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Abstract—This work aims to address the problem of localiza-
tion in 3D surface wireless sensor networks. First, it reveals the
unique hardness in localization on 3D surface in comparison with
the well-studied localization problems in 2D and 3D space, and
offers useful insight into the necessary conditions to achieve de-
sired localizability. Second, it formulates the localization problem
under a practical setting with estimated link distances (between
nearby nodes) and nodal height measurements, and introduces a
layered approach to promote the localizability of such 3D surface
sensor networks. Crossbow sensor-based experiments and large-
scale simulations are carried out to evaluate the performance of
the proposed localization algorithm. The numeric results show
that it can effectively improve localizable rate and achieve low
location errors and computational overhead, with the desired
tolerability to measurement errors and high scalability to large-
size wireless sensor networks.

I. INTRODUCTION

The emerging wireless sensor network technology is open-
ing up tremendous opportunities for ubiquitous monitoring,
pervasive computing and autonomous actuation. A sensor
network consists of a large number of low cost, resource-
constrained sensor nodes, for collaborative data acquisition,
processing and communication. Depending on the target appli-
cation circumstance, a sensor network may be deployed on 2D
plane (such as crop fields), 3D volume (e.g., for underwater
reconnaissance and atmospheric monitoring), or 3D surface
(e.g., in seismic monitoring in mountainous regions), as illus-
trated in Figs. 1(a)-1(c), respectively.

Geographic location information is imperative to a diversity
of applications in wireless sensor networks, ranging from
optimal nodal deployment and geometry routing, to position-
aware sensing and distributed data storage and retrieval. Al-
though global navigation systems (e.g., GPS) have been widely
available for localization, it is often unrealistic or highly cost-
ineffective to integrate a GPS receiver in every node of a large-
scale sensor network, not to mention its lavishly high energy
consumption. Moreover, part or all of the sensors may be
prohibited from receiving satellite signals in some application
scenarios, rendering it impractical to solely rely on global
navigation systems for sensor localization. To this end, GPS-
less and GPS-free algorithms have been developed recently for
autonomous localization in wireless sensor networks [1]–[24].

A. Review of Autonomous Localization Algorithms

The earliest attempt for localization is based on trilateration.
In two-dimensional (2D) geometry, the location of an unknown
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node can be determined based on the known coordinates of
three reference nodes and the precise distances to them, by
finding the intersect of three circles centered at the reference
nodes. Although absolutely accurate distances are generally
unprocurable in practice, the Euclidean distance between two
nodes in a wireless sensor network can be estimated by their
shortest path with the per hop distance measured by received
signal strength indicator (RSSI) or time difference of arrival
(TDOA) or simply assumed as a constant. This approach is
effective especially when nodal density is sufficiently high and
thus the shortest path often approximates a straight line. A
straightforward application of trilateration based on such esti-
mated distances may fail to yield a single intersect to localize
the unknown node. However, efficient error minimization and
fuzzy relaxation techniques such as multi-dimensional scaling
(MDS) [15]–[17], nonlinear optimization [20], and neural
networks [18], [19] can be adopted to establish coordinates
system for practical wireless sensor networks. For example,
Fig. 1(d) shows the localization results of MDS, where the
distance between two nodes is estimated by their shortest path
with the per hop distance assumed as a constant radio range.

The three-dimensional (3D) trilateration is not substantially
different from its 2D counterpart [25]. An unknown node can
be localized by four reference nodes and the Euclidean dis-
tances to them. Moreover, most error minimization algorithms
discussed above can be readily extended from 2D to 3D to
support practical localization based on estimated distances,
although with potentially increased computational complexity.
Fig. 1(e) illustrates the localization results based on MDS for
the 3D network shown in Fig. 1(b). The above discussions have
assumed the shortest path does not detour around a network
boundary due to void area. Otherwise, network partition can
be applied to diminish the effect of detouring paths [26].

Besides trilateration, a flat metric-based approach [21] has
been proposed recently to localize nodes in a distributed
manner in wireless sensor networks. It requires estimated
local distance between neighboring nodes only, and adopts
differential geometry tools to compute flat metrics with mini-
mum deviation from the estimated distances. Then it embeds
the network graph according to such flat metrics to yield
sensor coordinates. Without the needs of estimating distances
between remote nodes, it exhibits high tolerance to complex
network settings with concave boundary conditions. However
it cannot be readily extended for localization in 3D space.
B. Unique Challenges in Localization on 3D Surface

Given that the aforementioned techniques have solved the
problem of localization in sensor networks deployed on 2D
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(a) 2D network. (b) 3D volumetric network.
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(c) 3D surface network.

(d) MDS result of a 2D network. (e) MDS result of a 3D volumetric network. (f) MDS result of a 3D surface network.

Fig. 1. Figs. (a)-(c) illustrate an overview of wireless sensor networks deployed on 2D plane, in 3D volumetric space, and on 3D surface, respectively. The
shortest path well approximates the Euclidean distance on 2D plane and in 3D volumetric space, but becomes misleading on 3D surface. Figs. (d)-(f) show
the localization results based on MDS, which works well in the 2D network and the 3D volumetric network, but fails in the 3D surface network.

plane or in 3D volumetric space, it appears straightforward
at the first glance to apply similar approaches to localize
sensor nodes on 3D surface. However, the problem is surpris-
ingly nontrivial due to challenges discussed below, where the
essence of the problem is elaborated in a continuous domain.

To facilitate our discussion, we first define the surface
distance as follows.

Definition 1: The surface distance between two points on
a 3D surface is the length of the geodesic connecting them.

Geodesic is a generalization of the notion of a “straight line”
to “curved spaces”. It is the distance of (locally) the shortest
path between the two points on the surface. Our investigation
reveals that surface distance constraints are insufficient to
localize a general 3D surface. More formally, we establish
the following theorem.

Theorem 1: A general 3D surface is not always localizable,
given surface distance constraints only.

Proof: A 3D surface is localizable if it has a unique em-
bedding up to a global rigid motion, under given constraints.
Otherwise it is non-localizable.

The theorem can be proven by showing that a 3D surface
may have different embeddings in 3D under the assumption
of known precise surface distance between any two points on
the surface. To this end, examples are constructed to show that
a surface can be deformed to another one without changing
the surface distance between any pair of points. For instance,

a piece of paper (with Gaussian curvature zero everywhere)
shown in Fig. 2(a) can be rolled up to a cylinder illustrated
in Fig. 2(b) or to other curved shapes (see Fig. 2(c)). The
distances between all pairs of points on the paper clearly
remain the same under different shapes. Besides the open
surface discussed above, similar deformation can be applied
on closed surfaces (see Figs. 2(d)-2(f) for example).

Clearly, ambiguous embeddings exist and thus a general 3D
surface is not always localizable under given surface distance
constraints only. The theorem is thus proven.

This result is anti-intuitive as it is commonly assumed
that distance information is sufficient for localization, which
is, however, untrue for general 3D surfaces as revealed by
Theorem 1. As a matter of fact, only a special case of 3D
surface is proven localizable based on distance information.
More specifically, if the Gaussian curvature of a smooth
surface is positive everywhere, the distance information (i.e.,
metric) can determine an embedding in R3 as a closed convex
surface unique up to a rigid motion or a reflection, given by
S. Cohn-Vossen as the rigidity theorem in 1927 [27].

In addition, it is worth to point out that the surface distance
between two points is generally different from their Euclidean
distance. For example, let’s consider a mountainous surface
as depicted in Fig. 1(c). The Euclidean distance between
Nodes X and Y is shown by the solid green line. However,



(a) A 2D surface. (b) Deformation to cylinder. (c) Deformation to wave shape.

(d) A closed 3D surface. (e) Small deformation. (f) Large deformation.

Fig. 2. Illustration of the non-localizability of general 3D surfaces. A surface can be deformed to another surface without changing the surface distance
between any pair of points.

the surface distance between them (see the dashed red line)
is dramatically longer. Apparently, there is no deterministic
correlation between the Euclidean distance and the surface
distance. As a result, it often becomes misleading to estimate
the Euclidean distance between two points in a 3D surface
sensor network by their shortest path, resulting in extremely
high errors or failures under trilateration-based localization
(see Fig. 1(f) for example).

C. Contribution of This Work
This work aims to address the problem of localization on

3D surface. Its contributions are twofold:
• First, it reveals the unique hardness in localization on

3D surface (as shown in Theorem 1) and offers useful
insight into the necessary conditions to achieve desired
localizability.

• Second, it formulates the localization problem under a
practical setting with estimated link distances (between
nearby nodes) and nodal height measurements, and in-
troduces a layered approach to improve the localizability
of such 3D surface sensor networks.

The rest of this paper is organized as follows: Sec. II
introduces the proposed localization algorithm. Secs. III
and IV present simulation and experimental results, respec-
tively. Sec. V concludes the paper.

II. PROPOSED LOCALIZATION ALGORITHM FOR 3D
SURFACE SENSOR NETWORKS

Following the above theoretic discussions on hardness of
localization on a continuous 3D surface, this section focuses

on algorithm designed for discrete 3D surface sensor networks.
It begins with a formulation of the localization problem under
a practical setting with given estimated link distances (between
nearby nodes) and nodal height measurements. Although with
such augmented input information, the problem is still non-
trivial, with only a special case solved. To this end, a layered
approach is proposed to improve localizability.

A. Problem Formulation

The objective of this work is to determine locations of
sensor nodes deployed on a 3D surface. The 3D surface sensor
network has been illustrated in Fig. 1(c). Formally, a 3D
surface network is defined as follows.

Definition 2: A 3D surface sensor network consists of
sensor nodes deployed on a 3D surface where wireless signals
between nearby nodes propagate along the surface only.

Most discussions and results obtained in a continuous
setting in Sec. I-B still hold in a discrete 3D surface sensor
network. In a sharp contrast to 3D volumetric sensor networks
where the shortest path between two nodes approximates their
direct Euclidean distance (see Fig. 1(b)), there is no deter-
ministic correlation between the Euclidean distance and the
shortest path in a 3D surface sensor network (as illustrated in
Fig. 1(c)). Therefore the trilateration-based schemes often fail.
As revealed in Theorem 1, it is intrinsically hard to localize
nodes in a general 3D surface network based on surface
distances only. To this end, a practical setting with augmented
input information is considered in this research, where not
only surface distances but also nodal height measurements are



assumed to formulate the localization problem.
Definition 3: For a given sensor network represented by a

graph G = {V,E}, where V is the set of sensor nodes and E is
a set of edges between any two neighboring nodes within their
radio communication range, the localization problem studied
in this research is formulated as follows:

• Input: {zi|i ∈ V }, {lij |ij ∈ E},
• Output: {(xi, yi, zi)|i ∈ V },

where (xi, yi, zi) are the coordinates of Node i and lij is the
distance between two neighboring nodes i and j.

If the above problem is solved (or can be solved), the
network is called localized (or localizable).

The height (or altitude) of a sensor on a 3D surface is its z-
coordinate. It can often be obtained by measuring atmospheric
pressure. Such measurement is extremely low cost. As a matter
of fact, many sensors have integrated barometer and thus are
ready to make atmospheric pressure measurements. For exam-
ple, the Crossbow MTS400/MTS420 sensor board is equipped
with Intersema MS55ER pressure sensor with an error margin
of no more than 3.5% in its measured atmospheric pressure
and accordingly can determine its height with high accuracy.
The height measurements of a 3D surface network are a set
of z-coordinates of the sensor nodes on the surface. On the
other hand, distance between two neighboring nodes can be
estimated by RSSI or more accurate methods if available.
Since the sensor’s communication range is short, radio signals
are generally deemed to propagate along the surface only.

The nodal height measurements help to lower the hardness
of the localization problem. One may even expect that the 3D
surface localization problem can be reduced to the localization
problem on 2D plane with the known nodal height. However,
this is anti-intuitively untrue, as demonstrated below.

Theorem 2: A general 3D surface is not always localizable
based on surface distance and nodal height information only.

Proof: Given a 3D surface, one can always construct
a plane that is parallel to z-axis and intersects the surface.
Let S and L denote the surface and the plane, respectively.
Obviously, L cuts S into more than one segments. For a
segment τ , its mirror image (according to Plane L) is denoted
by τ ′ (as shown in Fig. 3(a)). Accordingly, another surface S′

can be constructed based on τ ′ and the rest segments of S
(see Fig. 3(b) for example).

Comparing S and S′, it is not difficult to find that any
point on S has the same height as its corresponding point
on S′, because the mirroring is performed according L that is
parallel to z-axis. Moreover mirroring does not change surface
distances. The surface distance between any two points on S
remains the same as its counterpart on S′.

Therefore, a 3D surface does not have a unique embedding
and accordingly is not localizable, with given surface distance
and nodal height information only.

Theorem 2 has revealed the fundamental challenge in lo-
calization of a general 3D surface sensor network based on
surface distance and nodal height information. The rest of this
section first discusses a special 3D surface sensor network,
called single-value surface network, which can be localized,
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(b) Surface S′ after mirroring.

Fig. 3. Illustration of nondeterministics of a 3D surface with given surface
distances and nodal height information, where τ ′ is the mirror image of τ
according to Plane L.

(a) A SV 3D surface network. (b) Triangular mesh and projection.

Fig. 4. Localization of a single-value surface network.

and then introduces a layered approach, aiming to convert a
general 3D surface sensor network to a set of single-value
surface networks to improve localizability.

B. Localization in Single-Value Surface Networks

Now let’s first consider a simplified scenario, i.e., a sensor
network deployed on a single-value 3D surface.

Definition 4: A single-value (SV) 3D surface is a surface
on which any two points have different projections on the x-y
plane.

An example of SV 3D surface network is illustrated in
Fig. 4(a). The above definition is given in reference to x-
y plane since z-coordinate (i.e., nodal height) is assumed
available. A general SV surface can be defined according to
other planes too, but is not considered in this research. A
SV surface is common in many practical applications. For
instance, when sensors are airborne to a mountainous region
or dropped to underwater seabed, they naturally form a SV
3D surface sensor network.

The localization of a SV 3D surface sensor network follows
three steps as outlined below:

• First, based on the connectivity graph of the SV 3D
surface sensor network, a distributed algorithm [28] is
applied to establish a triangular mesh structure (see
Fig. 4(b)). The triangular mesh is a planar graph, where



each non-boundary edge is shared by two and only two
triangles.

• Second, the triangular mesh is projected to the x-y
plane as illustrated in Fig. 4(b), where the projection
of an edge between Node i and Node j has a length
of l′ij =

√
l2ij − (zi − zj)2. Note that such projection

is performed locally by each individual node based on
its neighbor information only. The projection is also a
triangular mesh.

• Third, based on {l′ij |ij ∈ E} that are subject to errors
under a practical sensor network setting, a distributed 2D
localization algorithm (e.g., [15]–[21]) is applied to the
projected triangular mesh to determine {(xi, yi)|i ∈ V }.
Since z-coordinate is known, each sensor node thus
obtains its 3D coordinates (xi, yi, zi).

Lemma 1: A triangulated SV 3D surface sensor network is
localizable, given {zi|i ∈ V } and {lij |ij ∈ E}.

Proof: The above algorithmic procedure serves as a
constructive proof for the lemma.

If {zi|i ∈ V } and {lij |ij ∈ E} are all accurate, the
above algorithm yields precise coordinates for the sensor
nodes. However, both zi and lij are measured with inevitable
errors, which consequently lead to inaccurate l′ij , rendering
straightforward embedding unviable. The algorithms [15]–[21]
adopted for localization essentially produce 2D coordinates
{(xi, yi)|i ∈ V } with minimized overall errors between l′ij
and

√
(xi − xj)2 + (yi − yj)2 ∀ij ∈ E.

C. A Layered Approach for Localization in General 3D Sur-
face Networks

While the localization problem in SV 3D surface sensor
networks has been discussed above, there exist a diversity of
practical settings that are based on non-single-value (NSV)
surfaces.

It is fundamentally challenging to localize a general 3D
surface sensor network according to surface distance and nodal
height information only as shown by Theorem 2. However
Lemma 1 has revealed the desired localizability in a SV 3D
surface sensor network. Therefore, a natural step is to convert
a general 3D surface sensor network (especially a network
deployed on NSV surface) to SV 3D surface sensor networks.
To this end, a layered approach is proposed, including layer
slicing, localization and suturing as summarized below.

1) Layer Slicing: A general 3D surface is divided into
layers. Each layer consists of a set of triangular faces. Let
γi denote the ith layer. A layer consists of two sublayers of
nodes, the lower sublayer γl

i and the upper sublayer γu
i . Two

neighboring layers share a common sublayer, i.e., γu
i = γl

i+1.
The lowest layer, i.e., γ0, may be constructed in two

ways, based on boundary or z-coordinate, respectively. A
general 3D surface can be closed or open. An open surface
has a boundary. Similar to the first step of the localization
algorithm for SV networks, a triangular mesh structure can be
established by using a distributed algorithm [28]. Based on the
triangular mesh, it is straightforward to identify the boundary

of the surface. More specifically, since an internal edge of the
triangular mesh is always shared by two neighboring triangles,
an edge that is involved in one triangle only is identified as
a boundary edge. Consequently, a node on a boundary edge
is a boundary node. An arbitrary boundary node can initiate a
control packet that only propagates along boundary edges to
discover a sequence of boundary edges that form a boundary.

γ0 can be constructed based on the boundary identified
above, comprising all triangular faces that contains at least one
boundary node. The boundary nodes form the lower sublayer
of γ0 (i.e., γl

0), while the rest nodes in γ0 are put into γu
0 .

If there exist multiple boundaries, the one with the lowest
average z coordinate is chosen. A higher layer is determined
by the layer below it. More specifically, if a triangular face
contains at least one node in γu

i but the face itself is not
included in γi, it is included into γi+1. γl

i+1 = γu
i , and the

rest nodes in γi+1 are put into γu
i+1. The process repeats until

every triangular face is included in a layer.
Alternatively, γl

0 can be set to the node with the lowest
z coordinate, e.g., for the scenario where a 3D surface is
closed (as shown in Fig. 5(a)) with no boundary or where
the average coordinate of the boundary of an open surface is
significantly higher than the lowest z coordinate of the surface.
The algorithm remains the same to slice the 3D surface into
layers. An example of layer slicing is given in Fig. 5.

2) Layer Localization: By applying the slicing process
discussed above, all layers of a sensor network deployed on
a SV 3D surface must be SV too. More specifically, we have
the following lemma.

Lemma 2: All layers of a SV 3D surface are SV.
Proof: This is obvious by contradiction. If a layer is NSV,

there must exist two points on the layer that are projected
to the same point on x-y plane. Such two points on the
original 3D surface must have the same projection too, which
contradicts the given condition that the original 3D surface is
SV. Therefore the lemma is proven.

The slicing process does not guarantee every layer of a
NSV surface to be SV. This is no surprise, because otherwise
any NSV surface sensor network would become localizable,
contradicting Theorem 2. However, as demonstrated in Fig. 5,
the narrow layers are SV with high probability and thus each
SV layer can be localized by using the algorithm introduced
in Sec. II-B, significantly improving the localizability of 3D
surface sensor networks. There exist exceptions where a layer
is still NSV. In this case, the NSV layer should be marked as
non-localizable, while other localized layers must the properly
sutured together under a unified coordinates system as to be
discussed next.

3) Layer Suturing: As introduced above, if a 3D surface
sensor network is SV, all layers of the network must be SV
and localizable. Otherwise given a NSV 3D surface sensor
network, the slicing scheme can effectively divide it into
layers, which are SV with high probability. In case a layer
is still NSV, it should be marked as non-localizable.

The final step of the algorithm is to suture all layers together
into a unified coordinates system. The lowest layer, i.e., γ0,



(a) A NSV 3D surface network. (b) Layer slicing. (c) Layer suturing.

Fig. 5. The layer-approach for localization on a NSV 3D surface network.

can determine an arbitrary coordinates system. The suturing
process tunes the upper layers based on lower layers to keep
nodal coordinates network-wide consistent.

Consider two localized layers, γi and γj with j > i, where
γi has been sutured to the layer(s) below it and there are no
other localized layer(s) between them. The suturing process
starts from i = 0. If j = i + 1, i.e., γj and γi are adjacent
layers, it is straightforward to suture them, because they share
a sublayer of nodes, i.e., γl

j = γu
i , and consequently, the

coordinates system used in the lower layer can be propagated
to the upper layer.

Challenges stem from the case of j > i+1 that indicates one
or multiple layers between γi and γj are non-localizable. Since
γi and γj are localized independently, their coordinate systems
are inconsistent. To suture them, the upper layer, i.e., γj , must
be translated and/or rotated. Given known z-coordinates, such
translation and rotation are on x-y plane only, determined by
minimizing the Levenberg–Marquardt function:

F (dx, dy, α) =
∑

a∈γl
j
, b∈γu

i

[Yab − fab(dx, dy, α)]
2,

where dx and dy are translations along the x and y axes and
α is rotation that γj should apply. For Node a in γl

j and Node
b in γu

i , Yab is the estimated distance between them (e.g., by
the hop count of their shortest path multiplying the average
hop distance), and

fab(dx, dy, α) =
√
(xb − x̂a)2 + (yb − ŷa)2,

where x̂a and ŷa are the new x-y-coordinates of Node a after
translation and rotation:

x̂a = xa × cosα− ya × sinα+ dx,

ŷa = xa × sinα+ ya × cosα+ dy.

Layer γj shifts and rotates according to the optimal dx,
dy and α that minimize F (dx, dy, α). The above process
aligns the two layers such that the overall difference between
the estimated surface distance (i.e., Yab) and the Euclidean
distance based on calculated coordinates (i.e., f(dx, dy, α)) is
minimum. Note that although surface distance is not always
correlated with Euclidean distance as revealed in Sec. I-B, it

is effective for suturing under most practical settings, where a
very small number of NSV layers (often one layer only) exists
between γi and γj . Note that, surface distance is not employed
for localization directly. The shapes of γi and γj have already
been fixed, with only three parameters (i.e., dx, dy and
α) to be determined. Such constraints diminish the effect
of uncorrelated surface distances. The suturing procedure is
applied from the lowest to the highest localizable layers such
that they are integrated in a consistent coordinate system.

III. SIMULATION RESULTS

In this section, we present simulation results of the proposed
3D surface localization algorithm under practical network
models, to study its performance trend with varying network
scales and measurement errors.

A. Simulation Setup

Among a diversity of applications of 3D surface sensor
networks, we choose three models inspired by the exploration
and monitoring of mountain terrain, sea cave and seismic
activities in volcano, as illustrated in Figs. 6(a)-6(c). About
one to four thousands of sensor nodes are randomly deployed
in each model. The proposed scheme does not rely on specific
communication models. For a given communication model,
a connectivity graph of the 3D surface sensor network is
established. We assume two neighboring nodes can measure
the distance between them. Moreover, we assume every node is
aware of its height, e.g., via integrated barometer as discussed
in Sec. II. Both distance and height are subject to measurement
errors, which are varied in our simulations from 0% to 20%.
Based on the connectivity graph, a distributed algorithm [28]
is applied to establish a triangular mesh structure.

We run the proposed 3D surface localization algorithm using
JAVA and MATLAB, including layer slicing, localization and
suturing, and evaluate its performance in terms of localizable
rate, location error and computational overhead. We assume
a general communication model in physical layer in contrast
to the nonrealistic UDG or quasi-UDG models [29]. As
discussed in Sec. II-C, nodes in NSV layers are marked non-
localizable. The localizable rate is the percentage of nodes
that can be localized. Based on the localized nodes, we



(a) Model 1: mountain model. (b) Model 2: sea cave model. (c) Model 3: volcano neck model.

(d) Localization result of Model 1. (e) Localization result of Model 2. (f) Localization result of Model 3.

Fig. 6. Network models and localization results. The grey color represents localization errors.

calculate location errors that are due to measurement errors in
distance and height and the existence of NSV layers. Since the
coordinates produced by the localization algorithm often refer
to a coordinate system different from the coordinate system
used by the ground truth, direct comparison of coordinates is
infeasible. To avoid global alignment of coordinates systems,
we determine the average location error as follows. Let l

′

denote the distance between two neighboring nodes computed
based on the established coordinates and l denote the ground-
truth distance between them. We define the network-wide
average of |l− l

′ |/r to be the average location error, where r
is the maximum radio communication range of sensor nodes.

Figs. 6(d)-6(f) depict the localization results under 5%
measurement errors. As can be seen, our algorithm can restore
origin locations well in general. In Fig. 6(e), the locations of
nodes in NSV layers are approximated based on adjacent lay-
ers for complete illustration, and thus noticeable deformation
can be observed.

B. Localizable Rate

Table I shows the localizable rate under different network
models, scales, and measurement errors. The localizable rate is
predominantly affected by the NSV layers of a network model,
since all nodes in NSV layers are marked non-localizable. As
a result, lower localizable rate is observed under the Sea Cave
model where multiple middle layers are NSV.

As discussed in Sec. I-A, the distance between two adjacent
nodes can be measured by received signal strength indicator
(RSSI) or time difference of arrival (TDOA). In practical ap-

plications, neither of the two methods yields absolutely precise
distance. In our simulations, we assume the distance measure-
ment error is a uniformly distributed random variable and vary
the maximum measurement error from 0% to 20% to study
its impact on localizable rate. We observe a slightly degraded
localizable rate, with the increase of distance errors. This is
because distance errors may change geometric characteristics
of the 3D surface network and introduce NSV components in
an in fact SV layer. The more the measurement errors, the
higher the probability to create such NSV components.

In addition, we increase the network size from 1×103 to 4×
103 sensor nodes. The proposed localization algorithm exhibits
excellent scalability, with a stable localizable rate unaffected
by the network size. As discussed above, the non-localizability
is due to the existence of NSV layers, which depends on the
geometry shape of the 3D surface itself but is unrelated to
network scale or nodal density.

C. Average Location Error

The average location errors are reported in Table II, which
are calculated based on localizable nodes only. According to
Lemma 1, a SV layer can be precisely located if distance and
height measurements are free of errors. This is verified by our
simulation results. For SV 3D surfaces (e.g., the Mountain and
Volcano models) with zero measurement errors, the localiza-
tion is perfect, yielding an average location error of zero. It
is often expected that the average location error of a NSV 3D
surface network must be higher due to the approximation in
suturing two non-adjacent layers separated by one or multiple



TABLE I
LOCALIZABLE RATE.

Number Maximum
of measurement Mountain Sea cave Volcano

sensors error neck
(%) (%) (%) (%)

1× 103 0 100 91.2 100
5 99.8 90.9 99.9
10 99.2 90.3 99.4
20 98.9 89.4 99.1

2× 103 0 100 90.4 100
5 99.9 90.0 99.9
10 99.7 89.5 99.5
20 99.1 88.6 98.8

4× 103 0 100 90.9 100
5 99.7 90.1 99.9
10 99.5 89.2 99.7
20 98.3 88.7 98.6

TABLE II
AVERAGE LOCATION ERROR.

Number Maximum
of measurement Mountain Sea cave Volcano

sensors error neck
(%) (%) (%) (%)

1× 103 0 0.00 0.00 0.00
5 2.53 2.57 2.54
10 5.70 5.74 5.46
20 15.9 16.6 13.5

2× 103 0 0.00 0.00 0.00
5 2.55 2.58 2.53
10 5.45 5.69 5.58
20 16.4 17.8 14.3

4× 103 0 0.00 0.00 0.00
5 2.55 2.55 2.53
10 5.54 5.62 5.43
20 18.1 15.7 14.0

NSV layers. However, we do not observe a significantly
higher localization error in the Sea Cave model, indicating
that the suturing procedure effectively tunes different layers
to keep nodal coordinates network-wide consistent. This is
because, under the set of distance constraints employed in the
Levenberg-Marquardt function, there exists little room to yield
extra location errors.

With higher measurement errors, the localization results
naturally become less accurate. Both the SV and NSV surface
networks share the same trend of higher location errors with
the increase of measurement error. In addition, similar to
our discussion on localizable rate, the network size has no
noticeable impact on location errors.

D. Computational Overhead

Given the limited computation, storage and energy resources
available at individual sensor nodes, it is highly desirable to
achieve low computational overhead in localization, aiming
to prolong the lifetime of sensor networks. The proposed
algorithm, including layer slicing, localization and suturing,
has a time complexity linear to the number of triangles in
the triangular mesh structure, if all layers are SV; otherwise,
the algorithm needs more iteration runs to suture non-adjacent
layers after individual SV layers are localized. Therefore,
higher computation overhead is observed under the Sea Cave
model as illustrated in Fig. 7.

Fig. 7 also shows that the total computation overhead
increases with the network size. This is because a larger
network consists of more triangles in its triangular mesh,
and thus requires more iterations to complete the localization
process. Meanwhile, measurement errors do not noticeably
affect computation overhead because they do not change the
network structure (especially the number of triangles in the
triangular mesh).

IV. EXPERIMENTAL RESULTS

We have also carried out experiment by establishing a 3D
wireless sensor network that consists 39 Crossbow MICAz
motes. We randomly deploy the motes on the surface of a 3D
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Fig. 7. Computation overhead.

structure, to mimic an airborne network (see Fig. 8(a)). The
average distance between two neighboring nodes is approx-
imately 30cm. The radio transmission distance ranges from
15cm to about 50cm.

We manually measure the positions of the motes with refer-
ence to an arbitrary coordinates system which serve as ground
truth as illustrated in Fig. 8(b). A line segment between two
nodes indicates that they are connected via a wireless link. We
use received signal strength indicator (RSSI) to estimate the
distance between neighboring nodes. With Crossbow MICAz
motes under low transmission power setting, such estimation
has an error rate as high as 20%. The localization result is
shown in Fig. 8(c). We observe a localizable rate of 100%
and an average location error of 13.5% in this experiment.
The distance measurement error is the dominating factor that
affects the performance of localization.

V. CONCLUSION

We have studied the problem of localization in 3D surface
wireless sensor networks. The contributions of this work
are twofold. First, our investigation has revealed the unique
hardness in localization on 3D surface in comparison with
the well-studied localization problems in 2D and 3D space,



(a) Experiment setup.

(b) Ground truth. (c) Localization result.

Fig. 8. Experimental setup and results.

and offered useful insight into the necessary conditions to
achieve desired localizability. Second, we have formulated the
localization problem under a practical setting with estimated
link distances (between nearby nodes) and nodal height mea-
surements. We have introduced a layered approach to improve
the localizability of such 3D surface sensor networks. We
have carried out experiments based on Crossbow motes and
performed large-scale simulations to evaluate the performance
of the proposed localization algorithm. Our simulation results
have shown that it can effectively improve localizable rate
and achieve low location errors and computational overhead,
with the desired tolerability to measurement errors and high
scalability to large-size wireless sensor networks.
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