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Abstract—Triangulation serves as the basis for many geometry- network. Their triangulations are shown in Figs. 1(e) arfjl, 1(
based algorithms in wireless sensor networks. In this papewe respectively. In addition, a triangulation can also betdsthed
propose a distributed algorithm that produces a triangulation based on a backbone structure as illustrated in Figs. {Ifj)-1

for an arbitrary sensor network, with no constraints on com- Th lient i f tri lated sub h ;
munication model or granularity of the triangulation. We pr ove € Salient properues or tnangulated subgraphs support a

its correctness in 2D, and further extend it to sensor netwcks  Wide range of 2D and 3D graphic tools that deliver theoret-
deployed on 3D open and closed surfaces. Our simulation ically sound and practically viable solutions. Howeverjsit

results show that the proposed algorithms can tolerate disince nontrivial to achieve distributed triangulation withoothtion
measurement errors, and thus work well under practical sensr — hormation. The best known solution is introduced in [2],
network settings and effectively promote the performance aange 3] for 2D and 3D f twork tivelv. Th
of applications that depend on triangulations. [3], for an S_ur gce ne W_0r S, respec 'V? y. 1hey a_re
based on the planarization algorithm proposed in [14]. @¥/hil
. INTRODUCTION they have been employed to produce triangulation for sévera

A wireless sensor network can be represented by a grapforks [2], [41-{6], [8], [11], they can only create a trianigted
where a node corresponds to a sensor and an edge indicate¥/fi§gal backbone that is based on a set of landmarks and thus
communication link between two sensors. A network gragRO coarse for many applications (see Figs. 8-10 for example
under practical experiment settings or theoretical conmimuf¥loreover, as to be discussed in Sec. II, they do not ensure
cation model usually exhibits undesired randomness angHccessful triangulation in polynomial time. They perfomeil
intractability, calling for effective techniques that iglea well under the Quasi-UDG model with X a > 1/v/2 and for
structured network subgraph to support target applicatiofParsely selected landmarks only. _ _

For example, triangulation [2], [3] serves as the basis for This resegrch aims to develop efficient trlangu!athn algo-
many geometry-based routing [2], [4]-[6], localization],[7 rithms fqrwweless sensor networks. Our key contributiares
[8], coverage [9], segmentation [10], and data storage amgmmarized below:

processing [11] algorithms in wireless sensor networks. « We propose a distributed algorithm that produces a tri-

In advanced geometry, a triangulation of a discrete set of angulation for any arbitrary 2D sensor network, with no
points is a subdivision of the convex hull of the points into ~ constraints on the communication model or the granular-
simplices such that any two simplices intersect in no more ity of the triangulation (see Figs. 1(a), 1(d), and 1(g)-1(l
than one common face and the vertices of the subdividing for examples).
simplices coincide with the points [12]. For a sensor nekwor « We prove the correctness of the algorithm in 2D networks.
deployed on 2D or 3D surface, triangulation means removale We further extend the algorithm to sensor networks
of some edges in the network graph, yielding a subgraph deployed on 3D open and closed surfaces (as shown in
that is a triangular subdivision. A network graph may have Figs. 1(b)-1(c) and 1(e)-1(f)).
multiple triangulated subgraphs. Each of them is a maximals Our simulation results show that the proposed algorithms
planar subdivision, where the addition of any edge resalts i can tolerate distance measurement errors up to 30% (as
nonplanar graph [13]. A network graph is not triangulated in  demonstrated in Figs. 1(m)-1(0)), and thus work well
generaL For examp|e, F|g 1(a) shows a 2D network graph, and under practical sensor network settings and effectively
its triangulation is given in Fig. 1(d). Similarly, Figs.t)(and promote the performance of a range of applications that
1(c) depict a 3D open surface network and a 3D closed surface depend on triangulations.

. _ _ . _ _ Sec. Il of the paper discusses challenges and related work.
o % B S, et 1y ol Seirce Fouenane S, ) elaboraies he proposed tangulaton algoring a
Computer Studies, University of Louisiana at Lafayettefayatte, LA. proves its correctness. Sec. IV extends the algorithm to 3D

!Several communication models have been adopted for tiestaties of sSurface networks. Sec. V presents the results of triarigulat

sensor networks. For example, theit disk graph (UDG)model assumes two gnd its application. Finally, Sec. VI concludes the paper.
nodes are connected if and only if their Euclidian distarscad greater than

a unit. A more practical model, namegliasi unit disk graph (Quasi-UDG) II. CHALLENGES AND RELATED WORK

sets a parameter < 1. Two nodes are connected if their distance is less than

a, or disconnected if they are separated greater than onenorected with Based on the planarization algorithm proposed in [14],

a probability if their distance is betweanand one. In another model basedhayristic approaches have been introduced in [2] [3] fosee

on log-normal shadowing channel [1], the received signalgrds described .
by a Gaussian-distributed stochastic variable, and twes@de connected if networks deployed on 2D and 3D surface. The basic idea

the received signal power is greater than a given threshold. is to employ a distributed algorithm (e.g., [15]) to elect a



(b) A 3D open surface network graph. (c) A 3D closed surface network graph.

(d) Triangulation of Fig. 1(a). (e) Triangulation of Fig. 1(b). (f) Triangulation of Fig. 1(c).

(g) Triangulation under Quasi-UDGux (= 0.4). (h) Triangulation under Quasi-UDGux (= 0.6). (i) Triangulation under Log-normal.

(j) Triangulation withk = 1. (k) Triangulation withk = 2. () Triangulation withk = 3.

(m) Triangulation under 10% distance errors.  (n) Triangulation under 20% distance errors.  (0) Triangulation under 30% distance errors.

Fig. 1. Examples of triangulation by using the proposed rilgm. The default network setting is based the UDG commatioea model and the finest

triangulation granularity. Figs. 1(g)-1(l) are based oa same set of sensor nodes as shown in Fig. 1(b), while Fig-1(p) are based on Fig. 1(a). The red
lines in Figs. 1(g)-1(i) indicate different triangulati@dges compared with Fig. 1(e) (under UDG model). The reds lineFigs. 1(m)-1(o) indicate incorrect

weights due to distance errors. With such incorrect wejdiisvever, triangulation is still successful in Figs. 1(®).



(d) CDM (k=1): planar but not triangulated. (e) Failed triangulation. (f) CDG (k=2): triangulated but coarse.

Fig. 2. lllustration of challenges in triangulation, whehe circles indicate sensor nodes and the dashed lines mm@woication links. The solid black lines
illustrate virtual edges, which are realized by correspugngbaths shown as solid grey lines. In subfigure (b), the irezsIdepict Voronoi cells. In subfigures
(c)-(f), the nodes with the same color belong to the samendiroell, while the large circles (i.eA-E) stand for landmarks.

subset of nodes as “landmarks” where any two landmarkandmarkj), it sends aconnectionpacket to the latter. The
are about R-hops apart, wherk is a given constant. A node packet will be dropped if it reaches an intermediate nodeisha

is associated to its closest landmark, resulting in a lamkmaalready on the shortest path between two connected landmark
Voronoi complex (LVC). The respective dual of LVC, i.e.in order to avoid cross virtual edges. If tobennectionpacket

the combinatorial Delaunay graph (CDG), is obtained barrives at Landmarlf, a virtual edge can be safely added.
connecting two landmarks by a virtual edge if a pair of their While the above scheme appears reasonable and has been
associated nodes are neighbors (i.e., their Voronoi de#leesa  employed to produce triangulated virtual backbone in s#ver
side). In the ideal case where the nodal density is high amd thiorks, it does not ensure successful triangulation in pmlyn
Euclidian distances from a node to its nearby landmarks argal time. For example, if a virtual edge is added between
known, CDG is a triangulated virtual backbone (see Fig.)2(blandmarksA andC in Fig. 2(e), no other virtual edges can be
Under practical settings, however, CDG is not even plandnrther added, resulting in a failure in triangulation. Noof
because multiple sensors associated with different lankBnathe available heuristics [2], [3] can identify the appreypei
may be adjacent to each other, leading to cross edges in CB&gjuence in adding virtual edges. Instead, they reduce the
(as shown in Fig. 2(c) wherAC intersectsBD and BE). probability of failures by increasing (i.e., by selecting a set

To planarize CDG, each landmark sends a packet to a nei ﬁ_sparse landmarks). The larger ﬂhet_he bigger th? Voronoi
boring landmark through the shortest path. Two landmar glls, _and thu_s th_e lower the probability th_at multiple seBs

are said to be connected by a virtual edge if and only if tr?somateld with dn‘fzrent ll)andmarks are aC(:jIJDaé:ent tg edutr.ot d
following two conditions are satisfied. First, all of the msd > & '€SU t, cross edges become rare in (as demonsrate

visited by the packet and their 1-hop neighbors are assmtial” Fig.f 2(f)).hln practi(ie,lf is.usuar:ly set to 3-5 or.higckfler.
to these two landmarks only. Second, assume the packettis sTether,e ore, the trlangu_atloln is rather coarse, unsatisfador
from Landmarki to Landmarkj. Then the packet must visit 2PPlications that require fine network graph features.

the nodes associated with Landmarficst, and then followed 1. TRIANGULATION FOR 2D NETWORKS

by the nodes associated with Landmarkithout interleaving.

The resulting subgraph is @ombinatorial Delaunay Map
(CDM). 1t is proven that CDM is a planar graph under th

Quasi-UDG communication model with a > 1/\/§ [14]. A. Definitions

In this section, we introduce the proposed triangulation
glgorithm for 2D networks.

However CDM is not always triangulated. Polygons with By following traditions, we represent a wireless sensor
more than three edges may exist (see Polyd®CDE in network by a graphG(V,E), whereV denotes the set of
Fig 2(d)). To this end, heuristics are proposed in [2] antbdes andE the set of edges in the network. To facilitate
[3] to construct triangulated subgraphs by adding appabgri our exposition, we first introduce several basic definitions
virtual edges in CDM. More specifically, if a landmark, e.g., Definition 1: The node neighbor set (NNS)f a node
Landmarki, has a non-connected neighboring landmark (e.gncludes all of its one-hop neighboring nodes.



Let Ny(i) denote the NNS of Node For exampleN,(i) = k k

{h,k,I,m j} and Ny(j) = {k,I,m,n,i} for Nodesi and j in n n
Fig. 3(a), respectively. h h
Definition 2: The edge neighbor set (ENShcludes the . . . .
common one-hop neighbors of the two end nodes of an edge. '’ J ! J
The ENS of Edges; is denoted byNe(gj). For example, m m

Ne(eij) = Ny(i) NNy(j) = {k,I, m}, for Edgee; in Fig. 3(a).
Definition 3: The refined edge neighbor set (REN&)an
edge includes a subset of nodes in the ENS of the edge, segh3. Iilustration of node neighbor set, edge neighbor ssftned edge
that each triangle formed by the edge and a node in its REI?E%?:*;?ZLS?S' eg()greNVgZig;tr,] éi_sisnogiéeﬂgfrii eiggle ?sighﬁ?{)%iwtl ?gg_?sé:gd
does not contain any node in its ENS. N(j) = {kgm,ﬁn’i}. For Edgjeaj in thg Orig?naf)grathe(a’j )= {i(l,l,m},
More specifically, leRe(ej) denote the RENS of Edg®;.  Re(e;j) = {I,m}, W(ej) =2, andA(e;) = {&, &m. &, &m}. Edgese; and
Re(aj) — {V | Ve Ne(&j) and Aijv does not contain Node @m in the original graph are equivalent edges. Eéggeis a critical edge.
vV, W € (Ne(ej) —Vv)}. For example,Re(aj) = {I,m} for
Edgee; in Fig. 3(a). A nodeV can judge if it is inside a  Our objective is to develop a distributed algorithm that can
triangle Ajjy based on locally estimated distances between tlientify a triangulated subgraph of a given network gré&ph
nodes. Such check excludes a triangle from containing smiglbre specifically, we have:
triangles, and intrinsically ensures no overlapped tnigag  Objective 1. Given a graplG, if there exists a subgraph
faces in the final triangulation. The distances (e.g., axiprothat is triangulated, our proposed algorithm can alwayalisc
mately measured via received signal strength indicatoS(RS a triangulation ofG.
or time difference of arrival (TDOA) [16]) are inaccurate in Note thatG may have multiple triangulated subgraphs. The
general. Such possible distance errors are consideredrin @iscovery of any of them satisfies the above objective. In the
simulations (see Figs. 1(m)-1(o) for example), and will beest of this section, we focus on this objective by assuntiag) t
further discussed in Sec. V. a triangulation exists for a graph and developing algorithm
We assume that the edges on outer boundary and inteeridentify a triangulated subgraph i@. If Objective 1 is
boundaries (i.e., boundaries of non-triangle polygon $)cdee achieved, then as a contrapositive, we also have:
identified by an existing algorithm (e.g., [17]). Objective 2: If the proposed algorithm fails to discover
Definition 4: Theweightof an edge is the cardinality of its a triangulated subgraph dB, then there does not exist a
RENS, if it is not on the boundary, or otherwise the cardtyali triangulation forG.
of its RENS plus one. B. Theory
The weight of Edgesj is denoted byW(g;). For example,

(a) Original graph. (b) Triangulated subgraph.

Our proposed triangulation algorithm is motivated by the

W(ej) =2 in Fig. 3(a). The weight of an edge indicates th = .
number of triangles it forms with the nodes in its RENS. E;OEE:;%O; eidge weightin a triangulated subgraph, as fedea

Definition 5: The associated edge neighbor set (AENS) emma 1: A subgraph ofG is triangulated if and only if
an edge includes edges that are between one of the two %Obry edge of the subgraph has a weight of two
nodes of the edge and a node in the RENS of the edge. Proof: We first show the necessary condition. In a triangu-

Let A(ej) denote the AENS of Edgej. ThenA(ej) =  |ated subgraph, a non-boundary edge is shared by two teang|
{e | i {i,j} and ke Re(aj)}. For example,A(&j) = and aboundary edge is involved in one triangle only. Theesfo
{€1, em, &, em} in Fig. 3(a). If Edges; is removed, the o \eight of an edge must be two according to Definition 4.
weight of the edges im(e;) will be reduced by one, while 1o hr60f for sufficient condition is straightforward tod. |
other edges in the graph remain unchanged (see Fig. 3(b))every edge of the subgraph has a weight of two, then any

Definition 6: Two edges are calleequivalent edgethey o simplices (i.e., triangles) intersect in no more tha® on
share the same AENS. common edge, thus satisfying the definition of triangutatio

For example, Edges; anden, in Fig. 3(a) are equivalent given in Sec. |. m
edges. Equivalent edges are two diagonals of a quadrilateraaccording to Lemma 1, if any edge in a graph has a
The removal of any one of them leads to the same impact @@ight not equal to 2, the graph is not triangulated. In other
the weight of the edges in their AENS. words, there are extra edges besides the edges in a tritedjula

Definition 7: For a given edge, four edges in its AENSsubgraph and such extra edges must be removed to arrive at
may form a quadrilateral. If the edge is the only diagonal ¢f triangulation.
the quadrilateral, it is marked ascaitical edge Definition 8: For a given graptG and a triangulated sub-

For example, Edgex; in Fig. 3(a) is a critical edge. If a graphT of G, an edge inT is called atriangulation edge
critical edge is removed, a hole will be formed in the graplivhile an edge irG—T is called anextra edge
because there is no diagonal in the corresponding quaatdlat Each extra edge can be viewed as an “added” edge to

NNS, ENS, RENS, AENS, edge weight, and critical and triangulated subgraph. Let's first consider a single extra
equivalent edges can all be determined by local informatioedge only and ignore other extra edges and the interaction
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Based on Theorem 1, it is safe to remove an edge whose
weight is less than two. More specifically, if an edge finds its
weight less than two, it is removed fro@® and each edge in
the AENS of the removed edge must decrease its weigh by
one, because it no longer forms a triangle with the removed
edge. Note that after an edge is removed, it may lead to
another edge’s weight lower than two and thus being removed
subsequently. After this step, we arrive at a subgrapls,of
denoted byG/, in which every edge has a weight no less than
two. Mosteg ande; edges, if not all, have been removed by
now, except those in two special structures as to be disdusse
in Lemmas 2 and 3.

Next, we discuss how to remowe edges inG'.

Theorem 2: An non-critical edge can be recognized as an
e edge and safely removed if all edges in its AENS have their
weight greater than two.

Proof: The theorem is twofold. First, alt, extra edges
(or their corresponding equivalents) will be removed. $€ico
a triangulation edge (or its equivalent) will be safe (imof
be removed).

We prove the first part of the theorem via deduction. Let
G'(k) denote a subgrap® with k e extra edges. First, if there
is only onee; edge inG/, it can be easily identified, since it

among them for now. The extra edge exists in three wahas a weigh of two and each edge in its AENS has a weight

as illustrated in Fig. 4, dubbeey, e, and e, respectively. of three (see Edgeny, in Fig. 4(c) for example). Therefore,

An g edge (see Edgen in Fig. 4(a) for example) doesthe edge can be removed, and the edges in its AENS reduce

not form a triangle with any triangulation edges. Its weighheir weight by one, arriving at a triangulated subgraphnghe

is zero. Adding such an extra edge does not affect the weigvery edge has a weight of two. Note that there may exist

of existing triangulation edges. A® edge forms one triangle multiple such edges (e.g., Edgg, and Edgeenn in Fig. 4(c))

with two triangulation edges (as shown in Fig. 4(b)). It has that can be treated as ap extra edge and removed to yield a

weight of one and increases the weight of two triangulatierually good triangulation. We do not differentiate thernef

edges by one. Fig. 4(c) illustrates @n edge, which has a we show that a subgraph with+ 1 e, edges (i.e.G'(k+ 1))

weight of two and increases the weight of four triangulatiocan be reduced to a subgraph wkhe, edges (i.e.G'(k)),

edges by one.
Definition 9: Two extra edges armdependentf they are an extrae; edge (denoted bg) in G'(k). Since all edges in

not in each other's AENS.

wherek > 1. G'(k+ 1) can be considered as a result of adding

G/ (k) have their weight no less than two, addiggncreases

If all extra edges are independent (see Fig. 5(a)), thefre weight of the edges iA(€') by one and thus become great
weights are 0, 1, and 2 fax, e1, ande; edges, respectively, than two. Therefore it can be identified and removed, redycin
as discussed above. However, if they are not independent, @i(k+ 1) to G'(k). Alternatively, anye, edge originally in
extra edges themselves may form triangles, and thus irere&@s(k) has the same property asand thus may be removed
their weight (as illustrated in Fig. 5(b)).

To produce a triangulated subgraph, we must remove #ikir corresponding equivalents) can be removed.
corresponding extra edges.

Theorem 1: An edge with a weight less than two must béation edge (e.g., Edgex, in Fig. 4(c)) is always associated

removed in order to produce a triangulated subgraph.

to reduceG'(k+ 1) to G'(k) too. Therefore alle; edges (or
Now we prove the second part of the theorem. A triangu-

with a quadrilateral formed by four edges in its AENS (i.e.,

Proof: To prove the theorem, we show that an edge witBdgesexm, emn, €nh, @ndeng in Fig. 4(c)). If the triangulation
a weight less than two must be an extra edgepodr e; type edge is the only diagonal of the quadrilateral (by assuniag t
and thus must be removed.
Without extra edges, the weight of a triangulation edge i removed. Otherwise, if there are two diagonals, then they
two. By taking extra edges into consideration, the weigha ofare equivalent. If any one of them is removed, the other edge
triangulation edge either remains as two or increases tethbecomes critical, and thus will be kept. As a result, either t
or higher. Similarly, are, extra edge must have a weigh ofrriangulation edge or its equivalent will not be removed.

two or higher inG.

Edgeenn does not exist), it is a critical edge and thus will not

Therefore the theorem is proven. ]

Therefore, an edge with a weight less than two must beThe subgraph obtained by the above process is denoted by
an extra edge oy or e; type. Such an extra edge must b&”. If all extra edges irG’ aree, type, thenG” is already a

removed in order to produce a triangulated subgraph. m

triangulated subgraph. Now we consider the scenarios ayith
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If the identified chain has a length of two or longer, all edges
in the chain are removed. Similar to our earlier discussions
once an edge is removed, its relevant edges update theintveig
accordingly. As a specific case, thgedge that serves as both
head and tail of a non-loop chain (as shown in Fig. 6(c)) will
be left alone as a separagedge with a weight of one, after

n other edges in its chain are removed. Therefore, it removes
itself, according the Theorem 1.

C. Algorithm

The theory discussed above provides a clear guideline for
/ our algorithm development. The proposed algorithm is fully
distributed. Each edge performs the following operations:

Step 1. Initialization. During initialization, each edge com-
municates with its neighbors to acquire local information t
determine its NNS, ENS, RENS, AENS, edge weight, critical
edge and equivalent edges.

Step 2. Iterative edge removalAfter initialization, each edge
checks if itself should be removed according to Theorems 1
and 2. This is an iterative process, because the removal of an
edge may affect its neighboring edges (including all ofthei
parameters discussed above). We assume that two dependent
edges are not removed at exactly the same time via a local
signaling scheme, to avoid inconsistency.

(a) Loop chain. (b) Non-loop chain. (c) Same head and tail.

Fig. 6. lllustration of non-loop and loop chains.

(@) Nodel andAjj form a tetra- (b) Project Nodd onto the plane
hedron. of Ajjk.

Fig. 7. lllustration of projection in 3D surface networks.

ande; edges remaining 6" .

Lemma 2: An e extra edge can exist i6”, only if it
depends on at least two other extra edges.

Proof: As discussed earlier, am edge has a weight of ) ) ) .
zero, if it doesn't depend on other extra edges. When it is® An €dge removes itself and informs its neighbors of the
dependent on another extra edge, or in other words, it is in removal if it finds its weight less than two.
the AENS of another extra edge, its weight is increased bys An edge removes itself and informs its neighbors of the
one. Since the weight of every edge @ must be no less removal if it is an non-critical edge and all edges in its
than 2, theep extra edge must at least depend on two other AENS have their weight greater than two.
extra edges. - « An edge updates its weight whenever there is a change

Lemma 3: An e; extra edge can exist i, only if it at in its AENS.
least depends on another extra edge. Step 3. Removal ofeg and e; chains. The remaining extra

Proof: Similar to the proof of Lemma 2. B edges not removed in Step 2 aag and e; edges that form

To keep their weight no less than two, tagande; edges chain(s). A chain is identified according to its properties
must depend on each other@4 by forming a “chain”. There revealed by Lemmas 2 and 3 and relevant discussions in
are two types of chains, namely loop and non-loop chains (@sc. Ill-B. All edges in the chain with a length of two or
shown Fig. 6). A loop chain consists of &} edges, forming longer areey and e; edges and thus removed. At the same
a loop as shown in Fig. 6(a). In a non-loop chain, the heédithe, a remaining edge updates its weight and removes itself
or tail edge of the chain must ke, because it only has oneif its weight becomes less than two.
dependent extra edge. An example of the non-loop chain inThe time complexity of the algorithm depends on the iter-
illustrated in Fig. 6(b):ejm — emi — &n, Which is in a pattern ations in Step 2. Since an iteration removes at least one edge
of e —eg— €. A non-loop chain has a minimum length ofand no edges are added during the process, the complexity is
two edges. In addition, Fig. 6(c) shows a special case of th¥n), wheren is the number of nodes in the network.
non-loop chain, where the head and tail are the sejmexige
(i.e., Edgeejm).

It is easy to identify a chain (either loop or non-loop). The triangulation algorithm discussed above can be ex-
Except thee; edge in a non-loop chain that serves as botended to a wireless network deployed on a 3D surface.
head and tail (e.g., Edggm in Fig. 6(c)), an edge in a chainHowever, although a small chart of smooth 3D surface is
has a weight of two, and at least one edge in its AENS hamrinsically the same as the 2D plane in theory, the former
its weigh equal to two and another edge in its AENS has itstroduces additional challenges in the calculation of eedg
weigh greater than two. Therefore, we can start from one suskight under practical network settings. More specifigally
edge, and expand the chain by adding another edge with thedetermine the RENS and accordingly the edge weight
same property and in the AENS of (i.e., dependent to) an edg@rectly, one needs to judge if a triangle contains any aode
already in the chain, and so on and so forth, until no addifionUnder a 2D setting, it excludes a big triangle that contains
edges can be added. nodes (se&\jjk illustrated in Fig 3(a)), intrinsically ensuring

IV. TRIANGULATION FOR 3D SURFACE NETWORKS



(f) 2D network 1. (g9) Finest triangulation by [2]. (h) Proposed triangulation

D

(k) 2D network Il1. () Finest triangulation by [2]. (m) Proposed triangulation

(p) 2D network IV. (g) Finest triangulation by [2]. (r) Proposed triangulation. (s) Ricci embedding of 8(q). () Ricci embedding of 8(r).

Fig. 8. Examples of 2D networks. The proposed algorithm peed finer triangulation than [2], and accordingly leadstorter greedy routing path as
indicated by the thick red lines.

(f) 3D open surface network I(g) Finest triangulation by [3]. (h) Proposed triangulation. (i) Ricci embedding of 9(g). (j) Ricci embedding of 9(h).

Fig. 9. Examples of 3D open surface networks. The proposgatitim produces finer triangulation than [3], and accagljifeads to shorter greedy routing
path as indicated by the thick red lines.

no overlapped triangular faces in the final triangulatiomiS check if this is true in a 2D network by a simple calculation
larly, in 3D networks, it excludes the underneath triangiehs based on locally estimated distances between nodes, simila
asAjjk in Fig. 7(a) if Ajji, A andAj are on the surface. method cannot be applied in 3D directly because Nbde

For Edgee;j, Nodek is in its RENS, if Ajjx contains no not necessarily on the plane dfjj in a 3D network.

nodes in Edgesj's edge neighbor set, i.e4\jjx does not  To this end, we propose a localized projection algorithm.
containl, VI € (Ne(&j) — {k}). While it is straightforward to Without loss of generality, let's consider Edgg. For Node



(a) 3D closed surface network I. (b) 3D closed surface network Ill. (c) 3D closed surface network IV. (d) 3D closed surface network Il.

(e) Finest triangulation by [3] (f) Finest triangulation by [3] (9) Finest triangulation by [3] (h) Finest triangulation by [3]

(i) Proposed triangulation. () Proposed triangulation. (k) Proposed triangulation. () Proposed triangulation.

Fig. 10. Examples of 3D closed surface networks. The prapafgorithm produces finer triangulation than [3].

k € Ne(gj) and Nodel € (Ne(&j) — {k}), Nodesi, j,k and| V. APPLICATIONS AND SIMULATION RESULTS

form a tetrahedron as shown in Fig. 7(a). Based on locally est ] .
mated distances between them, a local coordinates system cal® demonstrate the effectiveness of our proposed trian-
be established for such four nodes by existing algorithra{1 9ulation algorithm, we have applied it in various 2D, 3D

[22]. Similar to our discussions on 2D networks, the estedat ©Pen surface and closed surface networks, under different
distances are generally inaccurate, resulting in errotedal communication models and distance measurement errors. For

coordinates that will be discussed in Sec. V. example, Figs. 1(a)-1(f) show a 2D, a 3D open surface and
Let (x,Vi,z) denote the coordinates of Nodelt is now @ 3D closed surface network and their triangulations, espe
ready to calculate the projection of Noblen the plane defined tively. Figs. 1(g)-1(i) illustrate triangulations undesapi-UDG

by Nodes, j andk, i.e.,I’, by solving the following equations: and log-normal communication models, where the red lines
indicate different edges in triangulation, in comparisoithw

(XV_X‘)22+ (y'/_yi)22+yI22: Lﬁz’ the result under the UDG model. Figs. 1(j)-1(I) demonstrate
(4 =X))"+ (W =Yj) ¥ = Lg’ the triangulations with different granularities, whereleadge
(% =)+ (W = Vi) + ¥ = Lig. in triangulations is correspondent to a path &fl®ps in the

z: =0. underlying sensor network. Figs. 1(m)-1(o) depict thentria

Subsequently, it is straightforward to checkl’fis inside gulation results under different distance measurementssrr
Ajjk. If it is true (see Fig. 7(b) for example), Nodeis not Wwhich results in incorrect weights of some edges as higteigh
included in the RENS of Edge;. Note that when there areby red lines. Such incorrect weights, however, do not preven
only two nodes in an edge’s ENS, it is not necessary to appiyccessful triangulation as shown in Figs. 1(m)-1(0). More
projection. This prevents miscalculation of edge weighewh examples of 2D, 3D open surface and closed surface networks
the edge is located at the corner of a surface. are given in Figs 8-10, respectively, showing that our psggb

After each edge determines its RENS, it obtains its weightgorithm produces finer triangulation than [2] or [3] does.
according to Definition 4. If the surface is closed (see Fig) 1 In addition to granularity, we further demonstrate the
for example), there is no boundary edge. Otherwise (i.eaio improvement of our triangulation by using an application,
open surface network as illustrated in Fig. 1(b)), the baupd i.e., greedy routing based on Ricci flow [2], which maps a
edges are marked similar to the 2D scenario. The rest tahngulated graph to an embedding with circular boundarie
the triangulation algorithm in 3D surface network follows®t that ensure successful greedy routing. The algorithm can be
same steps in the 2D scenario as discussed in Sec. Ill.  applied on 2D and 3D open surface, but not 3D closed surface



TABLE |
COMPARISON OF STRETCH FACTOR IN GREEDY ROUTING
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networks. Several examples are given in Figs. 8 and 9. For
example, given a 2D network shown in Fig. 8(a), its triangu-

lations under [2] and our proposed algorithm are depicted in
Figs. 8(b) and 8(c), respectively, and their corresponéiingi

P
S N T
Stretching Factor

(a) 2D networks.

Stretching Factor

(b) 3D networks.

Fig. 11. Distribution of stretch factor in greedy routing.

2%

embeddings are shown in Figs. 8(d) and 8(e). Although greedy,
routing is successful under both triangulations becauseiRi
flow maps their boundaries to circles (see Figs. 8(d) and,8(e)

Triangulation by [2] mem
Proposed Triangulation

Triangulation by [3] mmmm
Proposed Triangulation

the routing path (indicated by the red line) is much longer
under the triangulation by [2], because it must go through th
long edges in the coarse triangulation.

|
,“Mﬂmmhnﬂ ] el et

1
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We have quantitively evaluated the efficiency of greedy°,
routing under different triangulations. Table | comparesirt
stretch factor (i.e., the ratio of a greedy routing path ® it
corresponding shortest path), based on pair-wise pathiseof t
nodes in the networks depicted in Figs. 8 and 9. As can
be seen, our proposed triangulation yields significantlyelo 6]
stretch factor in comparison with [2] or [3]. Fig. 11 illuates
the distribution of stretch factor. Routing paths alwayseha
low stretch factor under our triangulation, while the cears [7]
triangulation by [2], [3] leads to a wide spread stretch dast
up to over 10 (i.e., 10 times of the shortest path length). W%]
have also evaluated load distribution, where the load ofdeno
is signified by the number of routing paths it involves. As
shown in Fig. 12, load is more uniformly distributed undes th [9
fine triangulation produced by our proposed algorithm, wher
less nodes suffer high load, because it includes more nade$tf!]
the triangulation and consequently the greedy routing fath

which together partake the traffic load.

VI. CONCLUSION 1]

In this paper we have proposed a distributed algorithm tHAL]
triangulates an arbitrary sensor network, with no constsain
the communication model or the granularity of the trianguldl3]
tion. We have proven its correctness in 2D, and further ekte
it to 3D surface networks. Our simulation results have shown
that the proposed algorithm can tolerate distance measuntenils]
errors, and thus work well under practical sensor network
settings and effectively promote the performance a range ¢4
applications that depend on triangulations. 7]
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