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Abstract—Sensor deployment is a fundamental issue in a
wireless sensor network, which often dictates the overall network
performance. Previous studies on sensor deployment mainly
focused on sensor networks on 2D plane or in 3D volume. In this
paper, we tackle the problem of optimal sensor deployment on 3D
surfaces, aiming to achieve the highest overall sensing quality. In
general, the reading of a sensor node exhibits unreliability, which
often depends on the distance between the sensor and the target to
be sensed, as observed in a wide range of applications. Therefore,
with a given set of sensors, a sensor network offers different
accuracy in data acquisition when the sensors are deployed in
different ways in the Field of Interest (FoI). We formulate this
optimal surface deployment problem in terms of sensing quality
by introducing a general function to measure the unreliability
of monitored data in the entire sensor network. We present its
optimal solution and propose a series of algorithms for practical
implementation. Extensive simulations are conducted on various
3D mountain surface models to demonstrate the effectiveness of
the proposed algorithms.

I. INTRODUCTION

The emerging wireless sensor networks have been envi-
sioned for a diversity of autonomous monitoring and actua-
tion applications on 2D plane, 3D surface and 3D volume.
With its substantial impact on network performance, sensor
deployment has been a central problem in wireless sensor
network research. Previous work on sensor deployment mainly
focused on networks with their Field of Interest (FoI) on 2D
plane [1]–[20] or in 3D volume [21]–[26]. However, recent
study [27] reveals that sensor deployment on 3D surface is
fundamentally different from its counterpart on 2D plane or
in 3D volume, exhibiting surprising challenges with provable
NP complete property to determine optimal solution with full
coverage. Thus, early developed deployment strategies for 2D
planar or 3D volumetric networks cannot be applied on 3D
surface networks directly.

In this research, we consider a FoI on a 3D surface, and
tackle the problem of optimal sensor deployment for maxi-
mized overall sensing quality. In general, a sensor node does
not always make perfect measurement. Instead, its reading
exhibits inevitable error, which often depends on the distance
between the sensor and the target being sensed, as observed
in a wide range of applications, e.g., for monitoring pollution,
radiation, acoustics, and vibration. With a given set of sensors,
a sensor network offers different accuracy in data acquisition
when they are deployed in different ways in the FoI.

There are a handful of works that address the sensing quality
of sensor deployment, which are all based on 2D sensor
networks with different viewpoints for problem formulation.
Multiple coverage, where each point is covered by at least
k different sensors, is proposed to improve the monitoring
quality in [28]–[32]. Event probability density is considered
in [33]–[35] to guide mobile sensors to concentrate in areas
with high event density and maintain full coverage at the same
time. A local control law is proposed in [36] where each
agent takes the value of sensory function which indicates the
relative importance of different areas in the FoI and the sensing
unreliability of the sensor measurement into a cost function to
make moving decision.

In this paper, we consider a given set of sensors deployed
on general 3D surfaces with possible concave boundary con-
dition. We assume that the sensors can be deployed at any
pre-determined locations. We formulate the optimal surface
deployment problem by introducing a general function to
measure the unreliability of sensor data, aiming to maximize
the overall sensing quality of the entire sensor network. We
show that the optimal deployment can be achieved under
a generalized centroidal Voronoi partition. With the insights
gained from conformal parametrization, we propose a series
of practical algorithms to realize sensor deployment on general
3D surfaces that minimizes the network-wide unreliability of
sensor data. The main results and contributions of this work
are summarized as follows:

• We introduce a new model to formulate the problem of
sensor deployment on 3D surface.

• We present the optimal solution for 3D surface sensor
deployment with minimized overall unreliability.

• A series of algorithms are proposed to approximate the
optimal solution, with extensive simulations conducted to
verify their effectiveness.

The rest of the paper is organized as follows: Sec. II
formulates the optimal surface deployment problem. Sec. III
shows its optimal solution. Sec. IV presents the theoretical
insights of our proposed algorithms. Sec. VI elaborates the
algorithmic details, followed by simulation results in Sec. VII.
Sec. IX concludes the paper and discusses our future work.



II. PROBLEM FORMULATION

Before giving the formal definition of the optimal surface
deployment problem studied in this paper, we first introduce
the surface model and the wireless sensor network model
employed in this research.

A. Surface Models

It is rare in reality the deployment surface is either closed
or with handles, so in our study we focus on surface models
with disk topology (i.e., open surface with single boundary).
Surfaces can have complicated geometric shapes and complex
boundary conditions including concave case as shown in Sec.
VII. They do not need to be single valued surfaces as required
in [27] (i.e., any two points of the surface should have two
different projections on the x-y plane), and are not subject to
any restriction on their height.

B. Models of Wireless Sensor Network

We assume stationary and homogeneous sensors deployed
on surfaces. They do not move after deployment and have
the same sensing radius and identical sensing capacity. The
accuracy of their collected data depends on the distance
between the sensor and the target point to be sensed.

C. Optimal Surface Deployment Problem

As discussed in Sec. I, sensors do not always make perfect
measurement, but exhibit unreliability that in general depends
on the distance between the sensor and the target to be sensed.
We define the following function to measure such unreliability
for data collected from a single point.

Definition 1: Let pi denote the position of Sensor i on
a FoI denoted as A. Given a point q on A, the sensing
unreliability function g(||q− pi||) describes how unreliable the
measurement of the information at Point q sensed by Sensor i
at pi is, where || · || represents the distance between q and pi.

The specific form of g(||q− pi||) is application-dependent.
We consider g(||q− pi||) as a general function in this research,
as long as it is continuous and strictly increasing. Note that
g(||q− pi||) will go to infinity if the distance is long enough.

Definition 2: Given a set of n sensors deployed on A, let
P = {pi|1≤ i≤ n} be the set of positions of all sensor nodes.
A sensing partition of A is defined as V = {Vi|1 ≤ i ≤ n}
where Vi represents the sensing region of a sensor at position
pi. Note that the union of Vi covers the whole A. A point of
A may be within sensing ranges of several sensor nodes, but
belongs to only one sensing region of a sensor.

The following equation gives the sensing unreliability of a
single sensor.

Definition 3: Given Sensor i, the sensing unreliability of
data collected over its sensing Region Vi on A is defined as:

Gi(pi,Vi) =
∫

q∈Vi

g(||q− pi||)dq, (1)

where q is a point inside Vi.
Summing over all sensors, we arrive at the overall sensing

unreliability of the entire network, given by the following
definition.

Definition 4: Given a set of n sensors deployed on A, the
overall sensing unreliability of data collected by the entire
network is defined as:

G(P,V) =
n

∑
i=1

∫
q∈Vi

g(||q− pi||)dq. (2)

With the above definitions, we can formulate the optimal
surface deployment problem (OSDP) as follows.

Definition 5: Given a set of n sensors to be deployed with
FoI on a 3D surface, the optimal surface deployment problem
(OSDP) is to identify P and V such that G(P,V) is minimized.

III. OPTIMAL SOLUTION

To find the optimal solution of OSDP, we start our study
from a simplified version of this problem, which is defined as:

Definition 6: Given a set of n sensors deployed on a field
of interest A, the optimal surface sensing problem (OSSP) is
to identify V with fixed P such that G(P,V) is minimized.

With given A and fixed P, there are different ways to assign
the sensing region to each sensor which induces infinitely
possible solutions for the OSSP. We prove that the Voronoi
partition based sensing regions achieve the optimal solution
of the surface sensing problem.

Let’s first give the definition of the Voronoi partition.
Definition 7: A Voronoi partition is a partition of the space

according to the distances to a discrete set of objects (i.e.,
sensors in our setting), P = {pi|1≤ i≤ n}, called sites in the
space. A Voronoi cell, or a Voronoi region, Vi, of a site pi
is the region of points that are closer to pi than to any other
sites, that is

Vi = {q ∈ A | ||q− pi|| ≤ ||q− p j||,∀ j 6= i}. (3)

We let V(P,A) denote the Voronoi partition generated by P on
A.

The following Lemma proves that V(P,A) minimizes the
total unreliability of data collected from the sensor network.

Lemma 1: For a fixed placement of sensors (i.e., P =
{pi|1≤ i≤ n}) on A, the Voronoi partition V(P,A) minimizes
the unreliability function G(P,V).

Proof: Suppose we have a partition Ω = (Ω1,Ω2, . . . ,Ωn)
which is different from Voronoi partition V=(V1,V2, . . . ,Vn).
Let’s consider an arbitrary point q that is in Cell Vi in the
Voronoi partition and at the same time belongs to Ω j under the
other given partition. Because of the definition of the Voronoi
partition, we always have

||q− pi|| ≤ ||q− p j||.

Note the function g to measure the unreliability is a strictly
increasing function. So,

g(||q− pi||)≤ g(||q− p j||).

Since Ω is not a Voronoi partition, the above formula must
hold with strict inequality on those regions which are not
exactly the same as the Voronoi regions. Thus,

G(P,V)< G(P,Ω),



so that G(P,V) is minimized when the sensing region is the
Voronoi partition of the sites.

Lemma 1 shows that the Voronoi partition is optimal under
the assumption of fixed sensor placement (i.e., P = {pi|1 ≤
i ≤ n}). However, given a set of n sensors, there are infinite
ways to place them on A, with each inducing a different
Voronoi partition. It is clearly impossible to check all of them
in order to identify which one achieves the minimal G(P,V).
Theoretical understanding is needed to discover the optimal
P, whose induced Voronoi partition minimizes G(P,V).

To this end, we introduce the concept of centroidal Voronoi
partition, which was first given by Du et al. [37], although
similar concepts have been studied in different areas before.
The centroidal Voronoi partition has a wide usage in different
application areas. The readers are referred to [36]–[41] for
extended discussions.

Definition 8: The mass centroid, p̃i, of the Voronoi region
Vi is defined as:

p̃i =

∫
q∈Vi

qρ(q)dq∫
q∈Vi

ρ(q)dq
, (4)

where ρ(q) is the density function defined in A and ρ(q)≥ 0.
Definition 9: Given P = {pi|1 ≤ i ≤ n}. If the mass cen-

troid p̃i satisfies p̃i = pi for every Vi (1 ≤ i ≤ n), then
V= {Vi|1≤ i≤ n} is a centroidal Voronoi partition.

In other words, a centroidal Voronoi partition is a Voronoi
partition such that each site is located at the mass centroid of
its corresponding Voronoi region with respect to a given den-
sity function. For any given set of sites, a centroidal Voronoi
partition always exists, although not necessarily unique [37].

Now we show that given a set of sensors, the placement
under a generalized centroidal Voronoi partition is optimal
(i.e., with minimum G(P,V)). More specifically, we have the
following theorem.

Theorem 1: For a given set of n sensors on A, the optimal
sensor placement P = {pi|1≤ i≤ n} and corresponding parti-
tion V= {Vi|1≤ i≤ n} that together minimize the unreliability
function G(P,V) are achieved when V is the Voronoi partition
of P and pi is the generalized centroid of Vi, ∀i, 1≤ i≤ n.

Proof: Let us examine the first variation of G with respect
to a single sensor placement. Suppose that all other sensors re-
main at their original positions and only the ith sensor slightly
changes its location from pi to pi+εpi (||εpi|| ≈ 0). Let V and
V be the Voronoi partitions generated by (p1, . . . , pi, . . . , pn)
and (p1, . . . , pi + εpi, . . . , pn), and Vi and Vi be the Voronoi
regions of the ith sensor in V and V, respectively. Ni be the
set of indices of the Voronoi regions adjacent to Vi. With
respect to the slight move εpi, the Voronoi partition slightly
changes, but this change occurs only in Vi and its adjacent
Voronoi regions, i.e. V j, j ∈ Ni. Their neighboring relations
remain the same. So we have:

G((p1, · · · , pi + εpi, · · · , pn),V)−G((p1, · · · , pi, · · · , pn),V)

=
∫
Vi

g(||q− pi− εpi||)dq−
∫
Vi

g(||q− pi||)dq

+ ∑
j∈Ni

[
∫
V j

g(||q− p j||)dq−
∫
V j

g(||q− p j||)dq]

By taking the limit εpi→ 0, we arrive at

∂G
∂pi

=−MVi(CVi − pi), (5)

where
MVi =

∫
q∈Vi

1
||q− pi||

dg(||q− pi||)
d||q− pi||

dq, (6)

and
CVi =

1
MVi

∫
q∈Vi

q
||q− pi||

dg(||q− pi||)
d||q− pi||

dq. (7)

We refer readers to [38] (pp. 543-546) for details of a similar
derivation to get Equation 5. CVi is called the generalized
centroid. G achieves local minimal when pi = CVi . Also as
indicated in [38], such derivative result holds not only for R2,
but also for Rn.

Theorem 1 reveals that the generalized centroidal Voronoi
partition results in an sensor deployment, which minimizes
the unreliability function given in Definition 4. There exist
efficient algorithms to compute a planar centroidal Voronoi
partition [42], [43] and it is not difficult to convert them to
compute the generalized centroidal Voronoi partition on plane
with the pre-determined unreliability function. But algorithms
designed on 2D plane do not directly provide a workable
solution on 3D surfaces, especially when the surface has a
complicated shape. On the other hand, the convex boundary
constraint applies to the planar centroidal Voronoi partition
algorithms available in the literature. Such strong constraints
are clearly unpractical, given the FoI on surface is complex
with possible concave boundary condition. We need to develop
an approximation algorithm to efficiently extend the centroidal
Voronoi partition on a planar convex shape to 3D surfaces.

IV. APPROXIMATE SOLUTION FROM 2D TO 3D

Surface parametrization can be viewed as a one-to-one
mapping from a 3D surface to a planar domain. The most
simple example of surface parametrization is the projection
of a single valued surface expressed as z = f (x,y) to plane,
by removing z coordinates. We refer readers to [44]–[46] for
thorough surveys on surface parametrization. Parameterizing
3D surfaces to plane provides a possible solution to extend
the planar centroidal Voronoi partition to 3D surfaces by
projecting computed 2D results back to 3D surfaces based
on the inverse of the surface mapping. However we need a
special surface parametrization method which can map general
3D surfaces to convex shape in plane without restrictions on
the shape or the boundary conditions of the surfaces.

One surface parametrization method is conformal mapping,
which is a bicontinuous function, f : S→ C from surface S
to plane C. According to the Riemann mapping theorem [47],
a topological disk surface can be conformally parameterized
to a unit disk on plane. One way to compute the conformal
mapping from a surface to a planar unit disk is to use
discrete surface Ricci flow. We will give a brief introduction
of discrete surface Ricci flow in Section V. As a result, the



set of originally randomly deployed sensors on the surface is
mapped to the planar disk by f accordingly. With the circular
boundary condition, we can apply available algorithms [42],
[43] to efficiently compute a centroidal Voronoi partition of
the given set of sensors on the planar disk, then project them
back to the surface based on f−1. However, simply computing
a centroidal Voronoi partition on mapped planar disk does not
induce a centroidal Voronoi partition on surface. The reason
is straightforward. The definition of the centroidal Voronoi
partition is distance-based. For surfaces embedded in R3,
except very few cases like cylinder, there exists no any surface
parametrization method which preserves metric (distance) of
surfaces from R3 to 2D plane, regardless of the mapped shape
on the 2D plane [48].

So it is obvious that we can’t simply adopt conformal
parametrization method to achieve the approximation from
2D to 3D. We need to compensate the distance distortion
when computing the generalized centroidal Voronoi partition
on mapped planar disk. One appealing property of conformal
mapping is that it preserves the surface Riemannian metric
(distance) up to a scaling factor called conformal factor. The
conformal factor c f at a point p on the surface can be
computed as the ratio between the infinitesimal areas around p
in the 3D surface and 2D mapped plane, i.e. c f (p) = Area3D(p)

Area2D(p) .
Intuitively speaking, zooming in locally a conformal mapping,
the mapping result on plane has no local distortion compared
with the original surface embedded in R3, except compressed
by c f . Thus, when computing the centroidal Voronoi partition
on the mapped planar disk, we need to scale the compressed
metric on disk back by some value related with c f . Denote
the metric of the surface at point p as d3D(p), and the metric
of the mapped planar disk at point p as d2D(p), they differ by

d3D(p) = c f (p)2d2D(p).

We refer readers to our previous work [49] for the details of
the equation.

V. DISCRETE SURFACE RICCI FLOW

Ricci flow was first introduced by Richard Hamilton for
Riemannian manifolds of any dimension in his seminal work
[50]. Later Chow and Luo proved a general existence and
convergence theorem for the discrete Ricci flow on surfaces
in [51].

To briefly introduce the concept of discrete surface Ricci
flow, we start from the definitions of circle packing metric
and discrete Gaussian curvature. Let M = (V,E,F) denote a
triangulated surface embedded in R3, consisting of vertices
(V ), edges (E), and triangle faces (F). Each vertex vi ∈ V is
assigned a circle with radius γi. The radius function is denoted
as Γ : V → R+. The two circles at vi and v j of edge ei j ∈ E
intersect with an acute angle φi j, which is called the weight
of ei j. The weight function is denoted as Φ : E→ [0, π

2 ].
The length of ei j can be computed from γi,γ j and φi j by

the following cosine law:

lei j
2 = γi

2 + γ j
2 +2γiγ j cosφi j. (8)

Definition 10 (Circle Packing Metric): (Thurston 1976
[52]) A circle packing metric of M includes Γ and Φ.

Discrete Gaussian curvature measures how curved the dis-
crete surface is embedded in R3. It is defined as the angle
deficit.

Definition 11 (Discrete Gaussian Curvature): The
discrete Gaussian curvature Ki on a vertex vi is defined as:

Ki =

 2π−∑ f jk
i ∈F

θ
jk
i , vi 6∈ ∂M,

π−∑ f jk
i ∈F

θ
jk
i , vi ∈ ∂M,

(9)

where θ
jk
i represents the corner angle attached to vi in face

f jk
i ∈ F , and ∂M is the boundary of M.

Suppose M has an initial circle packing metric (Γ0,Φ).
Let ui be the logarithm of γi associated with vi. The discrete
surface Ricci flow is defined as follows:

dui(t)
dt

= (Ki−Ki), (10)

where Ki and Ki are the target and current Gaussian curvatures
at vi, and t is the time. Discrete surface Ricci flow continuously
deforms the circle packing metric according to the difference
between the current and target Gaussian curvatures. Conver-
gence of discrete surface Ricci flow is proved in [51]. The final
circle packing metric induces the edge length which satisfies
the target Gaussian curvature.

By setting the target Gaussian curvatures of vertices satis-
fying the circular boundary condition, i.e., Ki = 0 for vi 6∈ ∂M,
and ∑Ki = 2π for vi ∈ ∂M, the discrete surface Ricci flow
deforms the circle packing metric of a topological disk surface.
The induced edge lengths when the discrete surface Ricci flow
converges embed the surface to a planar disk.

VI. ALGORITHMS

There are many resources providing real 3D surface datas.
The Shuttle Radar Topography Mission (SRTM) C-band data
[53] is the most complete and high-resolution digital topo-
graphic database. Another data resource is Light Detection
And Ranging data (LIDAR) [54]. They are elevation data with
high accuracy and dense coverage. Points in these data sets are
on a grid structure, so it is straightforward to convert them
to a triangular surface structure. Based on the overall idea
discussed in previous sections, we devise a series of triangular
structure-based algorithms to solve the OSDP.

Fig. 1 illustrates the major steps of the algorithms. The
algorithms start with an initially random deployment of a given
set of sensors marked with red on a mountain surface approxi-
mated by 5k triangles, denoted as M, as shown in Fig. 1(a). The
computed conformal mapping of the surface to a unit planar
disk, denoted as f : M→D, is shown in Fig. 1 (b) with the set
of sensors mapped to the disk accordingly. Fig. 1(c) uses color
encoding to illustrate the conformal factor c f , which measures
the metric distortion of M on D. The computed generalized
centroidal Voronoi partition on D based on its compensated
metric is shown in Fig. 1 (d) with red points and marked
polygons representing the computed sensor positions and their



(a) (b) (c) (d) (e)
Fig. 1. Algorithms: (a) A set of sensors marked with red is randomly deployed on a mountain surface approximated by 5k triangles. (b) The mountain surface
is mapped to a planar unit disk based on a conformal parametrization denoted as f , with sensors mapped to the disk accordingly. (c) Metric distortion of the
surface on the disk is measured by conformal factor c f with color coded. (d) A generalized centroidal Voronoi partition of the set of sensors is computed on
the planar disk based on its compensated metric, where points and polygons representing the computed sensor positions and their sensing regions respectively.
(e) The set of sensors and their corresponding sensing regions are projected back to the surface based on f−1.

sensing regions respectively. Fig. 1 (e) depicts the optimal
deployment of the set of sensors and their sensing regions on
M by projecting the computed generalized centroidal Voronoi
partition on D to M based on f−1. Note that in this example we
choose the sensing unreliability increased quadratically along
the distance with g(||q− pi||) = 1

2 ||q− pi||2. Next we elaborate
each step of the proposed algorithms sequentially.

A. Parameterizing Surface to Disk
We parameterize a triangulated surface M = (V,E,F) in R3

to a unit disk D in R2 using discrete surface Ricci flow as
defined in Equation 10. The key idea of the algorithm is to
set the target Gaussian curvature ki of vertex vi ∈V satisfying
the circular boundary condition. The mapping result stored at
each vi is a complex number, called its uv value, which serves
as the planar coordinates of vi.

1) Preprocessing of boundary vertices: A boundary edge
can be easily identified since it involves one face only.
Let n denote the number of boundary edges of M.

2) Initialization: For each vi, ui = 0. If vi ∈ ∂M, ki =
2π

n ,
otherwise ki = 0.

3) The length of edge ei j is computed as li j = eui + eu j .
4) The corner angle θ

jk
i attached to vi in face fi jk is

computed as θ
jk
i = cos−1 l2

i j+l2
ki−l2

jk
2li j lki

.
5) Current discrete Gaussian curvature ki of vi is computed

as Equation 9.
6) If all |ki−ki|< ε, where ε is the threshold of the curva-

ture error, the algorithm directly goes to the next step;
otherwise, ui = ui+δ(ki−ki), where δ is a small constant
that indicates the step length. Then, the algorithm goes
back to Step 3).

7) Planar embedding: The edge lengths (i.e., {li j|ei j ∈
E}) are determined when the discrete surface Ricci
flow converges. They will induce a planar disk em-
bedding. Starting from any random fi jk, set their uv
values as: uv(vi) = (0,0), uv(v j) = (li j,0), and uv(vk) =

(lkicosθ
jk
i , lkicosθ

jk
i ). In a breadth first search way, for

f jil with exactly two vertices (e.g., vi and v j) having
uv values, compute the uv value of vl as the inter-
section point of the two circles centered at uv(vi) and
uv(v j) with radii lil and l jl , respectively, and satisfying
(uv(vl) − uv(vi)) × (uv(v j) − uv(vl)) > 0. Repeat the
above process until every vertex has its uv value.

B. Computing Generalized Centroidal Voronoi Partition

The Lloyd algorithm in [42] is one of the most popular iter-
ative schemes for computing the centroidal Voronoi partition.
Its convergence is proved in [43]. The Lloyd algorithm can be
summarized by a three-step process:

1) Build the Voronoi partition of a set of sensors deployed
inside a convex shape on plane.

2) Compute the centroid of each planar Voronoi region, and
move each sensor onto its respective centroid.

3) Repeat Steps 1) and 2) until the moving distance of every
sensor in Step 2) is smaller than a threshold.

Following the three basic steps, we first compute the
Voronoi partition on the unit planar disk. There are multiple
matured algorithms to compute the Voronoi partition of a set of
discrete objects on a planar domain [55]. Our implementation
employs the 2D Voronoi Diagram Adaptor of the CGAL
library [56], one of the most popular computational geometry
libraries.

Then we uniformly sample the unit disk using a a regular
grid and perform the summation over all sampled points to
approximate the integration in Equation 7:

MVi = ∑
q∈Vi

c f (q)2 1
||q− pi||

dg(||q− pi||)
d||q− pi||

, (11)

and

CVi =
1

MVi
∑

q∈Vi

c f (q)2 q
||q− pi||

dg(||q− pi||)
d||q− pi||

, (12)

where q is a sampled point inside the Voronoi region Vi
corresponding to the ith sensor at the planar position pi. Then
we update the planar position of the ith sensor to CVi .

As discussed in Sec. IV, conformal factor (cf) is used to
compensate the metric distortion from 3D surface to 2D disk.
c f of a vertex vi can be computed as the ratio of the triangle
areas in 3D and 2D spaces of all f jk

i incident to vi,

c f (vi) =
∑ f jk

i ∈F
Area3D( f jk

i )

∑ f jk
i ∈F

Area2D( f jk
i )

.

c f of a point q within a triangle f jk
i can be computed by

bilinear interpolation,

c f (q) = λ1c f (vi)+λ2c f (v j)+λ3c f (vk),



(a) Mountain 1 (b) Mountain 2 (c) Mountain 3 (d) Mountain 4

Fig. 2. Given a fixed set of sensors, the first row shows that the sensors are randomly deployed on surfaces with random sensing partition; the second row
shows that the sensors are randomly deployed on surfaces with the Voronoi-based sensing partition; the third row shows that the sensors are re-deployed on
surfaces with the generalized centroidal Voronoi based sensing partition. Figure 3 shows the decreased sensing unreliability of the networks.

where λ1, λ2, and λ3 are barycentric coordinates of q inside
f jk
i , satisfying λ1 +λ2 +λ3 ≡ 1.

VII. PERFORMANCE EVALUATION

We conduct simulations on various triangulated mountain
surface models with complicated shapes and irregular bound-
aries. Specifically, mountain 1 model shown in Fig. 2(a) has
the size of 720×720m2, with the height 500m, and approxi-
mated by 5k triangles. Mountain 2 model shown in Fig. 2(b)
is a volcano with the size 720×720m2 and the height 288m,
approximated by 10k triangles. Mountain 3 model shown in
Fig. 2(c) has an irregular size of 900×900m2, with the height
550m, and approximated by 20k triangles. Mountain 4 model
shown in Fig. 2(d) has the size of 1800× 1800m2, with the
height 300m, and approximated by 38k triangles.

A. Decreased Sensing Unreliability

Initially sensors are randomly deployed on the testing sur-
face models, specifically, mountain 1 model with a given set
of 300 sensors; mountain 2 model with a given set of 300
sensors; mountain 3 model with a given set of 200 sensors;
mountain 4 model with a given set of 800 sensors. The first
row of Fig. 2 shows that the sensors are randomly deployed on
surfaces with a random sensing partition, which exhibits a very
high sensing unreliability as given in Fig. 3. When the sensing
area is re-partitioned based on Voronoi partition of the set of
sensors, the sensing unreliability decreases 47.58% in average
on the testing models. When we re-deploy those sensors such
that they satisfy a generalized centroidal Voronoi partition on

surface, the total sensing unreliability of a wireless sensor
network decreases dramatically 89.94% in average compared
with the random sensing deployment. Note that the sensing
unreliability function is g(||q− pi||) = 1

2 ||q− pi||2. Fig. 3
experimentally shows the results of the Lemma 1 and the
Theorem 1.

B. Unreliability Function

Theorem 1 is independent of the choice of the unreliability
function. The sensing unreliability in our simulations given in
Fig. 2 and 3 increases quadratically with the distance, with
the unreliability function g(||q− pi||) = 1

2 ||q− pi||2. We also
conduct simulations with other sensing unreliability functions.
Given the same set of 300 sensors initially randomly deployed
on mountain 1 model as shown in Fig. 2, two testings are
conducted with the sensing unreliability increasing linearly
and cubically, with g(||q− pi||) = ||q− pi|| and g(||q− pi||) =
1
3 ||q− pi||3 respectively. Fig. 5 shows the computed optimal
positions of sensors and their sensing partitions. Fig. 4 gives
the decreased sensing unreliability of the whole network.

C. Special Scenarios

In some special scenarios, the sensing reliability of a sensor
under its sensing range does not have a noticeable decrease
with the distance. Then the unreliability function can be
defined as the following:

g(||q− pi||) =
{

1, ||q− pi|| ≤ Rs
∞, ||q− pi||> Rs,



Fig. 3. Sensing unreliability with different deployment and sensing par-
tition methods on various surface models shown in Figs. 2, where sensing
unreliability function g(||q− pi||) = 1

2 ||q− pi||2.

where Rs is a constant called sensing range. The accuracy
of the collected data is guaranteed as long as it is acquired
within the sensing range of the collecting sensor. A point q
is said covered by a sensor if their distance is less than Rs.
Under this special g(||q− pi||), a full covered sensor network,
where every point on the surface is covered by at least one
sensor, can obviously provide all the accurate data. To achieve
the lowest unreliability in data acquisition, we are actually
looking for a surface deployment scheme with full sensor
coverage. The optimal surface deployment problem (OSDP)
is then converted to the optimal surface coverage problem
(OSCP) [27], the minimal number of sensors to fully cover
the FoI on a surface. The hardness of the OSCP has been
proved in [27]. There are several approximation algorithms
proposed in [27] to address this problem in wireless sensor
networks. With a slight change of our algorithms made by
replacing Equation 12 to the following one:

CVi =
∑q∈Vi c f (q)2q

∑q∈Vi c f (q)2 (13)

when computing the centroid of each planar Voronoi re-
gion, our proposed algorithm in Sec. VI can also provide an
approximated solution.

We choose the greedy method proposed in [27] to make a
comparison because the greedy method performs the best in
their simulations. We also compare with the triangle pattern
[57], which is the most widely used method to cover FoI on
an ideal plane, to illustrate the intrinsic limitation to directly
apply planar deployment based method to surface. The sensing
radius is 30m in our testings.

Fig.s 6 and 7 compare our method with the above two
methods, where the partition of FoI on a surface for the greedy
method is D = 5. Our approximation method achieves the
highest coverage ratio under the same set of sensors for the
same surface model. Note that Theorem 1 can no longer be
applied here. But to maximize the coverage ratio of a given set
of sensors on a FoI, it is a natural way to consider positioning
sensors uniformly on a FoI to minimize the overlapping

Fig. 4. Sensing unreliability of the same set of sensors deployed on mountain
1 surface with different deployment and sensing partition methods and various
sensing unreliability functions, specifically, function 1 g(||q− pi||) = ||q− pi||,
function 2 g(||q− pi||) = 1

2 ||q− pi||2, and function 3 g(||q− pi||) = 1
3 ||q−

pi||3.

(a) g(||q− pi||) = ||q− pi|| (b) g(||q− pi||) = 1
3 ||q− pi||3

Fig. 5. The computed optimal positions of sensors and their sensing partitions
on mountain 1 model with the same given set of sensors, but different sensing
unreliability functions.

part of their sensing regions. The equation 13 is a discrete
approximation of Equation 4, the computation of the mass
centroid of a Voronoi region with constant mass density
( ρ(q) = 1). So we actually compute a centroidal Voronoi
partition of a given set of sensors with FoI on a 3D surface
with constant density. Although it is Gershos conjecture [58]
that the sites of an Euclidean centroidal Voronoi partition are
uniformly distributed in the space for Rn and has been proved
by Fejes Tóth only for 2D convex polygon case [59], extensive
experiments have verified this conjecture [39], [40].

VIII. DISCUSSIONS

This section includes discussions on time complexity of the
proposed algorithm and the connectivity in sensor networks.

A. Time Complexity and Computation Time

Our proposed algorithm consists of two major steps: com-
puting a conformal map and computing a generalized cen-
troidal Voronoi partition. The tool to compute conformal map
is discrete surface Ricci flow [60]. Its time complexity, which
is dominated by the number of iterations, is given by −C logε

δ
,

where C is a constant, ε is the threshold of curvature error,
and δ is the step length of each iteration [51]. Its convergence
is guaranteed as proved in [51]. We measure the number
of iterations required to get a successful planar mapping for
mountain 1 model. Fig. 8 gives the result with ε = 1e−4 and
δ = 1e−1.
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Fig. 6. Comparison of our proposed method with
the greedy method and the triangle pattern on moun-
tain 1 model.
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Fig. 7. Comparison of our proposed method with
the greedy method and the triangle pattern on moun-
tain 4 model.
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Fig. 8. The number of iterations required to meet
a given curvature error threshold when computing a
conformal map on mountain 1 model.
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Fig. 9. The number of iterations required to meet a given moving distance
threshold when computing a generalized centroidal Voronoi partition on
mountain 1 model.

The time complexities of computing the Voronoi partition
and the centroid are O(n logn) and O(m) respectively, where n
is the number of the sensors, and m is the number of the sam-
pling points inside the unit planar disk for performing inter-
gration. So the time complexity of one iteration of computing
the generalized centroidal Voronoi partition is O(n logn+m).
The total number of iterations depends on individual cases for
convergence of the generalized centroidal Voronoi partition.
Fig. 9 gives the number of iterations to compute a generalized
centroidal Voronoi partition for mountain 1 model where the
threshold of the maximum moving distance is 0.5m. The
average computing time of each iteration is 0.67 sec and the
total computing time is 97.9 sec. Our testing computer has 1G
memory with Intel Core2 X6800 3.0G Hz.

B. Connectivity of Sensor Network

In this research, we focus on sensing quality of a sensor
network. Let r denote the longest distance between a sensor
and a point inside its sensing region, and rc denote the
communication range of the sensor. If rc

r ≥ 2, a sensor node has
a regular connectivity of six under our proposed deployment
scheme when we assume numerical error free. The reason is
that centroidal Voronoi partition in R2 always has congruent
regular hexagons as its Voronoi regions [61], and the inverse
of conformal mapping keeps the neighboring relations of each

Voronoi region. For different degrees of connectivity of sensor
networks deployed on surfaces, they remain open problems.

IX. CONCLUSION AND FUTURE WORK

In this paper we have formulated the optimal surface deploy-
ment problem by introducing a general function to measure the
sensing unreliability of the entire network on the FoI. We have
proven that the optimal surface deployment can be achieved
under a generalized centroidal Voronoi partition. Based on the
insight gained from conformal mapping, we have proposed a
series of algorithms to compute the optimal sensor deployment
on 3D surfaces that minimizes the overall sensing unreliability
of the network. The effectiveness of the proposed algorithms
have been verified by simulation results.

Our current research considers static sensors that can be
deployed at pre-determined locations. Our future work will
take mobile sensors into consideration for hostile environment
where sensors cannot be manually deployed. Besides the
optimal sensing unreliability, different surface deployment
optimization objectives will be studied in our future work.
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