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Abstract—The medial axis of a shape provides a compact
abstraction of its global topology and a proximity of its geometry.
The construction of medial axis in two-dimensional (2D) sensor
networks has been discussed in the literature, in support of
several applications including routing and navigation. In this
work, we first reveal the challenges of constructing medial axis
in a three-dimensional (3D) sensor network. With more compli-
cated geometric features and complex topology shapes, previous
methods proposed for 2D settings cannot be extended easily to
3D networks. Then we propose a distributed algorithm with
linear time complexity and communication cost to build a well-
structured medial axis of a 3D sensor network without knowing
its global shape or global position information. Furthermore we
apply the computed medial axis for safe navigation and dis-
tributed information storage and retrieval in 3D sensor networks.
Simulations are carried out to demonstrate the efficiency of the
proposed medial axis-based applications in various 3D sensor
networks.

I. I NTRODUCTION

The medial axis of a shape is the set of all points that have
more than one closest point on the boundary of the shape. For a
given shape, its medial axis provides a compact abstractionof
its global topology and a proximity of its geometry. The medial
axis of a two-dimensional (2D) sensor network has been
discussed and applied for applications including routing and
navigation [1], [2]. In [1], an approximated medial axis of a2D
sensor network is constructed and represented compactly bya
graph with size proportional to the number of the geometric
features of the network field. A greedy routing scheme with
guaranteed packet delivery and load balance is then proposed
with local decisions guided by the computed medial axis.
In [2], the medial axis of a distributed 2D sensor network
is dynamically maintained to provide guidance for users to
escape from dangerous areas.

While most earlier studies assume sensor networks on a
plane, there has been increasing interest in deploying wireless
sensors in three-dimensional (3D) space for applications such
as underwater reconnaissance, environmental monitoring and
exploration [3]–[15]. With significantly higher complexity in
geometric features and topology shapes, a 3D sensor network
needs more urgently the guidance provided by a medial axis
for numerous applications including but not limited to 3D rout-
ing, 3D navigation, and data storage and retrieval. Although
the construction of medial axis has been discussed for 2D
sensor networks, it is anti-intuitively nontrivial to extend it
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Fig. 1. The true medial axis points are mistakenly considered as noises when
simply extending a 2D medial axis algorithm to 3D. (a) A 2D sensor network.
(b) The cross-section of a 3D network.

to 3D settings. Next we show the fundamental challenges for
constructing medial axis in 3D sensor networks.

A. Challenges in 3D Networks

An algorithm for constructing medial axis in 2D sensor
networks has been proposed in [1]. In a nutshell, each
boundary node floods a control packet over the network.
Upon receiving such flooding packets, an internal node can
discover its shortest distance (in hops) to the boundary and
the corresponding closest boundary node. According to the
definition of medial axis, an internal node is identified as part
of the medial axis if it has two or more closest boundary
nodes. However, noises exist in discrete sensor networks, due
to the lack of accurate distance information. For example,
NodeB in Fig. 1(a) can be misinterpreted as a medial axis node
because it has equal hops to two closest boundary nodes (i.e.,
B1 and B2). To filter out such noise, the algorithm considers
the hop distance betweenB1 andB2 along the boundary (i.e.,
the distance of the shortest path betweenB1 andB2 along the
boundary, which is marked as green color). NodeB is deemed
a non-medial axis node if the distance is less than a threshold.
On the other hand, a true medial axis node (e.g., NodeA)
will not be filtered out, because it has at least two closest
boundary nodes (e.g.,A1 andA2) that are well separated along
the boundary (i.e., the shortest path along the boundary is long,
which is marked as red color). The filtering process is critical
for the success of the medial axis algorithm.

At the first glance, it appears straightforward to extend this
approach to 3D networks. However, it is surprisingly hard for
such an approach to distinguish true medial axis nodes and
noises based on hop distance only in 3D. Fig. 1(b) illustrates a
cross-section of a 3D sensor network. When the same filtering
strategy discussed above is applied here, NodeC will be
considered as noise, because the shortest path between Node



Fig. 2. (a) A disconnected and very noisy medial axis computed by an
extension of the 2D hop count-based method [1] on a 3D sensor network. (b)
A connected medial axis computed with the proposed UTC mesh structure-
based method on the same network. Edges represent communicationlinks
between computed medial axis nodes.

C’s two closest boundary nodes (i.e.,C1 and C2) along the
boundary goes around a thin pipe and thus is very short.
Clearly, it becomes impossible to distinguish NodeC (a true
medial axis node) and NodeD (which is noise) based on hop
distance only in a 3D domain. Fig. 2(a) shows the result based
on a simple extension of the 2D method. The medial axis is
disconnected even under a small threshold which is in fact too
small to filter out noises close to the boundary surface.

A deeper investigation reveals the intrinsic difficulties in
constructing medial axis of 3D shapes. The structure of the
medial axis of a 2D planar shape is well-understood. It consists
of curve segments bounded by either an end-point correspond-
ing to a curvature extremum on the curve, or by a junction
point where three branches meet [16]. On the contrary, the
structure of the medial axis of a 3D shape involves greater
complexity. It consists of sheets, seams, and junctions [17].
A sheet is the bisector of two boundary elements, represented
as a trimmed quadric surface; a seam is an algebraic space
curve defined by the intersection of two or more sheets; and
a junction point is the intersection of three or more sheets,
or a sheet and a seam. Fig. 3 illustrates the medial axis of a
simple 3D shape. The medial axis of a 3D shape is not stable
as a structure since a small perturbation in a 3D shape can
cause a relatively large change of its medial axis [17], [18].
It is difficult to accurately compute the medial axis due to
numerical instability associated with the computations [19],
[20].

B. Constructing Medial Axis in 3D Sensor Networks

As discussed above, it is intrinsically difficult to construct
medial axis for a 3D shape. The randomness of sensors, at
the same time, greatly exacerbates the problem of instability
and noise. A filtering process will unavoidably yield isolated
medial axis nodes or clusters, which are extremely hard for
further processing. We propose a medial axis construction
algorithm based on the unit tetrahedron cell (UTC) mesh
structure of 3D sensor networks [21]. The extracted UTC
mesh structure approximates well the geographic structure
of the sensor network. Based on the UTC mesh structure,
a distributed algorithm starts from boundary surfaces with
iterations. In each iteration, the outer boundary surface shrinks,
while inner boundary surfaces grow at the same pace, to “peel”
off one layer of the UTC mesh structure (as illustrated in
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Fig. 3. An example of the medial axis of a simple hexahedron. It consists
of thirteen sheets, twelve seams and four junction points.

Fig. 4(b)). When those surfaces meet and there is no space for
further shrinking and growing, the algorithm yields a set of
fully connected faces (see Fig. 4(c)). It can well approximate
the accurate medial axis because each node has equal distance
or differs by at most one hop to two closest boundary charts.
Fig. 2(b) shows the computed medial axis based on our
proposed algorithm, which is connected and well-structured.

II. M EDIAL AXIS CONSTRUCTION IN3D NETWORKS

We represent a 3D wireless sensor network by a graph
G(V,E), whereV denotes the sensor nodes andE indicates the
communication links in the network. We assume the network
has no global position information available.

Definition 1: A unit tetrahedron cell (UTC) is a tetrahedron
formed by four network nodes, which does not intersect with
any other tetrahedrons.

Definition 2: Two UTCs are neighbors if and only if they
share a face.

Definition 3: A face is a boundary face if it is shared by
one UTC only.

Definition 4: A UTC is a boundary UTC if it contains at
least one boundary face. A non-boundary UTC is called an
internal UTC.

Definition 5: A boundary surface of a network is a closed
surface that consists of connected boundary faces. Each bound-
ary surface is assigned a unique identifier.

We first construct a unit tetrahedron cell (UTC) structure
of a given 3D sensor network [21]. A UTC mesh structure
approximates well the global geometric structure and topology
shape of the 3D sensor network. Once the UTC mesh is
established, the boundary faces and boundary surfaces can
be easily identified according to the definition. As discussed
in Sec. I, the detected boundary surfaces grow at the same
pace to “peel” off one layer of the UTC mesh structure
in each iteration. The iteration stops until there is no more
space for further growing. The main challenges to implement
the algorithm are how to grow boundary surfaces based
on the UTC mesh structure and how to refine the updated
surfaces after each iteration by removing noisy branches. The
proposed algorithm is distributed and operates on the UTC
mesh structure. We explain the three-step algorithm in detail
below, including initialization (Sec. II-A), face replacement
(Sec. II-B), and branch trimming (Sec. II-C).

A. Initialization

We denoteUTC(A,B,C,D) a UTC formed by NodesA,B,C
and D. It has four faces, i.e.,Face(A,B,C), Face (D,B,A),



(a) Initial boundary surfaces. (b) After three iteration. (c) Final medial axis (after five iterations).

Fig. 4. The construction of the medial axis in a 3D seabed sensor network with an internal hole. The outer boundary is highlighted in blue, and the inner
boundary in purple. In each iteration, the outer boundary shrinks and the inner boundary grows until they meet to yield themedial axis.

Face(D,A,C), and Face(D,C,B). Thus aUTC has at most
4 neighboringUTCs. Each facef maintains five parameters:
Medial Axis Indicator (mf ) that indicates if Facef is on the
medial axis, Active Indicator (af ) that indicates whether Face
f is currently active or not, Associated Boundary Surface (bf )
that keeps the ID of its associated boundary surface, Boundary
Distance (df ) that records its distance to the boundary surface
bf , and Neighboring Face Set (pf ) that consists of the set of
three active faces neighboring to Facef .

During initialization, every face is marked as non-medial
axis, i.e., mf = FALSE. If Face f is a boundary face (de-
termined based on its local information according to Defini-
tion 3), it setsbf to the ID of the corresponding boundary
surface,df = 0, af = TRUE, andpf to be the three boundary
faces, each sharing an edge with Facef ; otherwise, it sets
bf = NULL, df = ∞, af = FALSE, and pf = NULL. At the
same time, every UTC maintains a flag that is initialized
as “unvisited”. A UTC will be updated to “visited” when
either the outer boundary surface or an inner boundary surface
shrinks or grows to it. The purpose is to ensure the algorithm
visits each UTC for exactly once.

With the above initialization, it is obvious that a set of active
faces sharing the samebf form a closed surface (which is in
fact a boundary surface). It is worth mentioning that the active
faces will be updated in each iteration of our algorithm, and
the set of active faces with the samebf always form a closed
surface. This is an important attribute that enables the shrink
and growth of the boundary surfaces to yield connected medial
axis when they meet.

B. Face Replacement

In an iteration, the distributed algorithm is run by each
active Facef with af = TRUE. With local information only, it
neither differentiates outer or inner boundaries, nor considers
directions of shrink or growth of the boundary surfaces.

If df = 0, Face f is clearly a boundary face and involved
in one UTC only. Assume the UTC is formed by Nodes
A,B,C and D, and Facef corresponds toFace(A,B,C). If
UTC(A,B,C,D) is “unvisited”, Face f is then replaced by
three other faces in the UTC, i.e.,Face(D,B,A), Face(D,A,C),
and Face(D,C,B). More specifically, Facef is deactivated
(i.e., af = FALSE), while the three new faces are activated
(or aFace(D,B,A) = aFace(D,A,C) = aFace(D,C,B) = TRUE). The
three new faces are assigned the same boundary identifier
as Facef ’s, i.e., bFace(D,B,A) = bFace(D,A,C) = bFace(D,C,B) = bf .

Their distance to the boundary surface is set todFace(D,B,A) =
dFace(D,A,C) = dFace(D,C,B) = df +1. Meanwhile, theirneighbor-
ing face setsare updated based on the set of new active faces.
Finally, the UTC (i.e.,UTC(A,B,C,D)) is set to “visited”.

If Face f has df 6= 0, it must be a non-boundary face
shared by two UTCs. Since Facef is active, at least one
of the two UTCs must have been marked as “visited”. If
both of them are “visited”, the algorithm goes directly to the
trimming process to be discussed next. Otherwise, assume the
UTC marked as “visited” is denoted asUTC(A,B,C,D), and
the “unvisited” UTC isUTC(A,C,B,E). Then Facef (i.e.,
Face(A,B,C)) is replaced by three faces in the unvisited UTC:
Face(E,A,B), Face(E,C,A), andFace(E,B,C). Similar to the
earlier discussion, Facef is deactivated, while the three new
faces are activated with theirassociated boundary surface,
boundary distance, andneighboring face setsupdated. Then,
UTC(A,C,B,E) is marked as “visited”.

Under such face replacement, all active faces with the same
bf still form a closed surface that can be traced by their
associatedpf , as if the original boundary surface has been
shrank or grown (see Fig. 4 for example). Moreover, since
each active face performs only one replacement in an iteration,
all boundary surfaces shrink or grow at the same pace.

C. Branch Trimming

The face replacement discussed above may yield some small
branches due to the noise on the boundaries. They should be
trimmed. The idea of trimming has been discussed in [22] for
2D and [23]–[25] for 3D image processing. In this work, we
propose a distributed algorithm based on the UTC mesh for
effective trimming in 3D sensor networks.

More specifically, after the face replacement in each iter-
ation, an active non-boundary face, e.g., Facef , with both
of its shared UTCs marked with “visited” will have two sets
of parameters (i.e.,mf , af , bf , df and pf ), because either
two different boundary surfaces or two parts of one boundary
surface have shrunk or grown to Facef from two different
directions. Since all boundary surfaces shrink or grow at the
same pace, the face should have two equaldf to two closest
boundary surface charts or they differ by at most one hop (due
to the discrete setting). If its twobf values are different, the
face must be a medial axis face because it has equal distances
to two different closest boundary surfaces. Thus the algorithm
setsmf = TRUE. Otherwise, the face has equal distances to
two charts of the same boundary surface, and consequently it



could either be a medial axis face if the two charts are widely
separated or a noise that should be trimmed if the two charts
are very close. This can be easily tested because Facef has
two sets ofpf , and each of such neighboring faces has its own
neighboring face settoo. The algorithm traces either one layer
or two layers of the local charts with Facef centered at each
chart, and checks whether the two charts share any faces. If
they do not share any face or the removal of Facef will break
the closed surface formed by the active faces with the same
bf , the algorithm setsmf = TRUE; otherwisemf = FALSE
and Facef should be trimmed as discussed below. The choice
of using one or two layer charts depends on how many small
branches the algorithm wants to keep in the final medial axis.

To trim Face f , the algorithm first checks its two sets of
pf . If both of them include Facef itself, it is deactivated (i.e.,
af = FALSE). Moreover it is removed from theneighboring
face setof each face in its two sets ofpf . After Face f is
removed, its original neighboring faces need to update their
neighboring face setslocally according to the new set of active
faces. Otherwise, the algorithm waits to the next iterations
until the above condition is satisfied after other branches are
trimmed. Again, under such trimming strategy, all active faces
with the samebf still form a closed surface.

The iteration stops when all UTCs have been “visited”. The
face replacement and branch trimming processes virtually let
the outer boundary surface shrink and inner boundary surfaces
grow at the same pace. Since the active faces associated with
the same boundary surface (i.e., with the samebf ) always
form a close surface in each iteration, the surfaces shrunk or
grown from their corresponding boundary surfaces are always
closed and consequently yield a connected medial axis when
they meet as shown in Fig. 4.

III. A PPLICATIONS OFMEDIAL AXIS IN 3D SENSORNETS

We introduce two medial axis-based applications in 3D
sensor networks: medial axis-based safe navigation and medial
axis-based distributed information storage and retrieval.

A. Medial Axis-Based Safe Navigation

Safe navigation aims to provide efficient guidance for hu-
man beings, robots and/or vehicles working in a 3D domain
or traveling through it to move to a safe exit while keeping
the farthest distance away from the dangerous areas during
their movement. Assume each sensor in a 3D sensor network
acquires environmental data, and then performs local compu-
tation to determine arisk factor. A sensor inside a dangerous
area either has been destroyed or reports an extremely high
risk factor. Such areas are identified as unaccessible voids(or
“holes”). The area outside the network field is also treated as
a special hole because of potentially high risks. A computed
medial axis provides a locally safest route inside a 3D network.

B. Medial Axis-Based Distributed Information Storage and
Retrieval

A key issue in distributed information storage and retrieval
of a network is to appropriately choose the storage nodes

(a) Network model 1. (b) Computed medial axis.

(c) Network model 2. (d) Computed medial axis.

Fig. 5. Selected 3D network models and their computed medial axes: Blue
dots are sensors; blue regions are inner holes; black triangular surfaces are
computed medial axis.

in order to reduce the overall communication cost. In most
such systems, a datum is stored once but may be queried for
many times. Thus the total communication cost is dominated
by retrieval. In addition, to reduce the cost in retrieval, a
datum is often replicated among part or all of the storage
nodes. Intuitively, the best approach is to scatter the data
storage nodes “uniformly” in the network, which gives the
minimal average data query cost. However, it is practically
infeasible due to the lack of global geometric information of
the network. To this end, we propose to employ nodes on
medial axis for data storage. Since a medial axis residents at
the “center” and expands along the shape of a network, it is
able to provide a great balance between query performance
and algorithm complexity. A subset of medial axis nodes are
uniformly chosen as storage nodes. A datum is stored at one
(or all) storage nodes on the medial axis of the network. For
data retrieval, a query travels to the nearest storage node to
collect data.

IV. PERFORMANCEEVALUATION

We implement our proposed computing medial axis al-
gorithm and evaluate in various 3D sensor network models
with different shapes and sizes. Sensor nodes are randomly
distributed in a 3D space with average nodal degrees ranging
between 12 to 20. Figs. 2 and 5 show several selected network
models and the computed medial axes.

A. Medial Axis-based Safe Navigation

We randomly choose 1000 internal locations of a network
to safely route to a few selected safe exits. For comparison,
we have also implemented two other approaches. The first
approach, denoted by “Shortest Path”, is a simple shortest path
algorithm that finds the shortest (in terms of hops) navigation
path from any point to its closest exit. The second approach,
dubbed “Optimal”, is a brute force search to identify the
optimal safe route which minimizes the maximal risk factor
along the route from a location to an exit, which can be
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Fig. 6. (a) Distribution of risk factor of routes. (b) Total cost vs. ratio of
query/insertion.

considered as ground truth. Denoteb the minimum distance
along a safe navigation route to the dangerous areas. The risk
factor of this route is defined asr = 1/(b+ δ), where δ is
a small constant to ensure non-zero denominator.δ is set to
0.1 in our simulations. Fig. 6(a) shows the distribution of risk
factors of navigation routes. Sinceb varies from 0 to 3 in our
simulated networks, the risk factor spans between 0.32 to 10.
As can be seen, our proposed scheme performs close to the
optimal solution. On the other hand, the shortest path based
scheme has more than 50% routes with a risk factor of 10. This
is because many shortest paths go through the boundaries of
dangerous areas.

B. Medial Axis-based In-network Data Storage and Retrieval

We compare the proposed medial axis-based method (i.e.,
M.A.) with the “Optimal” scheme and a naive “Random” ap-
proach. The Optimal scheme uniformly selects storage nodes,
while the Random one randomly selects data storage nodes.
For all three methods, we assign the same number of nodes
(which is 8) to store data. The simulation is based on the
network model shown in Fig. 5(c) with a total of 1827 nodes.
Each node in the network has equal probability to generate
data or send query. In our simulation, 100 randomly generated
data packets are sent to all 8 data storage nodes andα×100
nodes are randomly selected to generate queries, whereα
denotes the ratio between query and insertion frequency. We
assume each node keep records of the shortest path to the
data storage nodes. In addition, we repeat the simulation under
the Random scheme 20 times to obtain the average total cost.
Fig. 6(b) shows the cost of both data storage and query, i.e.,the
number of total communication messages, with the increase of
α from 1 to 17. The performance of the M.A. one is very close
to the Optimal one. Both of them outperform the Random
scheme as expected.

V. CONCLUSION

In this paper we proposed a distributed algorithm with
linear time complexity and communication cost that builds a
well-structured medial axis of a 3D sensor network without
knowing its global shape or global position information.
We have further applied the computed medial axis for two
applications, i.e., safe navigation and distributed information
storage and retrieval in 3D sensor networks and demonstrated
their efficiency via simulations.
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