byNe(ei j ). For example,
Ne(ei j ) = Nv(i)∩Nv( j) = {k, l ,m}, for Edgeei j in Fig. 3(a).

Definition 3: The refined edge neighbor set (RENS)of an
edge includes a subset of nodes in the ENS of the edge, such
that each triangle formed by the edge and a node in its RENS
does not contain any node in its ENS.

More specifically, letRe(ei j ) denote the RENS of Edgeei j .
Re(ei j ) = {v | v ∈ Ne(ei j ) and △i jv does not contain Node
v′, ∀v′ ∈ (Ne(ei j )− v)}. For example,Re(ei j ) = {l ,m} for
Edge ei j in Fig. 3(a). A nodev′ can judge if it is inside a
triangle△i jv based on locally estimated distances between the
nodes. Such check excludes a triangle from containing small
triangles, and intrinsically ensures no overlapped triangular
faces in the final triangulation. The distances (e.g., approxi-
mately measured via received signal strength indicator (RSSI)
or time difference of arrival (TDOA) [16]) are inaccurate in
general. Such possible distance errors are considered in our
simulations (see Figs. 1(m)-1(o) for example), and will be
further discussed in Sec. V.

We assume that the edges on outer boundary and inner
boundaries (i.e., boundaries of non-triangle polygon holes) are
identified by an existing algorithm (e.g., [17]).

Definition 4: Theweightof an edge is the cardinality of its
RENS, if it is not on the boundary, or otherwise the cardinality
of its RENS plus one.

The weight of Edgeei j is denoted byW(ei j ). For example,
W(ei j ) = 2 in Fig. 3(a). The weight of an edge indicates the
number of triangles it forms with the nodes in its RENS.

Definition 5: The associated edge neighbor set (AENS)of
an edge includes edges that are between one of the two end
nodes of the edge and a node in the RENS of the edge.

Let A(ei j ) denote the AENS of Edgeei j . Then A(ei j ) =
{eik | i ∈ {i, j} and k∈ Re(ei j )}. For example,A(ei j ) =
{eil , eim, ejl , ejm} in Fig. 3(a). If Edgeei j is removed, the
weight of the edges inA(ei j ) will be reduced by one, while
other edges in the graph remain unchanged (see Fig. 3(b)).

Definition 6: Two edges are calledequivalent edgesif they
share the same AENS.

For example, Edgesei j andelm in Fig. 3(a) are equivalent
edges. Equivalent edges are two diagonals of a quadrilateral.
The removal of any one of them leads to the same impact on
the weight of the edges in their AENS.

Definition 7: For a given edge, four edges in its AENS
may form a quadrilateral. If the edge is the only diagonal of
the quadrilateral, it is marked as acritical edge.

For example, Edgeek j in Fig. 3(a) is a critical edge. If a
critical edge is removed, a hole will be formed in the graph,
because there is no diagonal in the corresponding quadrilateral.

NNS, ENS, RENS, AENS, edge weight, and critical and
equivalent edges can all be determined by local information.

i j

k

m

l
n

h

(a) Original graph.

i j

k

m

l
n

h

(b) Triangulated subgraph.

Fig. 3. Illustration of node neighbor set, edge neighbor set, refined edge
neighbor set, edge weight, associated edge neighbor set, equivalent edges, and
critical edges. For Nodesi and j in the original graph,Nv(i) = {h,k, l ,m, j} and
Nv( j) = {k, l ,m,n, i}. For Edgeei j in the original graph,Ne(ei j ) = {k, l ,m},
Re(ei j ) = {l ,m}, W(ei j ) = 2, andA(ei j ) = {eil , eim, ejl , ejm}. Edgesei j and
elm in the original graph are equivalent edges. Edgeek j is a critical edge.

Our objective is to develop a distributed algorithm that can
identify a triangulated subgraph of a given network graphG.
More specifically, we have:

Objective 1: Given a graphG, if there exists a subgraphT
that is triangulated, our proposed algorithm can alway discover
a triangulation ofG.

Note thatG may have multiple triangulated subgraphs. The
discovery of any of them satisfies the above objective. In the
rest of this section, we focus on this objective by assuming that
a triangulation exists for a graphG and developing algorithm
to identify a triangulated subgraph inG. If Objective 1 is
achieved, then as a contrapositive, we also have:

Objective 2: If the proposed algorithm fails to discover
a triangulated subgraph ofG, then there does not exist a
triangulation forG.

B. Theory

Our proposed triangulation algorithm is motivated by the
property of edge weight in a triangulated subgraph, as revealed
by Lemma 1.

Lemma 1: A subgraph ofG is triangulated if and only if
every edge of the subgraph has a weight of two.

Proof: We first show the necessary condition. In a triangu-
lated subgraph, a non-boundary edge is shared by two triangles
and a boundary edge is involved in one triangle only. Therefore
the weight of an edge must be two according to Definition 4.
The proof for sufficient condition is straightforward too. If
every edge of the subgraph has a weight of two, then any
two simplices (i.e., triangles) intersect in no more than one
common edge, thus satisfying the definition of triangulation
given in Sec. I.

According to Lemma 1, if any edge in a graph has a
weight not equal to 2, the graph is not triangulated. In other
words, there are extra edges besides the edges in a triangulated
subgraph and such extra edges must be removed to arrive at
a triangulation.

Definition 8: For a given graphG and a triangulated sub-
graphT of G, an edge inT is called atriangulation edge,
while an edge inG−T is called anextra edge.

Each extra edge can be viewed as an “added” edge to
a triangulated subgraph. Let’s first consider a single extra
edge only and ignore other extra edges and the interaction
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Fig. 4. Three types of extra edge,e0, e1, ande2, with W(e0) = 0, W(e1) = 1,
andW(e2) = 2.
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Fig. 5. Illustration of independent and dependent extra edges (indicated by
dashed lines). (a) Independent extra edges. (b) Dependent extra edges.

among them for now. The extra edge exists in three ways
as illustrated in Fig. 4, dubbede0, e1, and e2, respectively.
An e0 edge (see Edgeeim in Fig. 4(a) for example) does
not form a triangle with any triangulation edges. Its weight
is zero. Adding such an extra edge does not affect the weight
of existing triangulation edges. Ane1 edge forms one triangle
with two triangulation edges (as shown in Fig. 4(b)). It has a
weight of one and increases the weight of two triangulation
edges by one. Fig. 4(c) illustrates ane2 edge, which has a
weight of two and increases the weight of four triangulation
edges by one.

Definition 9: Two extra edges areindependentif they are
not in each other’s AENS.

If all extra edges are independent (see Fig. 5(a)), their
weights are 0, 1, and 2 fore0, e1, ande2 edges, respectively,
as discussed above. However, if they are not independent, the
extra edges themselves may form triangles, and thus increase
their weight (as illustrated in Fig. 5(b)).

To produce a triangulated subgraph, we must remove all
corresponding extra edges.

Theorem 1: An edge with a weight less than two must be
removed in order to produce a triangulated subgraph.

Proof: To prove the theorem, we show that an edge with
a weight less than two must be an extra edge ofe0 or e1 type
and thus must be removed.

Without extra edges, the weight of a triangulation edge is
two. By taking extra edges into consideration, the weight ofa
triangulation edge either remains as two or increases to three
or higher. Similarly, ane2 extra edge must have a weigh of
two or higher inG.

Therefore, an edge with a weight less than two must be
an extra edge ofe0 or e1 type. Such an extra edge must be
removed in order to produce a triangulated subgraph.

Based on Theorem 1, it is safe to remove an edge whose
weight is less than two. More specifically, if an edge finds its
weight less than two, it is removed fromG and each edge in
the AENS of the removed edge must decrease its weigh by
one, because it no longer forms a triangle with the removed
edge. Note that after an edge is removed, it may lead to
another edge’s weight lower than two and thus being removed
subsequently. After this step, we arrive at a subgraph ofG,
denoted byG′, in which every edge has a weight no less than
two. Most e0 ande1 edges, if not all, have been removed by
now, except those in two special structures as to be discussed
in Lemmas 2 and 3.

Next, we discuss how to removee2 edges inG′.
Theorem 2: An non-critical edge can be recognized as an

e2 edge and safely removed if all edges in its AENS have their
weight greater than two.

Proof: The theorem is twofold. First, alle2 extra edges
(or their corresponding equivalents) will be removed. Second,
a triangulation edge (or its equivalent) will be safe (i.e.,not
be removed).

We prove the first part of the theorem via deduction. Let
G′(k) denote a subgraphG′ with k e2 extra edges. First, if there
is only onee2 edge inG′, it can be easily identified, since it
has a weigh of two and each edge in its AENS has a weight
of three (see Edgeemh in Fig. 4(c) for example). Therefore,
the edge can be removed, and the edges in its AENS reduce
their weight by one, arriving at a triangulated subgraph where
every edge has a weight of two. Note that there may exist
multiple such edges (e.g., Edgeekn and Edgeemh in Fig. 4(c))
that can be treated as ane2 extra edge and removed to yield a
equally good triangulation. We do not differentiate them. Then
we show that a subgraph withk+1 e2 edges (i.e.,G′(k+1))
can be reduced to a subgraph withk e2 edges (i.e.,G′(k)),
wherek≥ 1. G′(k+1) can be considered as a result of adding
an extrae2 edge (denoted bye′) in G′(k). Since all edges in
G′(k) have their weight no less than two, addinge′ increases
the weight of the edges inA(e′) by one and thus become great
than two. Therefore it can be identified and removed, reducing
G′(k+ 1) to G′(k). Alternatively, anye2 edge originally in
G′(k) has the same property ase′ and thus may be removed
to reduceG′(k+ 1) to G′(k) too. Therefore alle2 edges (or
their corresponding equivalents) can be removed.

Now we prove the second part of the theorem. A triangu-
lation edge (e.g., Edgeekn in Fig. 4(c)) is always associated
with a quadrilateral formed by four edges in its AENS (i.e.,
Edgesekm, emn, enh, andehk in Fig. 4(c)). If the triangulation
edge is the only diagonal of the quadrilateral (by assuming that
Edgeemh does not exist), it is a critical edge and thus will not
be removed. Otherwise, if there are two diagonals, then they
are equivalent. If any one of them is removed, the other edge
becomes critical, and thus will be kept. As a result, either the
triangulation edge or its equivalent will not be removed.

Therefore the theorem is proven.
The subgraph obtained by the above process is denoted by

G′′. If all extra edges inG′ aree2 type, thenG′′ is already a
triangulated subgraph. Now we consider the scenarios withe0
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Fig. 6. Illustration of non-loop and loop chains.
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(b) Project Nodel onto the plane
of △i jk .

Fig. 7. Illustration of projection in 3D surface networks.

ande1 edges remaining inG′′.
Lemma 2: An e0 extra edge can exist inG′′, only if it

depends on at least two other extra edges.
Proof: As discussed earlier, ane0 edge has a weight of

zero, if it doesn’t depend on other extra edges. When it is
dependent on another extra edge, or in other words, it is in
the AENS of another extra edge, its weight is increased by
one. Since the weight of every edge inG′′ must be no less
than 2, thee0 extra edge must at least depend on two other
extra edges.

Lemma 3: An e1 extra edge can exist inG′′, only if it at
least depends on another extra edge.

Proof: Similar to the proof of Lemma 2.
To keep their weight no less than two, thee0 ande1 edges

must depend on each other inG′′ by forming a “chain”. There
are two types of chains, namely loop and non-loop chains (as
shown Fig. 6). A loop chain consists of alle0 edges, forming
a loop as shown in Fig. 6(a). In a non-loop chain, the head
or tail edge of the chain must bee1, because it only has one
dependent extra edge. An example of the non-loop chain in
illustrated in Fig. 6(b):ejm−emi−ein, which is in a pattern
of e1 − e0− e1. A non-loop chain has a minimum length of
two edges. In addition, Fig. 6(c) shows a special case of the
non-loop chain, where the head and tail are the samee1 edge
(i.e., Edgeejm).

It is easy to identify a chain (either loop or non-loop).
Except thee1 edge in a non-loop chain that serves as both
head and tail (e.g., Edgeejm in Fig. 6(c)), an edge in a chain
has a weight of two, and at least one edge in its AENS has
its weigh equal to two and another edge in its AENS has its
weigh greater than two. Therefore, we can start from one such
edge, and expand the chain by adding another edge with the
same property and in the AENS of (i.e., dependent to) an edge
already in the chain, and so on and so forth, until no additional
edges can be added.

If the identified chain has a length of two or longer, all edges
in the chain are removed. Similar to our earlier discussions,
once an edge is removed, its relevant edges update their weight
accordingly. As a specific case, thee1 edge that serves as both
head and tail of a non-loop chain (as shown in Fig. 6(c)) will
be left alone as a separatee1 edge with a weight of one, after
other edges in its chain are removed. Therefore, it removes
itself, according the Theorem 1.

C. Algorithm

The theory discussed above provides a clear guideline for
our algorithm development. The proposed algorithm is fully
distributed. Each edge performs the following operations:

Step 1. Initialization. During initialization, each edge com-
municates with its neighbors to acquire local information to
determine its NNS, ENS, RENS, AENS, edge weight, critical
edge and equivalent edges.

Step 2. Iterative edge removal.After initialization, each edge
checks if itself should be removed according to Theorems 1
and 2. This is an iterative process, because the removal of an
edge may affect its neighboring edges (including all of their
parameters discussed above). We assume that two dependent
edges are not removed at exactly the same time via a local
signaling scheme, to avoid inconsistency.

• An edge removes itself and informs its neighbors of the
removal if it finds its weight less than two.

• An edge removes itself and informs its neighbors of the
removal if it is an non-critical edge and all edges in its
AENS have their weight greater than two.

• An edge updates its weight whenever there is a change
in its AENS.

Step 3. Removal ofe0 and e1 chains. The remaining extra
edges not removed in Step 2 aree0 and e1 edges that form
chain(s). A chain is identified according to its properties
revealed by Lemmas 2 and 3 and relevant discussions in
Sec. III-B. All edges in the chain with a length of two or
longer aree0 and e1 edges and thus removed. At the same
time, a remaining edge updates its weight and removes itself
if its weight becomes less than two.

The time complexity of the algorithm depends on the iter-
ations in Step 2. Since an iteration removes at least one edge
and no edges are added during the process, the complexity is
O(n), wheren is the number of nodes in the network.

IV. T RIANGULATION FOR 3D SURFACE NETWORKS

The triangulation algorithm discussed above can be ex-
tended to a wireless network deployed on a 3D surface.
However, although a small chart of smooth 3D surface is
intrinsically the same as the 2D plane in theory, the former
introduces additional challenges in the calculation of edge
weight under practical network settings. More specifically,
to determine the RENS and accordingly the edge weight
correctly, one needs to judge if a triangle contains any nodes.
Under a 2D setting, it excludes a big triangle that contains
nodes (see△i jk illustrated in Fig 3(a)), intrinsically ensuring
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(k) 2D network III.
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Fig. 8. Examples of 2D networks. The proposed algorithm produces finer triangulation than [2], and accordingly leads to shorter greedy routing path as
indicated by the thick red lines.
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(d) Ricci embedding of 9(b).

798

1660

(e) Ricci embedding of 9(c).

(f) 3D open surface network II.

3059
1170

(g) Finest triangulation by [3].

3059
1170

(h) Proposed triangulation.

3059

1170

(i) Ricci embedding of 9(g).

3059

1170

(j) Ricci embedding of 9(h).

Fig. 9. Examples of 3D open surface networks. The proposed algorithm produces finer triangulation than [3], and accordingly leads to shorter greedy routing
path as indicated by the thick red lines.

no overlapped triangular faces in the final triangulation. Simi-
larly, in 3D networks, it excludes the underneath triangle such
as△i jk in Fig. 7(a) if △i jl , △ikl and△ jkl are on the surface.

For Edgeei j , Node k is in its RENS, if△i jk contains no
nodes in Edgeei j ’s edge neighbor set, i.e.,△i jk does not
contain l , ∀l ∈ (Ne(ei j )−{k}). While it is straightforward to

check if this is true in a 2D network by a simple calculation
based on locally estimated distances between nodes, similar
method cannot be applied in 3D directly because Nodel is
not necessarily on the plane of△i jk in a 3D network.

To this end, we propose a localized projection algorithm.
Without loss of generality, let’s consider Edgeei j . For Node
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(a) 3D closed surface network I. (b) 3D closed surface network III. (c) 3D closed surface network IV. (d) 3D closed surface network II.

(e) Finest triangulation by [3] (f) Finest triangulation by [3] (g) Finest triangulation by [3] (h) Finest triangulation by [3]

(i) Proposed triangulation. (j) Proposed triangulation. (k) Proposed triangulation. (l) Proposed triangulation.

Fig. 10. Examples of 3D closed surface networks. The proposed algorithm produces finer triangulation than [3].

k ∈ Ne(ei j ) and Nodel ∈ (Ne(ei j )−{k}), Nodesi, j,k and l
form a tetrahedron as shown in Fig. 7(a). Based on locally esti-
mated distances between them, a local coordinates system can
be established for such four nodes by existing algorithms [18]–
[22]. Similar to our discussions on 2D networks, the estimated
distances are generally inaccurate, resulting in errors inlocal
coordinates that will be discussed in Sec. V.

Let (xi ,yi ,zi ) denote the coordinates of Nodei. It is now
ready to calculate the projection of Nodel on the plane defined
by Nodesi, j andk, i.e., l ′, by solving the following equations:















(xl ′ − xi)
2+(yl ′ − yi)

2+ y2
l = L2

il ,
(xl ′ − x j)

2+(yl ′ − y j)
2+ y2

l = L2
jl ,

(xl ′ − xk)
2+(yl ′ − yk)

2+ y2
l = L2

kl ,
zl ′ = 0.

Subsequently, it is straightforward to check ifl ′ is inside
△i jk . If it is true (see Fig. 7(b) for example), Nodek is not
included in the RENS of Edgeei j . Note that when there are
only two nodes in an edge’s ENS, it is not necessary to apply
projection. This prevents miscalculation of edge weight when
the edge is located at the corner of a surface.

After each edge determines its RENS, it obtains its weight
according to Definition 4. If the surface is closed (see Fig. 1(c)
for example), there is no boundary edge. Otherwise (i.e., for an
open surface network as illustrated in Fig. 1(b)), the boundary
edges are marked similar to the 2D scenario. The rest of
the triangulation algorithm in 3D surface network follows the
same steps in the 2D scenario as discussed in Sec. III.

V. A PPLICATIONS AND SIMULATION RESULTS

To demonstrate the effectiveness of our proposed trian-
gulation algorithm, we have applied it in various 2D, 3D
open surface and closed surface networks, under different
communication models and distance measurement errors. For
example, Figs. 1(a)-1(f) show a 2D, a 3D open surface and
a 3D closed surface network and their triangulations, respec-
tively. Figs. 1(g)-1(i) illustrate triangulations under quasi-UDG
and log-normal communication models, where the red lines
indicate different edges in triangulation, in comparison with
the result under the UDG model. Figs. 1(j)-1(l) demonstrate
the triangulations with different granularities, where each edge
in triangulations is correspondent to a path of 2k hops in the
underlying sensor network. Figs. 1(m)-1(o) depict the trian-
gulation results under different distance measurement errors,
which results in incorrect weights of some edges as highlighted
by red lines. Such incorrect weights, however, do not prevent
successful triangulation as shown in Figs. 1(m)-1(o). More
examples of 2D, 3D open surface and closed surface networks
are given in Figs 8-10, respectively, showing that our proposed
algorithm produces finer triangulation than [2] or [3] does.

In addition to granularity, we further demonstrate the
improvement of our triangulation by using an application,
i.e., greedy routing based on Ricci flow [2], which maps a
triangulated graph to an embedding with circular boundaries
that ensure successful greedy routing. The algorithm can be
applied on 2D and 3D open surface, but not 3D closed surface
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TABLE I
COMPARISON OF STRETCH FACTOR IN GREEDY ROUTING.

2D networks 3D networks
Triangulation by [2], [3] 2.065 5.417
Proposed Triangulation 1.214 1.091

networks. Several examples are given in Figs. 8 and 9. For
example, given a 2D network shown in Fig. 8(a), its triangu-
lations under [2] and our proposed algorithm are depicted in
Figs. 8(b) and 8(c), respectively, and their correspondingRicci
embeddings are shown in Figs. 8(d) and 8(e). Although greedy
routing is successful under both triangulations because Ricci
flow maps their boundaries to circles (see Figs. 8(d) and 8(e)),
the routing path (indicated by the red line) is much longer
under the triangulation by [2], because it must go through the
long edges in the coarse triangulation.

We have quantitively evaluated the efficiency of greedy
routing under different triangulations. Table I compares their
stretch factor (i.e., the ratio of a greedy routing path to its
corresponding shortest path), based on pair-wise paths of the
nodes in the networks depicted in Figs. 8 and 9. As can
be seen, our proposed triangulation yields significantly lower
stretch factor in comparison with [2] or [3]. Fig. 11 illustrates
the distribution of stretch factor. Routing paths always have
low stretch factor under our triangulation, while the coarse
triangulation by [2], [3] leads to a wide spread stretch factors
up to over 10 (i.e., 10 times of the shortest path length). We
have also evaluated load distribution, where the load of a node
is signified by the number of routing paths it involves. As
shown in Fig. 12, load is more uniformly distributed under the
fine triangulation produced by our proposed algorithm, where
less nodes suffer high load, because it includes more nodes in
the triangulation and consequently the greedy routing paths,
which together partake the traffic load.

VI. CONCLUSION

In this paper we have proposed a distributed algorithm that
triangulates an arbitrary sensor network, with no constraints on
the communication model or the granularity of the triangula-
tion. We have proven its correctness in 2D, and further extend
it to 3D surface networks. Our simulation results have shown
that the proposed algorithm can tolerate distance measurement
errors, and thus work well under practical sensor network
settings and effectively promote the performance a range of
applications that depend on triangulations.
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