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Abstract—The medial axis of a shape provides a compact
abstraction of its global topology and a proximity of its geometry.
The construction of medial axis in two-dimensional (2D) sensor
networks has been discussed in the literature, in support of
several applications including routing and navigation. In this
work, we first reveal the challenges of constructing medial axis
in a three-dimensional (3D) sensor network. With more compli-
cated geometric features and complex topology shapes, previous
methods proposed for 2D settings cannot be extended easily to
3D networks. Then we propose a distributed algorithm with
linear time complexity and communication cost to build a well- Fig. 1. The true medial axis points are mistakenly considesetbises when
structured medial axis of a 3D sensor network without knowing simply extending a 2D medial axis algorithm to 3D. (a) A 2D semsziwork.
its global shape or global position information. Furthermore we (b) The cross-section of a 3D network.
apply the computed medial axis for safe navigation and dis-
tributed information storage and retrieval in 3D sensor networks
Simulations are carried out to demonstrate the efficiency of the to 3D settings. Next we show the fundamental challenges for

prc:poslfd medial axis-based applications in various 3D sensor constructing medial axis in 3D sensor networks.
networks.

A. Challenges in 3D Networks
I. INTRODUCTION

An algorithm for constructing medial axis in 2D sensor

The medial axis of a shape is the set of all points that hay@ivorks has been proposed in [1]. In a nutshell, each

more than one closest point on the boundary of the shape. F§fngary node floods a control packet over the network.
given shape, its medial axis provides a compact abstraoﬂonupon receiving such flooding packets, an internal node can

its global topology and a proximity of its geometry. The n&@di yiscover its shortest distance (in hops) to the boundary and
axis of a two-dimensional (2D) sensor network has begfe corresponding closest boundary node. According to the
discussed and applied for applications including routing a yefinition of medial axis, an internal node is identified ag pa
navigation [1], [2]. In [1], an approximated medial axis R ¢ the medial axis if it has two or more closest boundary
sensor network is constructed and represented compactly By,qes. However, noises exist in discrete sensor netwous, d
graph with size proportional to the number of the geometrig yhe |ack of accurate distance information. For example,
features of the network field. A greedy routing scheme wif{}oqeg in Fig. 1(a) can be misinterpreted as a medial axis node
guaranteed packet delivery and load balance is then prdpog@ ase it has equal hops to two closest boundary nodes (i.e.
with local decisions guided by the computed medial axig, anqB,). To filter out such noise, the algorithm considers
!n [2], thg medial axis of a d|str|puted ZD sensor networﬁ1e hop distance betwed andB, along the boundary (i.e.,
is dynamically maintained to provide guidance for users Q¢ gistance of the shortest path betw&randB, along the
escape from danggrous areas. boundary, which is marked as green color). N&die deemed

While most earlier studies assume sensor networks om, @on-medial axis node if the distance is less than a thréshol
plane, there has been increasing interest in deployindesse o the other hand. a true medial axis node (e.g., Nayle
sensors in three-dimensional (3D) space for applications s \yij| not be filtered out, because it has at least two closest
as undgrwater reconnaissance, envwonmental momto.rlndg ®oundary nodes (e.gA: andA,) that are well separated along
explorat|'on [3]-[15]. With significantly higher complexiin e boundary (i.e., the shortest path along the boundaoni |
geometric features and topology shapes, a 3D sensor netwfich is marked as red color). The filtering process is aitic
needs more urgently the guidance provided by a medial ay$ the success of the medial axis algorithm.
for numerous applications including but not limited to 3MF0 A the first glance, it appears straightforward to extend thi
ing, 3D navigation, and data storage and retrieval. Altoug,,noach to 3D networks. However, it is surprisingly hard fo
the construction of medial axis has been discussed for 2o an approach to distinguish true medial axis nodes and
sensor networks, it is anti-intuitively nontrivial to ert it 1 icas based on hop distance only in 3D. Fig. 1(b) illustrate

_ _ _ _ _ _ cross-section of a 3D sensor network. When the same filtering
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Fig. 3. An example of the medial axis of a simple hexahedron. hsists
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Fig. 2. (a) A disconnected and very noisy medial axis computedtb of thirteen sheets, twelve seams and four junction points

extension of the 2D hop count-based method [1] on a 3D senseorie (b)

A connected medial axis computed with the proposed UTC meshtgtai . .
based method on the same network. Edges represent communitiakion Fig. 4(b)). When those surfaces meet and there is no space for

between computed medial axis nodes. further shrinking and growing, the algorithm yields a set of
fully connected faces (see Fig. 4(c)). It can well approxtana
the accurate medial axis because each node has equal distanc
or differs by at most one hop to two closest boundary charts.
ig. 2(b) shows the computed medial axis based on our
proposed algorithm, which is connected and well-structure

C’s two closest boundary nodes (i.€; and Cp) along the
boundary goes around a thin pipe and thus is very sh
Clearly, it becomes impossible to distinguish Nddda true
medial axis node) and Nod®e (which is noise) based on hop
distance only in a 3D domain. Fig. 2(a) shows the result based!l. MEDIAL AXIS CONSTRUCTION IN3D NETWORKS
on a simple extension of the 2D method. The medial axis is\we represent a 3D wireless sensor network by a graph
disconnected even under a small threshold which is in faxct 1G&(V,E), whereV denotes the sensor nodes dhihdicates the
small to filter out noises close to the boundary surface.  communication links in the network. We assume the network

A deeper investigation reveals the intrinsic difficulties ihas no global position information available.
constructing medial axis of 3D shapes. The structure of thepefinition 1: A unit tetrahedron cell (UTC) is a tetrahedron
medial axis of a 2D planar shape is well-understood. It @i8siformed by four network nodes, which does not intersect with
of curve segments bounded by either an end-point correspoggly other tetrahedrons.
ing to a curvature extremum on the curve, or by a junction Definition 2: Two UTCs are neighbors if and only if they
point where three branches meet [16]. On the contrary, tBRare a face.
structure of the medial axis of a 3D shape involves greaterpDefinition 3: A face is a boundary face if it is shared by
complexity. It consists of sheets, seams, and junction$ [1éne UTC only.
A sheet is the bisector of two boundary elements, repredente Definition 4: A UTC is a boundary UTC if it contains at
as a trimmed quadric surface; a seam is an algebraic sprgst one boundary face. A non-boundary UTC is called an
curve defined by the intersection of two or more sheets; afiernal UTC.
a junction point is the intersection of three or more sheets,Definition 5: A boundary surface of a network is a closed
or a sheet and a seam. Fig. 3 illustrates the medial axis o§@face that consists of connected boundary faces. Eactubou
simple 3D shape. The medial axis of a 3D shape is not stablg surface is assigned a unique identifier.
as a structure since a small perturbation in a 3D shape cawe first construct a unit tetrahedron cell (UTC) structure
cause a relatively large change of its medial axis [17], [18)f a given 3D sensor network [21]. A UTC mesh structure
It is difficult to accurately compute the medial axis due tapproximates well the global geometric structure and twgppl
numerical instability associated with the computation8][1 shape of the 3D sensor network. Once the UTC mesh is
[20]. established, the boundary faces and boundary surfaces can
B. Constructing Medial Axis in 3D Sensor Networks _be easily identified according to the definition. As discdsse

_ T o in Sec. |, the detected boundary surfaces grow at the same

As discussed above, it is intrinsically difficult to congtru pace to “peel” off one layer of the UTC mesh structure
medial axis for a 3D shape. The randomness of sensors;@kach jteration. The iteration stops until there is no more
the same time, greatly exacerbates the problem of indtabilgnace for further growing. The main challenges to implement
and noise. A filtering process will unavoidably yield isedt e algorithm are how to grow boundary surfaces based
medial axis nodes or clusters, which are extremely hard fgf the UTC mesh structure and how to refine the updated
further processing. We propose a medial axis constructigQiifaces after each iteration by removing noisy branchbs. T
algorithm based on the unit tetrahedron cell (UTC) meslioposed algorithm is distributed and operates on the UTC
structure of 3D sensor networks [21]. The extracted UT[Resh structure. We explain the three-step algorithm inildeta

mesh structure approximates well the geographic structygioy, including initialization (Sec. II-A), face replavent
of the sensor network. Based on the UTC mesh structugg,ec_ II-B), and branch trimming (Sec. II-C).

a distributed algorithm starts from boundary surfaces wit o

iterations. In each iteration, the outer boundary surfhaciaks, A. Initialization

while inner boundary surfaces grow at the same pace, to™peel We denotdJ TC(A,B,C,D) a UTC formed by Node#, B,C
off one layer of the UTC mesh structure (as illustrated iand D. It has four faces, i.eFacgA,B,C), Face (D,B,A),



(a) Initial boundary surfaces. (b) After three iteration. (c) Final medial axis (after five iterations).

Fig. 4. The construction of the medial axis in a 3D seabed semstwork with an internal hole. The outer boundary is highted in blue, and the inner
boundary in purple. In each iteration, the outer boundarinkl and the inner boundary grows until they meet to yieldrtreglial axis.

FacegD,A,C), and FacgD,C,B). Thus aUTC has at most Their distance to the boundary surface is setiigqp ga) =
4 neighboringUTCs Each facef maintains five parameters:dracep ac) = dracep,c,g) = di +1. Meanwhile, theineighbor-
Medial Axis Indicator (n;) that indicates if Facd is on the ing face setare updated based on the set of new active faces.
medial axis, Active Indicatora) that indicates whether FaceFinally, the UTC (i.e. UTC(A,B,C,D)) is set to “visited”.
f is currently active or not, Associated Boundary Surfdmg (  If Face f hasds # 0, it must be a non-boundary face
that keeps the ID of its associated boundary surface, Bayndahared by two UTCs. Since Fadeis active, at least one
Distance ¢) that records its distance to the boundary surfacd the two UTCs must have been marked as “visited”. If
b, and Neighboring Face Sep{) that consists of the set of both of them are “visited”, the algorithm goes directly t@ th
three active faces neighboring to Fate trimming process to be discussed next. Otherwise, assuene th
During initialization, every face is marked as non-medidlTC marked as “visited” is denoted &kT C(A,B,C,D), and
axis, i.e.,mf = FALSE If Face f is a boundary face (de- the “unvisited” UTC isUTC(A,C,B,E). Then Facef (i.e.,
termined based on its local information according to DefinFacgA,B,C)) is replaced by three faces in the unvisited UTC:
tion 3), it setsbs to the ID of the corresponding boundaryacegE, A B), FaceE,C, A), andFacgE,B,C). Similar to the
surfaceds =0, af = TRUE, andps to be the three boundary earlier discussion, Fact is deactivated, while the three new
faces, each sharing an edge with Fdceotherwise, it sets faces are activated with theassociated boundary surface
b = NULL, df = o, a; = FALSE, and ps = NULL. At the boundary distanceand neighboring face setapdated. Then,
same time, every UTC maintains a flag that is initialized TC(A,C,B,E) is marked as “visited”.
as ‘“unvisited”. A UTC will be updated to “visited” when Under such face replacement, all active faces with the same
either the outer boundary surface or an inner boundarycirfds still form a closed surface that can be traced by their
shrinks or grows to it. The purpose is to ensure the algorithassociatedps, as if the original boundary surface has been
visits each UTC for exactly once. shrank or grown (see Fig. 4 for example). Moreover, since
With the above initialization, it is obvious that a set ofiaet each active face performs only one replacement in an iterati
faces sharing the sani® form a closed surface (which is inall boundary surfaces shrink or grow at the same pace.
fact a boundary surface). It is worth mentioning that thévact

faces will be updated in each iteration of our algorithm, a i .
The face replacement discussed above may yield some small

the set of active faces with the sargealways form a closed : '
surface. This is an important attribute that enables thinishr Pranches due to the noise on the boundaries. They should be

and growth of the boundary surfaces to yield connected rhedig™med. The idea of trimming has been discussed in [22] for
axis when they meet. 2D and [23]-[25] for 3D image processing. In this work, we

propose a distributed algorithm based on the UTC mesh for
B. Face Replacement effective trimming in 3D sensor networks.

In an iteration, the distributed algorithm is run by each More specifically, after the face replacement in each iter-
active Facef with a; = TRUE With local information only, it ation, an active non-boundary face, e.g., Fd¢ewith both
neither differentiates outer or inner boundaries, nor iwrs of its shared UTCs marked with “visited” will have two sets
directions of shrink or growth of the boundary surfaces. of parameters (i.e.ms, as, bs, df and ps), because either

If df =0, Facef is clearly a boundary face and involvedwo different boundary surfaces or two parts of one boundary
in one UTC only. Assume the UTC is formed by Nodesurface have shrunk or grown to Fa€efrom two different
AB,C and D, and Facef corresponds td~acgA,B,C). If directions. Since all boundary surfaces shrink or grow at th
UTC(A,B,C,D) is “unvisited”, Facef is then replaced by same pace, the face should have two egljalo two closest
three other faces in the UTC, i.€acegD, B, A), FacgD,A,C), boundary surface charts or they differ by at most one hop (due
and FacgD,C,B). More specifically, Facef is deactivated to the discrete setting). If its twb; values are different, the
(i.e., af = FALSB), while the three new faces are activatetace must be a medial axis face because it has equal distances
(Or @racqDBA) = @FaceDAC) = ¥FaceDcp) = | RUE. The to two different closest boundary surfaces. Thus the etlyori
three new faces are assigned the same boundary identifietsm; = TRUE Otherwise, the face has equal distances to
as Facef’s, i.e., bracep,B.A) = Bracep.AC) = Pracep.cB) =DPr.  two charts of the same boundary surface, and consequently it

. Branch Trimmin
nd 9



could either be a medial axis face if the two charts are widely
separated or a noise that should be trimmed if the two charts cﬁ*:}
are very close. This can be easily tested because Fdues
two sets ofps, and each of such neighboring faces has its own
neighboring face sabo. The algorithm traces either one layer
or two layers of the local charts with Fadecentered at each (a) Network model 1. (b) Computed medial axis.
chart, and checks whether the two charts share any faces. If
they do not share any face or the removal of Faesill break
the closed surface formed by the active faces with the same w5
b¢, the algorithm setsn; = TRUE, otherwisem; = FALSE R =
and Facef should be trimmed as discussed below. The choice £y |
of using one or two layer charts depends on how many small
branches the algorithm wants to keep in the final medial axis.

To trim Facef, the algorithm first checks its two sets of (c) Network model 2. (d) Computed medial axis.
ps. If both of them include Facé itself, it is deactivated (i.e.,
ar = FALSE). Moreover it is removed from thaeighboring Fig. 5. Selected 3D network models and their computed media: &lee
face setof each face in its two sets qfs. After Facef is dots are sensors; blue regions are inner holes; black tiangurfaces are
removed, its original neighboring faces need to updater th&pmPted medial axis.
neighboring face setecally according to the new set of active

faces. Otherwise, the algorithm waits 1o the next eration, order to reduce the overall communication cost. In most

until the above condition is satisfied after other branchres a,ch systems, a datum is stored once but may be queried for
trimmed. Again, under such trimming strategy, all activecta many times. Thus the total communication cost is dominated

W'thhthe samebf still forrr]n a cl:osed Sl;]rfaceb wisited"” hby retrieval. In addition, to reduce the cost in retrieval, a
The iteration stops when all UTCs have been "visited". Thgy o s often replicated among part or all of the storage

face replacement and branch trimming processes virtually |, qes |ntuitively, the best approach is to scatter the data

the outer boundary surfacg shrink and.inner boundary.swfagt rage nodesuhiformly’ in the network, which gives the
ghrow at thebsamde pace. fS mcelthe aqtlr\:erl:aces assciuated W{?Himal average data query cost. However, it is practically
the same boundary surface ("e" with the sdmp always infeasible due to the lack of global geometric informatidn o
form a close surface in each iteration, the surfaces shrunktﬁe network. To this end, we propose to employ nodes on
grown from their corresponding boundary surfaces are a;"Vé\)ﬁedial axis for data storage. Since a medial axis residdénts a

closed and consequently yield a connected medial axis Wr}ﬁ@ “center” and expands along the shape of a network, it is

they meet as shown in Fig. 4. able to provide a great balance between query performance
I1l. A PPLICATIONS OFMEDIAL AXIS IN 3D SENSORNETs and algorithm complexity. A subset of medial axis nodes are
uniformly chosen as storage nodes. A datum is stored at one
r all) storage nodes on the medial axis of the network. For
ata retrieval, a query travels to the nearest storage rmde t
collect data.

]

We introduce two medial axis-based applications in 3
sensor networks: medial axis-based safe navigation anéhine
axis-based distributed information storage and retrieval

Safe navigation aims to provide efficient guidance for hu- We implement our proposed computing medial axis al-
man beings, robots and/or vehicles working in a 3D domajbrithm and evaluate in various 3D sensor network models
or traveling through it to move to a safe exit while keepingyith different shapes and sizes. Sensor nodes are randomly
the farthest distance away from the dangerOUS areas durﬂwributed ina3D space with average nodal degrees ranging

their movement. Assume each sensor in a 3D sensor netwggfween 12 to 20. Figs. 2 and 5 show several selected network
acquires environmental data, and then performs local cempHodels and the computed medial axes.

tation to determine aisk factor. A sensor inside a dangerous ] ) o
area either has been destroyed or reports an extremely HfyhMedial Axis-based Safe Navigation
risk factor. Such areas are identified as unaccessible yords We randomly choose 1000 internal locations of a network
“holes”™). The area outside the network field is also treated t safely route to a few selected safe exits. For comparison,
a special hole because of potentially high risks. A computeee have also implemented two other approaches. The first
medial axis provides a locally safest route inside a 3D ngtwo approach, denoted by “Shortest Path”, is a simple shorgght p
] ) o ) algorithm that finds the shortest (in terms of hops) navagati

B. Medlal Axis-Based Distributed Information Storage a”ﬂath from any point to its closest exit. The second approach,
Retrieval dubbed “Optimal”, is a brute force search to identify the

A key issue in distributed information storage and retdievaptimal safe route which minimizes the maximal risk factor
of a network is to appropriately choose the storage nodaleng the route from a location to an exit, which can be
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