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Abstract—In this work we develop a distributed boundary
detection algorithm, dubbed Coconut, for 3D wireless sensor
networks. It first constructs a tetrahedral structure to delineate
the approximate geometry of the 3D sensor network, producing
a set of “sealed” triangular boundary surfaces for separating
non-boundary nodes and boundary node candidates. The former
are hollowed out immediately while the latter are further refined
to yield the final boundary nodes and fine-grained boundary
surfaces. The proposed Coconut algorithm offers several salient
features. First, it requires connectivity information only, with no
need for localization or distance measurement. Second, it does
not rely on particular communication models, but only assumes a
constant maximum transmission range, which is generally known
in practical wireless sensor networks. Third, it is robust to sensor
distribution, effectively identifying boundaries in both uniformly
and non-uniformly distributed sensor networks. We prove the
correctness of the algorithm and quantitatively demonstrate its
effectiveness via simulations under various network models.

I. INTRODUCTION
A wireless sensor network is built upon a large number of

low cost sensor nodes. Although a two-dimensional (2D) pla-
nar setting is assumed in most earlier studies on wireless sen-
sor networks, there have been increasing interests in deploying
sensors in three-dimensional (3D) space for such applications
as underwater reconnaissance and atmospheric monitoring [1]–
[12]. While the third dimension appears irrelevant to network
communication and management protocols at the first glance,
surprising challenges are observed in efforts to extend many
2D networking techniques to 3D space.
This work focuses on boundary detection in 3D wireless

sensor networks. Boundary is a key attribute that charac-
terizes a sensor network, providing salient information for
understanding environmental data and for efficient operation
of the network itself, especially in geographic exploration and
monitoring tasks. Due to the lack of precise nodal deployment
and the nondeterministic sensor failures and channel dynamics,
many wireless sensor networks exhibit substantial randomness,
with their final formations heavily dependent on underlying
environment. Consequently, the boundaries are often unknown
before network deployment, calling for distributed and au-
tonomous algorithms for efficient boundary detection.

A. Challenges in Connectivity-Based 3D Boundary Detection
Let’s first look back upon the development of boundary

detection algorithms in wireless sensor networks, which offers
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a full-spectrum understanding of the boundary detection prob-
lem and the limitation of existing boundary detection solutions.
1) Boundary Detection in 2D Sensor Networks: The prob-

lem of boundary detection has been extensively studied in
2D wireless sensor networks, covering the detection of event
boundaries and network boundaries.
Events are reported according to sensor readings. A sensor is

called an event sensor if it detects the target event based on its
measurement (e.g., high temperature and smoke density upon
a fire). An event sensor declares itself on the event boundary
if it has non-event sensors in its neighborhood. While the
basic idea appears straightforward, event boundary detection
is challenging, due to limited sampling density, noisy sensor
readings, lossy data delivery, and low computation power of
individual sensors [13], [14], calling for efficient information
processing and modeling techniques to analyze sensor data, in
order to estimate the boundary of events [13]–[17].
The detection of network boundary is to locate the outmost

nodes in a sensor network, irrespective of sensor data or
events. Without the facilitation of neighboring sensor readings,
a sensor node depends on geometric or topological information
to determine if it is on a boundary. The geometry-based
approaches require the knowledge of location or distance for
localized boundary detection [18], [19]. On the other hand,
the topology-based schemes achieve location/distance-free by
exploiting topological characteristics of the network [20]–[24].
This research is primarily interested in the latter.
2) Hurdles to Extending Topology-Based Schemes to 3D:

Topology-based boundary detection is intrinsically challeng-
ing in 3D wireless sensor networks, because higher dimen-
sion space introduces significant complexity in searching for
boundaries and many topological tools cannot be extended
from 2D to 3D, rendering none of the available topology-
based schemes [20]–[24] readily applicable for distributed and
autonomous boundary detection in 3D sensor networks.
For example, the fundamental group persevering (FGP)

transformation is adopted in [21] to produce a reduced topol-
ogy graph with all holes preserved. It can effectively identify
fine-grained boundaries, but the transformation and further
refinement techniques are usable on 2D plane only.
The algorithm in [22] exploits the fact that, on a 2D plane

with holes, the branches of a shortest path tree belong to differ-
ent homotopy types, which cannot be continuously deformed
from one to another. Thus two paths with distinct homotopy
types are connected to form a circle around an inner hole,
which is further refined to discover tight boundaries. However,
similar concept no longer holds in 3D, where the shortest paths
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(a) A uniform sensor network. (b) Boundary nodes by CABET (uniform). (c) Boundary nodes by Coconut (uniform).

(d) A nonuniform sensor network. (e) Boundary nodes by CABET (nonuniform). (f) Boundary nodes by Coconut (nonuniform).

Fig. 1. Comparison between CABET [28] and Coconut under uniform and nonuniform sensor distributions. Subfigures (a) and (d) depict a uniform and a
nonuniform sensor network, respectively, where nodal density increases from left to right in the latter. CABET precisely captures the boundary of the uniform
network, but misinterprets many internal sensors on the left side of the nonuniform network as boundary nodes and misses some true boundary nodes on the
right side at the same time. Coconut exhibits robust performance under both uniform and nonuniform sensor distributions.

around a hole are homotopy equivalent. Similarly, the m-flower
structure employed in [23] is effective in 2D only.
In [24], isosets are identified for boundary detection. An

isoset consists of nodes with the same hop distance to a beacon
node. The disconnection in an isoset indicates a boundary.
While similar ideas can be applied in 3D, it becomes nontrivial
to test disconnections in 3D isosets, and moreover the scheme
does not guarantee to discover complete boundaries.
Finally, a hole detection algorithm based on homology is

proposed in [20]. It is generally applicable to networks in any
dimensional space, but it is a centralized approach and there
exists significant challenge to decentralize its computation.
3) Boundary Detection in 3D Sensor Networks: With the

emerging interests in 3D wireless sensor networks, a handful
of boundary detection algorithms have been recently developed
specifically for 3D settings [25]–[27]. A localized algorithm
dubbed Unit Ball Fitting is proposed in [25] that enables
individual nodes to test if they are on a boundary. It considers
static sensor networks only. To timely track dynamic network
boundaries, the UNiform Fast On-Line boundary Detection
algorithm is introduced in [26]. It transforms “notched” surface
into a convex one, thus reducing computational complexity in
support of fast online boundary detection. Both [25] and [26]
require local coordinates or distance information, i.e., belong
to the category of geometry-based approaches.
The only connectivity-based 3D boundary detection algo-

rithm (named CABET) is discussed in [27]. It first identifies a
set of boundary nodes based on the assumption that a boundary
node has less neighbors than its internal counterpart. Then
three types of critical boundary nodes (i.e., convex, concave

and saddle nodes) are selected to depict the geometric features
of the 3D sensor network, based on which closed bound-
ary surfaces are constructed. CABET is effective when the
sensors are uniformly distributed, yielding accurate boundary
nodes and boundary surfaces. When the sensor network is
nonuniform, the above boundary node identification scheme
often becomes error-prone. For example, an internal node
may be located at a low-density area with a small number
of neighbors only, while the boundary regions may have a
high concentration of sensors. Fig. 1 illustrates the impact of
nodal density on CABET. Fig. 1(a) shows a sensor network
with uniformly distributed nodes, whose boundary is precisely
captured by CABET (see Fig. 1(b)). Fig. 1(d) depicts a non-
uniform sensor network, where nodal density linearly increases
from left to right. As can be seen in Fig. 1(e), many internal
sensors on the left side (with low density) are misinterpreted
as boundary nodes (i.e., false-positives or mistaken boundary
nodes), and at the same time some true boundary nodes on
the right side (with high density) are left out (i.e., missing
boundary nodes). Quantitative results are given in Table I
and Fig. 2. CABET achieves excellent boundary detection
under uniform sensor deployment. When the network is non-
uniform, it suffers high missing and mistaken rates, where
many missing and mistaken boundary nodes are far away from
true boundaries.

B. Contributions of This Work
This research aims to develop a distributed topology-based

boundary detection algorithm for 3D wireless sensor networks
that is robust to sensor distribution. It first constructs a
tetrahedral structure to delineate the approximate geometry of
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TABLE I
COMPARISON OF BOUNDARY DETECTION.

Algorithm Correct Missing Mistaken

Uniform Coconut 100% 0% 57.5%

CABET 98.4% 1.6% 59.3%

Nonuniform Coconut 99.4% 0.6% 124.8%

CABET 64% 36% 105%
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(b) Mistaken node distribution.

Fig. 2. Distributions of hop distances from missing and mistaken boundary
nodes to nearest true boundary nodes. U1 and U2: Coconut and CABET
under uniform sensor deployment, respectively; NU1 and NU2: Coconut and
CABET under non-uniform settings.

the 3D sensor network, consequently producing a set of coarse
triangular boundary surfaces. Then, the triangular boundary
surfaces are “sealed” to separate absolutely non-boundary (i.e.,
internal) nodes and boundary node candidates, with the former
hollowed out immediately and the latter further refined to
yield the final boundary nodes and fine-grained boundary
surfaces. The proposed scheme is an analogy of hollowing
out a coconut, and thus we name it the Coconut algorithm.
The proposed Coconut algorithm offers several salient fea-

tures. First, as a topology-based scheme, it requires con-
nectivity information only, with no need for localization or
distance measurement that often incurs increased device cost
and energy consumption. Second, it does not rely on any
particular communication model (such as the unit ball graph
model or quasi-unit ball graph model). It only assumes a
constant maximum transmission range, which is generally
known in practical wireless sensor networks. Third, it is robust
to sensor distribution, effectively identifying boundaries in
both uniformly and non-uniformly distributed sensor networks.
We prove the correctness of the algorithm and quantitatively
demonstrate its effectiveness via simulations under various
network models. The rest of this paper is organized as fol-
lows: Sec. II introduces the proposed Coconut algorithm for
3D boundary detection. Sec. III presents simulation results.
Finally, Sec. IV concludes the paper.

II. PROPOSED COCONUT ALGORITHM

With connectivity information only, a local view is often
insufficient to determine whether a node is on a boundary or
not. More specifically, due to the lack of precise geometry
information, local connectivity cannot differentiate boundary
nodes and internal nodes in a general sensor network, as
evident by above discussions on CABET [27] that results in
high missing and false-positive rates under nonuniform sensor
distribution. On the other hand, given the assumption of a

constant maximum radio transmission range which is generally
known in practical wireless sensor networks, topology indeed
reflects rough geometric characteristics of a sensor network.
To this end, we propose a distributed algorithm, i.e., Coconut,
which builds a big picture based on connectivity to extract and
refine boundaries of the sensor network.
The proposed Coconut algorithm follows three steps for

boundary detection. First, it constructs a tetrahedral structure
to approximate the geometry of the 3D sensor network and to
identify coarse triangular boundary surfaces. Then, it builds
sealed boundary surfaces to separate absolutely non-boundary
nodes and boundary node candidates. Finally, the boundary
node candidates are refined to yield the final boundary nodes
and fine-grained boundary surfaces.

A. Coarse Boundary Surface Construction
It is fundamentally nontrivial to determine whether a node

is on a boundary or not based on connectivity only. The first
step of the algorithm aims to construct a skeletal structure to
depict the geometric property of a 3D wireless sensor network
and to delineate the rough network boundaries.
A trivial distributed scheme can be adopted to randomly

select a subset of sensor nodes as “landmarks” such that any
two landmarks must be at least k hops apart. For example,
an arbitrary node is designated as the first landmark. It marks
all nodes within k hops by a k-hop flooding. The remaining
nodes (excluding the landmark and the marked nodes) repeat a
similar process until all nodes are either landmarks or marked
by landmarks. A non-landmark node is associated with the
closest landmark. If it has the same hop distance to multiple
landmarks, it chooses the one with the smallest ID as a
tiebreaker. This process creates a set of approximate Voronoi
cells in a 3D wireless sensor network (as shown in Fig. 3(a)).
Definition 1: If there exists a shortest path between two

landmarks where all nodes on the path are associated with
one of the two landmarks only, the two landmarks are called
neighboring landmarks and the corresponding Voronoi cells
are called neighboring cells.
Virtual edges are added to connect neighboring landmarks,

forming a 3D Voronoi mesh structure. When k is sufficiently
large (e.g., k = 6 in average in our implementation) and the
landmarks are uniformly randomly distributed, the 3D Voronoi
mesh becomes a tetrahedral mesh that consists of a set of tetra-
hedra with no crossing edges or faces (as shown in Fig. 3(b))1.
Based on the tetrahedral mesh, it is straightforward to identify
boundary faces and landmarks. More specifically, an internal
triangular face is always shared by two neighboring tetrahedra.
Thus, a boundary face can be recognized as follows.
Definition 2: A triangular face in a tetrahedral mesh is a

boundary face if and only if it is associated with one and only
one tetrahedron.
Definition 3: A landmark on a boundary face is a boundary

landmark. Non-boundary are called internal landmarks.

1The method introduced here is a practically viable approach for construct-
ing coarse-grained tetrahedral mesh in 3D wireless sensor networks. Formal
discussions on general tetrahedral mesh is beyond the scope of this paper.
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(a) Voronoi cells. (b) Tetrahedra mesh. (c) Triangular surface.

(d) Surface sealing. (e) Internal hollowing. (f) Boundary landmark expansion.

(g) Boundary face splitting. (h) Final boundary nodes. (i) Fine-grained triangular boundary surface.

Fig. 3. An example of boundary detection by using Coconut. In Subfigure (e), O-nodes, S-nodes and I-nodes are highlighted in cyan, blue and red, respectively.

Clearly, boundary faces and landmarks can be identified
based on local information. Assume the network is connected
and there are no degenerated edges or faces in the tetrahedral
mesh, a boundary surface is defined below.
Definition 4: The triangular boundary surfaces of a tetra-

hedral mesh are a set of closed surfaces formed by triangular
faces that together enclose all tetrahedra (including landmarks
and faces on the tetrahedra).
An example of boundary surface is illustrated in Fig. 3(c).

Moreover, we observe the following results regarding bound-
ary faces and surfaces.
Lemma 1: A triangular boundary surface consists of bound-

ary faces only.
Proof: We prove the lemma by contradiction. Assume a

boundary surface includes an internal face. Since an internal
face must be shared by two neighboring tetrahedra, the two
tetrahedra must be separated on two sides of the boundary.
In other words, one of the tetrahedra must be located outside
the boundary surface, contradicting Definition 4 that requires
boundary surfaces to enclose all tetrahedra. Therefore the
lemma is proven.
Lemma 2: A boundary face must belong to at least one

boundary surface.

Proof: This is obvious from the definition of boundary
face (i.e., Definition 2). Since all tetrahedra are enclosed by the
boundary surfaces, a face must either be shared by two tetra-
hedra (i.e., inside) or reside on a boundary surface. Therefore,
a boundary face (that is not shared by two tetrahedra) must
belong to a boundary surface.

As a rigid structure, the tetrahedral mesh effectively depicts
the geometric property of the 3D sensor network, and the
triangular boundary surfaces serve as a delineation of the
rough network boundaries. The construction of the tetrahedral
and triangular boundary surfaces is based on landmarks, which
is not affected by nodal density and thus robust to nonuniform
sensor distribution. However, note that, a triangular boundary
surface is merely a “skeleton”, consisting of landmarks and
virtual edges only, where a virtual edge is mapped to a
shortest path between two corresponding neighboring land-
marks. Given an arbitrary node in the network, it still remains
nontrivial to determine whether it is enclosed by the skeleton
or not based on connectivity information only. To this end,
we next introduce an efficient scheme to build a thin layer
to “seal” the triangular boundary surfaces, which serve as the
basis for further boundary refinement.
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B. Surface Sealing and Internal Hollowing

Based on the skeletal triangular boundary surfaces obtained
above, the second step of the proposed algorithm intends
to build sealed boundary surfaces, which effectively separate
internal nodes (that are absolutely non-boundary) and bound-
ary node candidates (i.e., the nodes on or outside the sealed
boundary surfaces). The former can then be easily hollowed
out, while the latter are subject to further refinement.
Let us consider a boundary triangular face, e.g., !ABC

shown in Fig. 4(a). An edge of the triangular face is formed by
the shortest path between corresponding landmark nodes. For
example, Edge AB is the shortest path between Nodes A and
B, denoted by Γ(A,B), including a sequence of intermediate
nodes (see the black dots between A and B in Fig. 4(a)).
The basic idea of sealing is to choose multiple pairs of

nodes on two edges of a triangular face and build a thin layer
based on the shortest paths between them. For example, let
〈p0, p1, .., pm〉 and 〈q0,q1, ..,qn〉 denote the intermediate nodes
on the shortest paths Γ(A,B) and Γ(A,C), respectively. Without
loss of generality, let us assume m≤ n. The algorithm intends
to establish shortest paths between pi and qi ∀ 0≤ i≤ m and
between pm and qi ∀ m< i≤ n, in order to construct a surface
layer to seal the triangle (see Fig. 4(a) where the dashed
lines represent shortest paths). Note that multiple shortest
paths often exist between two nodes, forming a spindle shape
in 3D space. One can of course include all such paths in
the sealed surface, but it will result in an undesired thick
layer (as shown in Fig. 4(b)), rendering difficulties in later
refinement. On the other hand, if only one of the shortest
paths is randomly chosen for the formation of the sealed
surface, it fails frequently because the shortest paths between
two adjacent pairs of intermediate nodes (e.g., Γ(pi,qi) and
Γ(pi+1,qi+1)) are not always well connected, leaving holes
on the surface layer (illustrated in Fig. 4(c)). To this end, a
simple and effective approach is proposed as follows.
The shortest paths are established sequentially, starting from

Γ(p0,q0). It follows the classic Dijkstra’s algorithm to search
for the shortest path from p0 to q0, but with a constraint that
only the neighboring nodes of Γ(B,C) are involved in the
algorithm. Therefore the established shortest path, Γ(p0,q0),
is tightly connected with Γ(B,C). The process repeats, where
Γ(pi,qi) is established based on the neighboring nodes of
Γ(pi−1,qi−1) if i ≤ m, or of Γ(pm,qi−1) if m < i ≤ n. All
boundary triangular faces run the same algorithm to establish
such shortest paths in a distributed manner. Finally, when
the process terminates, the sealed boundary faces and sealed
boundary surfaces are defined as follows.
Definition 5: For a given triangular boundary face !ABC,

the nodes on the shortest paths Γ(pi,qi) ∀ 0 ≤ i ≤ m and
Γ(pm,qi−1) ∀ m < i ≤ n, plus the nodes on Γ(A,B), Γ(A,C),
and Γ(B,C), are called Γ-nodes.
Definition 6: The Γ-nodes and their one-hop neighbors

form the sealed boundary face.
Definition 7: For a given triangular boundary surface, the

union of all corresponding sealed boundary faces form the

sealed boundary surface. The nodes on sealed boundary
surfaces are called S-nodes.
For example, Fig. 4(d) illustrates the sealed boundary face

of!ABC, and Fig. 3(d) depicts the shortest paths formed by Γ-
nodes on the boundary surface. Note that the sealed boundary
surfaces are built based on triangular boundary surfaces, which
are approximation but not true boundaries. While they ensure
to contain every landmark, they do not enclose all sensors.
Based on the sealed boundary surfaces, the sensors can be
grouped into internal nodes (or I-nodes), surface nodes (or
S-nodes), and outside notes (or O-nodes), as evident by the
following theorem.
Theorem 1: The sealed boundary surfaces can separate

internal nodes and outside nodes.
Proof: To prove the theorem, we show that, if the sealed

boundary surfaces are removed, the network is partitioned
into disconnected subnetworks, located inside and outside
the sealed boundary surfaces. According to the method of
constructing sealed boundary surfaces, any two adjacent Γ-
nodes are separated by at most R from each other, where
R is the maximum transmission range of sensors. Since the
neighboring nodes with a distance no greater than R to the Γ-
nodes are included in the sealed boundary surface, the thinnest
part of a sealed boundary surface is

√
3R (as illustrated in

Fig. 4(e)2), ensuring that a node above the sealed boundary
surface cannot communicate with any nodes beneath it. Thus
the sealed boundary surfaces can always separate internal
nodes and outside nodes.
The motivation to build the sealed boundary surfaces is

to hollowed out internal nodes because they are absolutely
non-boundary, while nodes on or outside the sealed boundary
surfaces are boundary node candidates that will be further
refined as to be discussed in the next subsection. With known
sealed boundary surfaces, it is straightforward to achieve such
internal hollowing. More specifically, any internal landmark
initiates a hollowing request, broadcasted to its neighbors.
Upon receiving the hollowing request, a node rebroadcasts
the request and marks itself as an I-node (for internal node)
if it is not on a sealed boundary surface; or simply drops
the request otherwise. According to Theorem 1, the hollowing
request cannot be passed across the sealed boundary surfaces,
from a node inside to a node outside. Therefore, a node marks
itself as an O-node (for outside node) if it neither locates on
a sealed boundary surface nor receives a hollowing request.
Lemma 3: An I-node is not a boundary node.
Proof: I-nodes are enclosed by the sealed boundary sur-

faces. Assume high nodal density and let us draw an arbitrary
line from an I-node toward the outside of the network. The line
must intersect a sealed boundary surface, with a corresponding
S-node closer to the outside than the I-node. This is true for
2Note that although balls are used for illustration in Fig. 4(e), this work

is not limited to Unit Ball Graph (UBG) communication model. Only a
maximum transmission range (i.e., R) is assumed, indicating that two nodes
cannot communicate if they are separated by a distance more than R. However,
two nodes may or may not be able to communicate if their distance is less
than or equal to R, in contrast to UBG which assumes a communication link
must exist if the distance between two nodes is no greater than R.
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Fig. 4. Construction of sealed boundary surfaces.

any line drawn in any direction. Therefore, the I-node is not
a boundary node.
The hollowing process hollows out the internal nodes and

yields a set of boundary node candidates defined below.
Definition 8: O-nodes and S-nodes create a set of boundary

node candidates.
The boundary node candidates obtained so far often form

a thick layer (as shown in Fig. 3(e)) that includes many non-
boundary nodes, i.e., false-positives. To this end, a series of
refinement are discussed below to produce a thin layer of
boundary nodes with low missing and false-positive rates.

C. Boundary Refinement
The strategies for boundary surface refinement follow two

streams of thought, i.e., to expand the sealed coarse boundary
surfaces such that they become as close to the true boundary
surfaces as possible, and to thin the sealed boundary surfaces.
The former can decrease both missing rate and false-positive
rate, while the latter effectively slashes false-positives.
1) Boundary Landmark Expansion: Since the radius of

Voronoi cells (introduced in Sec. II-A) is k hops, landmarks
can be up to k-hop away from real boundary where k ranges
from 4 to 8 in our implementation. Therefore, many true
boundary nodes are not included in the sealed coarse boundary
surfaces, and at the same time, most nodes in the sealed coarse
boundary surfaces are in fact false-positives. To this end, a
local iterative process is proposed to push boundary landmarks
outward. More specifically, if there exist one or multiple O-
nodes in a cell, the O-node closest to the current landmark is
chosen to serve as the new landmark of the cell. The boundary

A’

A

(a) Boundary landmark expansion.

A

B

C

D

(b) Boundary face splitting.

Fig. 5. Boundary surface expansion.

surfaces are updated (i.e., expanded) accordingly based on the
new boundary landmarks. Fig. 5(a) illustrates an example of
boundary landmark expansion, where Landmarks A is replaced
by O-node A′. An effective expansion should include previous
O-nodes into the boundary surfaces and reduce the number of
remaining O-nodes. Clearly, only a boundary landmark could
find O-nodes in its cell. The process repeats until no more
effective expansion is possible. Boundary landmark expansion
effectively dilates the boundary surface as exemplified in
Fig. 3(f).
2) Boundary Face Splitting: After boundary landmark ex-

pansion, the boundary landmarks are now near to true bound-
aries. However, since the edges of boundary triangular faces
are long (between k to 2k-hops), the triangular boundary sur-
faces are often not kept perfectly close to the true boundaries
(see boundary face !ABC in Fig. 5(b) for example). This
problem motivates us to split a triangular boundary face into
smaller faces to approach the true boundary. More specifically,
if there exists an O-node that has equal hop distance (or
differed by one) to three landmarks of a triangular boundary
face, the boundary face is replaced by three new (and smaller)
triangular faces formed by the O-node and the three landmarks.
For example, assume Node D (shown in Fig. 5(b)) is such
an O-node. !ABC is thus replaced by !ACD, !ABD and
!BCD, which are better fit to the true boundary. Fig. 3(g)
illustrates the result after boundary face splitting.
3) Boundary Surface Thinning: The boundary landmark ex-

pansion and boundary face splitting can effectively expand the
boundary surfaces outward, approaching as close as possible
to the true boundaries. However, the boundary node candidates
(with the majority of S-nodes and a small number of O-
nodes if there are any remaining) still form a relatively thick
layer. Note that the S-nodes alone include Γ-nodes and their
1-hop neighbors (in both inward and outward directions) as
described in Definition 7, resulting in 2-hops of nodes likely
false-positives. To this end, each I-node that has a S-node or
O-node in its one-hop neighborhood broadcasts a hollowing
request in two hops to mark the inmost two-hop boundary
node candidates as I-nodes, yielding a much thinner layer of
boundary nodes as illustrated in Fig. 3(h).
4) Fine-Grained Triangulation on Boundary Surfaces: As

to be discussed in Sec. III, the proposed algorithm can identify
virtually all boundary nodes, with extremely low missing rate.
At the same time, although false-positives are inevitable since
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the algorithm is based on nodal connectivity only, nearly all
such false-positives are one-hop neighbors of true boundary
nodes. In short, the proposed algorithm is highly accurate in
boundary node identification. However, there are a range of
applications (such as network segmentation [28] and boundary
mapping and routing [29]) require not only boundary nodes but
also fine-grained triangular boundary surfaces, i.e., triangular
boundary surfaces consisting of small triangular faces. The
boundary surfaces obtained above may have an edge length up
to 2k hops. While boundary face splitting helps achieve finer
triangulation, it does not ensure to split every triangular face.
To address this problem, a set of new landmarks are elected
among the boundary nodes such that any two landmarks are
δ-hops apart, where δ is the desired fineness of the triangular
boundary surfaces. Then the planar triangulation algorithm
developed in our previous work [30] is adopted here to
produce desired fine-grained triangular boundary surfaces, as
demonstrated in Fig. 3(i).

D. Computational and Communication Complexity
The proposed Coconut algorithm has a linear time com-

plexity and communication cost (measured by messages sent)
with respect to the size of the network. More specifically,
surface construction introduced in Sec. II-A has a computa-
tional complexity of O(n) and communication cost of O(n),
where n is the total number of nodes in the network. Surface
sealing and Internal Hollowing has a complexity of O(1) and
communication cost of O(n). Note that this process can be
carried out in a parallel manner. The last step has a complexity
of O(m) and communication cost of O(m), where m is the
number of boundary nodes. Given m ) n, the overall time
complexity and communication cost of the Coconut algorithm
are dominated by O(n) in practice.

III. SIMULATIONS
To evaluate the effectiveness of the proposed Coconut

boundary detection algorithm, we have carried out extensive
simulations under various 3D network models. In this section,
we first introduce our simulation setup, and then present the
simulation results and discuss our observations.

A. Simulation Setup
A set of 3D graphic tools (including Autodesk Maya and

TetGen [31]) are employed to construct 3D networks for our
simulations. First, we build 3D models that represent practical
sensor network scenarios (e.g., an underwater network, a 3D
network in space, and general 3D networks with arbitrary
shapes of our interest). A set of nodes are randomly distributed
on the surface of the 3D model. They are marked as boundary
nodes, serving as ground truth to evaluate our algorithm.
A cloud of nodes are then deployed inside each 3D model
uniformly or non-uniformly. Once the nodes are placed, an
appropriate maximum radio transmission range R is chosen
according to nodal density, such that the network is connected.
In our simulated network scenarios, nodal degree ranges from
3 to 140, with an average of 25.

B. Simulation Results

Several network models and their boundary detection results
are illustrated in Figs. 6-9. Fig. 6(a) depicts an underwater
network, where nodes are uniformly deployed from top to
bottom of the lake, e.g., for water pollution monitoring. As
shown in Fig. 6(b), the proposed Coconut algorithm effectively
identifies the boundaries at both the flat top surface and the
bumpy bottom. We linearly increase nodal density from top
to bottom, as shown in Fig. 7. Despite much more nodes are
resided in the bottom area, the Coconut algorithm successfully
detects the network boundary, yielding a boundary surface
largely identical to the result under uniform sensor deployment
(compare Fig. 6(c) and Fig. 7(c)). It is noticed that more nodes
at the bottom (i.e., the high-density area) are considered as
boundary nodes by the proposed algorithm, thus increasing
false-positive rate. This a is natural outcome because the
connectivity-based approach cannot differentiate nodes within
one hop. Fig. 8 depicts a 3D network deployed in the space
(e.g., for chemical dispersion sampling). It contains an internal
hole due to uncontrolled drift of sensor nodes. As shown in
Fig. 8(b) and 8(c), the Coconut algorithm effectively identifies
both outer and inner boundaries. Fig. 9 shows a 3D network
deployed in a S-shape pipe, where the boundary nodes are
identified and the triangular mesh surfaces are well constructed
despite large surface curvatures.
Table II reports quantitative data and performance statistics

obtained from our simulations. Among the boundary nodes
identified by the Coconut algorithm, a node is called a correct
boundary node if it is in the ground truth boundary node set,
which is known from network model creation discussed in
Sec. III-A; otherwise it is a mistaken boundary node. If a
node is a real boundary node, however the boundary detection
algorithm fails to detect it, it is called a missing boundary
node. The correct (or missing or mistaken) rate is the ratio
of the number of correct (or missing or mistaken) boundary
nodes to the number of ground truth boundary nodes.
As can be seen in the table, the proposed Coconut algorithm

can always identify boundary nodes with high correct rate
(> 95%) under various network settings with both inner and
outer boundaries and uniform or nonuniform sensor deploy-
ment. Only a small percentage of boundary nodes are left out
(< 3%) due to the boundary thinning process applied to some
part with less than 2-hop thickness. Moreover, as illustrated
in Fig. 10(a), all of the missing nodes are located within 1
hop of correctly identified boundary nodes. In other words,
the missing boundary nodes do not form a large “hole” and
thus do not affect the formation of boundary surfaces. On
the other hand, some interior nodes are falsely marked as
boundary nodes. Compared to the missing rate, the mistaken
rate is generally high. However, the mistaken boundary nodes
are well distributed. We calculate the distance between every
mistaken boundary node and its nearest real boundary node,
which shows how far the mistaken node is away from the
ground truth boundary. As can be seen in Fig. 10(b), most
(> 80%) of the mistaken nodes are located within 1 hop of the



8

real boundary nodes. Therefore the boundary nodes identified
by the Coconut algorithm effectively depict the shape of
network boundary, based on which the triangular surfaces can
be well constructed.

TABLE II
BOUNDARY DETECTION RESULTS.

Model Correct Missing Mistaken
Model 1 99.9% 0.1% 47.9%

Model 2 99.9% 0.1% 147.1%

Model 3 98.1% 1.9% 174.9%

Model 4 97.0% 3.0% 54.1%
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1-hop 2-hop

Distance to the nearest correct boundary node (× 0.25R)

Culmulative

(a) Missing node distribution.

20%

40%

60%

80%

100%

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-∞

1-hop 2-hop

Distance to the nearest real boundary node (× 0.25R)

Culmulative

(b) Mistaken node distribution

Fig. 10. Distribution of missing and mistaken boundary nodes.

IV. CONCLUSION
We have proposed a distributed boundary detection algo-

rithm, dubbed Coconut, for 3D wireless sensor networks. Its
basic idea is to construct a tetrahedral structure to delineate
the approximate geometry of the 3D sensor network, which
consequently yields a set of “sealed” triangular boundary sur-
faces for separating non-boundary nodes and boundary node
candidates. While the former are hollowed out immediately,
the latter are further refined to identify the final boundary
nodes and fine-grained boundary surfaces. We have proven
the correctness of the algorithm and quantitatively demon-
strated its effectiveness via simulations under various network
models. The proposed Coconut algorithm is a connectivity-
based approach, with no need for localization or distance
measurement. It has not constraint on communication models
and only assumes a constant maximum transmission range,
which is generally known in practical wireless sensor net-
works. Moreover, it can effectively identify boundaries in
both uniformly and non-uniformly distributed sensor networks,
exhibiting excellent robustness to sensor distribution.
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(a) Network model. (b) Boundary nodes. (c) Triangular mesh.

Fig. 6. Model 1: an example of under water network (with uniform sensor deployment).

(a) Network model. (b) Boundary nodes. (c) Triangular mesh.

Fig. 7. Model 2: an example of under water network (with non-uniform sensor deployment).

(a) Network model. (b) Boundary nodes. (c) Triangular mesh.

Fig. 8. Model 3: an example of a 3D space sensor network with an internal hole.

(a) Network model. (b) Boundary nodes. (c) Triangular mesh.

Fig. 9. Model 3: an example of a 3D sensor network deployed in a S-shape pipe.


