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Abstract—The majority of current research on sensor network
localization focuses on wireless sensor networks deployed on two
dimensional (2D) plane or in three dimensional (3D) space, very
few on 3D surface. However, many real world applications require
large-scale sensor networks deployed on the surface of a complex
3D terrain. Compared with planar and 3D network localizations,
surface network localization generates unique and fundamental
hardness.

In this research, we explore 3D surface network localization
with terrain model. A digital terrain model (DTM), available
to public with a variable resolution up to one meter, is a 3D
representation of a terrain’s surface. It is commonly built using
remote sensing technology or from land surveying and can be
easily converted to a triangular mesh. Given a sensor network
deployed on the surface of a 3D terrain with one-hop distance
information available, we can extract a triangular mesh from
the connectivity graph of the network. The constraint that the
sensors must be on the known 3D terrain’s surface ensures
that the triangular meshes of the network and the DTM of
the terrain’s surface approximate the same geometric shape and
overlap. We propose a fully distributed algorithm to construct a
well-aligned mapping between the two triangular meshes. Based
on this mapping, each sensor node of the network can easily
locate reference grid points from the DTM to calculate its own
geographic location. We carry out extensive simulations under
various scenarios to evaluate the overall performance of the
proposed localization algorithm. We also discuss the possibility
of 3D surface network localization with mere connectivity and
the results are promising.

I. INTRODUCTION

A variety of applications in wireless sensor networks require
geographic locations of sensor nodes. Instead of equipping
each sensor node with a high cost localization hardware such
as GPS receiver, different localization algorithms and protocols
have been proposed that allow the sensor nodes to derive their
own locations.

Current localization research focuses on sensor networks de-
ployed on two-dimensional (2D) plane or in three-dimensional
(3D) space [1]–[28]. They take distance information as input,
and then search the solution space to find coordinates of
sensor nodes that preserve the distance matrix as much as
possible. Distance between adjacent sensors can be measured
by received signal strength (RSS) or time difference of arrival
(TDOA), or simply approximated by one-hop radio range. For
remote sensors, their distance can be approximated by hop
counts of the shortest path.

In real-world applications, many large-scale sensor networks
are deployed over complex terrains, such as the volcano
monitoring project [29] and ZebraNet [30]. Localization of a
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network deployed over a 3D surface generates a unique hard-
ness compared with the well-studied localization of a network
in 2D or 3D space. Specifically, due to limited radio range,
the distance between two remote sensors deployed over a 3D
surface can only be approximated by their surface distance, the
length of the shortest path between them on the surface. Such
surface distance is different from the 3D Euclidean distance of
two nodes. As proved in [31], a localization algorithm doesn’t
exist for a network deployed over a 3D surface with surface
distance information only, even if we assume accurate range
distance measurement available. One intuitive example is that
a piece of paper can be rolled to different shapes, but distance
between any pair of points on the paper doesn’t change. With
pure surface distance information, we can never figure out the
current shape of the paper. We can also learn the hardness of
localization of a network deployed over a 3D surface from
differential geometry. Consider that the distance information
of a sensor network deployed over a 3D surface approximates
the distance information of the surface, there exists no unique
embedding in 3D within rigid motions for a general surface
with distance only [32].

In [31], authors assume each sensor node can measure not
only distances between its neighboring nodes but also its own
height information. They require a sensor network is deployed
on a surface with single-value property - any two points on
the surface have different projections on plane. Such property
ensures that they can project the network deployed over a 3D
surface to 2D plane by removing z coordinate without ambi-
guity. They apply existing 2D network localization method on
the projected one to compute the x and y coordinates of each
sensor node, and then add the height information back as the
z coordinate.

Later, a cut-and-sew algorithm is proposed in [33] to
generalize the localization algorithm introduced in [31] from
single-value surfaces to general surfaces. The algorithm takes
a divide-and-conquer approach by partitioning a general 3D
surface network into a minimal set of single-value patches.
Each single-value patch can be localized individually, and then
all single-value patches are merged into a unified coordinates
system.

However, integrating height measurement into every sensor
of a network is not always practical and affordable, especially
for a large-scale sensor network. The motivation of this work is
to explore the possibility of localization of a network deployed
over surfaces with one-hop distance information only or even
just mere connectivity, if we have the information of the
deployed terrain surface.



A. Our Approach

A 3D representation of a terrain’s surface is called a digital
terrain model (DTM). DTMs are commonly built using remote
sensing technology or from land surveying, and are available
to public with a variable resolution up to one meter. For
example, the Shuttle Radar Topography Mission (SRTM) [34]
is a high-resolution digital topographic database that provides
DTM data for North and South America with high accuracy
and dense coverage. It is expected that acquisitions from radar
satellites TerraSAR-X and Tan DEM-X will be available in
2014 to provide a uniform global coverage of DTMs up to 5
m absolute height accuracy at 10 m grid spacing [35].

A DTM is represented by a grid of squares, where the
longitude, latitude, and altitude (i.e., 3D coordinates) of all
grid points are known. It is straightforward to convert the grid
into a triangulation, e.g., by simply connecting a diagonal of
each square. Therefore a triangular mesh of the DTM of a
terrain surface can be available before we deploy a sensor
network on it. On the other hand, given a wireless sensor
network deployed on a terrain surface with one-hop distance
information available, a simple distributed algorithm can ex-
tract a refined triangular mesh from the network connectivity
graph. Vertices of the triangular mesh are the set of sensor
nodes. An edge between two neighboring vertices indicates the
communication link between the two sensors. The constraint
that the sensors must be on the known 3D terrain surface
ensures that the triangular mesh of the DTM of the terrain
surface overlaps with the triangular mesh extracted from the
network connectivity graph. The question is how the latter can
be localized in reference to the former.

The proposed approach is based on surface conformal struc-
ture. Conformal structure is an intrinsic geometric structure of
surfaces, determined by surface distance. Conformal structure
can tolerate a small local deformation of a surface, so the
conformal structure of a surface is consistent even if the sur-
face is approximated by different triangulations with various
densities. Surfaces sharing the same conformal structure exist
conformal mapping between them. A conformal mapping is
a one-to-one and continuous mapping which preserves angles
and local shape.

The triangular mesh of the DTM of a terrain surface and
the triangular mesh extracted from the connectivity graph of
a network deployed over the terrain surface approximate the
geometric shape of the same terrain surface. Theoretically,
the two triangular meshes share the same conformal structure.
We can construct a well-aligned conformal mapping between
them. Based on this mapping, each sensor node of the network
can easily locate reference grid points of the DTM to calculate
its own location.

Fig. 1 illustrates the basic idea. Fig. 1 (a) shows the trian-
gular mesh of the DTM of a terrain surface. Fig. 1 (c) shows
the triangular mesh extracted from the connectivity graph of
a network deployed over the terrain surface. We first compute
two conformal mappings, denoted as f1 and f2 respectively, to
map the two triangular meshes to plane as shown in Figs. 1 (b)

and (d) respectively. Such mapping exists based on Riemanns
theorem that a topological disk surface can be mapped to plane
through a conformal mapping [36]. However, the two mapped
triangular meshes on plane are not aligned. Three anchor nodes
marked with red as shown in Fig. 1 (c) are deployed with
the network to provide the reference for alignment. Based on
the positions of the three anchor nodes, We construct another
conformal mapping, denoted as f3, to align the mapped
network triangular mesh with the mapped DTM triangular
mesh on plane. Combining the three mappings, f−1

1 ◦ f3 ◦ f2,
induces a well-aligned conformal mapping between the two
triangular meshes shown in Fig. 1 (a) and (d) respectively.
Based on the well-aligned mapping, each sensor node of the
network, a vertex of the network triangular mesh, simply
locates its nearest grid points, vertices of the DTM triangular
mesh, to calculate its own geographic location. Note that the
proposed localization algorithm, theoretically speaking, only
requires three anchor nodes for a network with thousands or
even tens of thousands of sensor nodes.

The rest of this paper is organized as follows: Sec. II-A
introduces briefly the background knowledge necessary to
the proposed surface network localization algorithm. Sec. III
provides in detail the proposed distributed algorithm to localize
a wireless sensor network deployed on a terrain surface.
Sec. IV discusses some possible solutions if one-hop distance
information or anchor nodes are not available. Sec. V presents
simulation results. Sec. VI concludes the paper.

II. THEORETICAL BACKGROUND

Before giving the details of the proposed surface network
localization algorithm in Sec. III, we introduce briefly the
background knowledge necessary to the algorithm. Specifi-
cally, we introduce the concept of discrete conformal mapping
in Sec. II-A and discrete surface Ricci flow, a tool we apply
to compute discrete conformal mapping of a triangular mesh
from 3D to 2D plane in Sec. II-B. We then introduce Möbius
Transformation, a tool we apply to align two planar triangular
meshes in Sec. II-C.

A. Discrete Conformal Mapping

Intuitively speaking, a conformal mapping is a one-to-
one and continuous mapping that maps infinitesimal circles
to infinitesimal circles and preserves the intersection angles
among the infinitesimal circles.

In discrete setting, we denote M = (V,E,F) a connected
triangular mesh embedded in R3, consisting of vertices (V ),
edges (E), and triangle faces (F). Specifically, we denote vi ∈
V a vertex with ID i; ei j ∈ E an edge with two ending vertices
vi and v j; fi jk ∈ F a triangle face with vertices vi, v j, and vk.
A boundary edge is defined as an edge shared by one triangle
face only. The two ending vertices of a boundary edge are
defined as boundary vertices. A non-boundary edge is shared
by two triangular faces.

If we use circles with finite radii to approximate infinites-
imal circles, we can approximate conformal mapping in dis-
crete setting. It is called circle packing metric, introduced by
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Fig. 1. (a) The triangular mesh of the DTM of a terrain surface. (b) The triangular mesh of the DTM is conformally mapped to plane. (c) The triangular
mesh extracted from the connectivity graph of a network deployed over the terrain surface. Three randomly deployed anchor nodes are marked with red. (d)
The triangular mesh extracted from the network connectivity graph is conformally mapped to plane.
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Fig. 2. Circle Packing Metric. (a) Flat circle packing metric on a triangular
mesh (b) Circle packing metric on a triangle.

Thurston in [37] as shown in Fig. 2. We assign each vi a circle
and denote γi its radius. The radius function is Γ : V → R+.
The two circles at vi and v j of edge ei j intersect with an acute
angle, denoted as φi j and called the weight on the edge. The
edge weight function is then Φ : E→ [0, π

2 ].
Denote li j the edge length of ei j. li j can be computed from

the circle radii of the two ending vertices γi,γ j and its weight
φi j from the cosine law:

li j
2 = γi

2 + γ j
2 +2γiγ j cosφi j. (1)

Definition 1 (Circle Packing Metric): The pair of vertex ra-
dius function and edge weight function on a mesh M, (Γ,Φ),
is called a circle packing metric of M.

From the definition of conformal mapping, a conformal
mapping on a discrete surface with circle packing metric
modifies the vertex radii, and preserves the edge weights.

B. Discrete Surface Ricci Flow

Richard Hamilton first introduced Ricci flow in his seminal
work [38] in 1982. Chow and Luo proved a general existence
and convergence theorem for discrete Ricci flow on surfaces
in [39]. Jin et al. later provided a series of computational
algorithms for discrete Ricci flow on surfaces in [40].

Before we introduce the definition of discrete surface Ricci
flow, we need to give definitions of discrete metric and discrete
Gaussian curvature first.

Definition 2 (Discrete Metric): A discrete metric on M is
a function l : E → R+ on the set of edges, assigning to each
edge ei j ∈ E a positive number li j such that all triangles satisfy
the triangle inequalities fi jk ∈ F : li j + l jk > lki.

Edge lengths of M satisfy the triangle inequalities, so they
are sufficient to define a discrete metric on M.

Definition 3 (Discrete Gaussian Curvature): Denote θ
jk
i

the corner angle attached to Vertex vi in Face fi jk, and ∂M
the boundary of M, the discrete Gaussian curvature Ki on
vi ∈V is defined as the angle deficit at vi:

Ki =

{
2π−∑ fi jk∈F θ

i j
i , vi 6∈ ∂M,

π−∑ fi jk∈F θ
jk
i , vi ∈ ∂M.

(2)

Since we can compute corner angles directly from edge
lengths, a discrete metric solely determines the discrete Gaus-
sian curvature of M.

Definition 4 (Discrete Surface Ricci Flow): Let (Γ0,Φ) be
an initial circle packing metric of M. Denote ui = logγi, and
K̄i and Ki the target and current Gaussian curvatures of vi
respectively, and t the time. The discrete surface Ricci flow
is:

dui(t)
dt

= (K̄i−Ki(t)). (3)

Discrete surface Ricci flow continuously deforms the circle
packing metric of M according to the difference between the
current and target Gaussian curvatures in a heat-like diffusion
process, and converges when the difference is less than a
threshold. The convergence of discrete surface Ricci flow is
proved in [39]. The final circle packing metric induces a
metric which satisfies the target Gaussian curvatures, and is
conformal to the original surface metric.

C. Möbius Transformation

A complex number z = a+bi defined on a complex plane
can be simply considered as a point p(a,b) on plane, where
a and b are x and y coordinates of Point p respectively.

Definition 5 (Möbius Transformation): A Möbius transfor-
mation is a conformal map between complex plane to itself,
represented as:

f (z) =
az+b
cz+d

, (4)

where a,b,c,d are complex numbers, satisfying ad−bc = 1.
If a Möbius transformation maps four distinct complex

numbers z1, z2, z3, z4 to four distinct complex numbers w1,
w2, w3, w4 respectively, i.e., four distinct planar points are
mapped to another four distinct planar points, the Möbius
transformation keeps their cross-ratio invariant, represented as:



(z1− z3)(z2− z4)

(z2− z3)(z1− z4)
=

(w1−w3)(w2−w4)

(w2−w3)(w1−w4)
. (5)

Note that all operations in Eqn. 4 and 5 including addition,
subtraction, multiplication, and division are all defined on
complex numbers.

III. SURFACE NETWORK LOCALIZATION

Given a wireless sensor network deployed on a terrain
surface, we apply the algorithm proposed in [41] to extract
a refined triangular mesh from the connectivity graph of
the network based on locally measured distances between
nodes within one-hop communication range. Vertices of the
triangular mesh are the set of sensor nodes. An edge between
two neighboring vertices indicates the communication link
between the two sensors. The algorithm is fully distributed
and has no constraint on communication models.

Denote M1 the triangular mesh of the DTM of the ter-
rain surface and M2 the triangular mesh extracted from the
connectivity graph of the network. The proposed three-step
localization algorithm is fully distributed. We explain each
step in detail, specifically, conformal mapping of both M1
and M2 to plane in Sec. III-A, alignment of mapped M1 and
M2 on plane in Sec. III-B, and localization of vertices of M2
in Sec. III-C. Time complexity and communication cost are
analyzed in Sec. III-D.

A. Conformal Mapping to Plane

Given a triangular mesh M = (V,E,F) embedded in R3 (as
defined in Sec. II-A), we apply discrete surface Ricci flow
defined in Eqn. 3 to conformally map M to plane. Denote the
mapping f : M→D∈R2. The mapping result is stored at each
vi as a complex number (i.e., z = x+ yi), and (x,y) serves as
the planar coordinates of vi.

One fact to consider when designing the mapping algorithm
is that the boundary shape of a large-scale sensor network can
be random and complicated, and the mapping result should
be independent of the boundary shape. So we apply discrete
surface Ricci flow with the following free-boundary condition:
we assign the target Gaussian curvatures of all non-boundary
vertices to zero, and discrete surface Ricci flow only deforms
the circle radii of non-boundary vertices. Discrete surface
Ricci flow converges when the target Gaussian curvatures
of non-boundary vertices equal to zero. i.e., flat. Note that
boundary vertices are ending vertices of boundary edges.
Boundary edges of M can be easily detected according to the
definition that they are shared by only one triangle face.

We first construct an initial circle packing metric (Γ0,Φ)

of M based on edge lengths. Denote γ
jk
i the corner radius

associated with corner angle θ
jk
i . Each vi computes its corner

radii as:

γ
jk
i =

lki + li j− l jk

2
,

where li j, l jk, lki represent the distance measurements of edges
ei j,e jk,eki, respectively. Then vi computes its initial circle

radius γi by averaging its corner radii:

γi =
1
m ∑

fi jk∈F
γ

jk
i ,

where m is the number of the adjacent faces to vi (i.e.,
the vertex degree of vi). For each edge ei j, we compute its
edge weight φi j, i.e., the intersection angle of the two circles
centered at vi and v j with radii γi and γ j respectively based
on the Euclidean cosine law:

cosφi j =
l2
i j− γ2

i − γ2
j

2γiγ j
.

With the constructed initial circle packing metric, in each
iteration of discrete surface Ricci flow, only non-boundary ver-
tices update their circle radii. Specifically, each non-boundary
vi exchanges its current ui = logγi with its direct neighbors
and updates its adjacent edge lengths {li j|ei j ∈ E} according
to Eqn. 1. With the updated edge lengths, vi computes its
corner angles {θ jk

i | fi jk ∈ F} according to the inverse cos law:

θ
jk
i = cos−1 l2

ki + l2
i j− l2

jk

2lkili j
.

Then vi computes its current discrete Gaussian curvature Ki as
the excess of the total angle sum at vi (Eqn. 2). If for every
non-boundary vi, the difference between its target Gaussian
curvature K̄i that is set to zero and current Gaussian curvature
Ki is less than a threshold (we set to 1e−5 in our experiments),
discrete surface Ricci flow converges. Otherwise, each non-
boundary vi updates its ui: ui = ui +δ(K̄i−Ki), where δ is the
step length (we set to 0.05 in our experiments).

When discrete surface Ricci flow converges, we can stop
the iterations. Each edge ei j updates its length according to
the final circle radii γi = eui and γ j = eu j and the stored edge
weight φi j:

li j =
√

γi2 + γ j2 +2γiγ j cosφi j.

With the computed edge lengths, we can embed M to plane.
For simplicity, we let the vertex with the smallest ID (denoted
as v0) initiate the embedding process. Its planar coordinates
are set to (0,0). Then it arbitrarily selects one of its direct
neighbors, e.g., v j, and sets the planar coordinates of v j to
(0, li j). For vertex vk, adjacent to both vi and v j, it calculates
the intersection points of the two circles centered at vi and v j
with radii lik and l jk, respectively. Then, v j chooses one of the
intersection points that satisfies (v j−vi)×(vk−vi)> 0 1 as its
planar coordinates. The procedure continues until all vertices
of M have their planar coordinates.

Note that we can pre-compute the conformal mapping of
M1 to plane and then pre-load the mapping result to sensor
nodes before the deployment of a network.

1The direction of the cross product of the two planar vectors points outside
instead of inside.



B. Alignment

Denote f1 and f2 the mappings that conformally map M1
and M2 to planar regions D1 and D2 respectively. We need to
construct another conformal mapping that aligns D2 with D1
on plane.

Eqn. 5 provides a natural alignment of two planar regions
based on three pairs of anchor points. Denote f a Möbius
transformation that maps the planar region D1 with three
distinct points z1,z2,z3 to the planar region D2 with three
distinct points w1,w2,w3. Particularly, z1,z2,z3 are mapped to
w1,w2,w3 respectively. We use complex numbers to represent
points on plane. Assume we use zi j to denote zi− z j, and wi j
to denote wi−w j, f can be represented in a closed form from
Eqn. 5,

f (z) =
w2(z− z1)z23w12− (z− z2)z13w23w1

(z− z1)z23w12− (z− z2)z13w23
. (6)

Again, all the operations in Eqn. 6 are defined on complex
numbers.

Before we continue the alignment algorithm, we give a
brief introduction of Barycentric coordinates. They provide a
convenient way to interpolate a function on triangles as long
as the function’s value is known at vertices. Let’s consider a
function f defined on a triangle fabc with f (va), f (vb), and
f (vc) known. Denote Area| fabc| the area of triangle fabc. The
function value of any point p located inside this triangle can
be written as a weighted sum of the function value at the three
vertices:

f (p) = t1 f (va)+ t2 f (vb)+ t3 f (vc),

where t1 =
Area| fpbc|
Area| fabc|

, t2 =
Area| fpca|
Area| fabc|

, and t3 =
Area| fpab|
Area| fabc|

. It is
obvious that t1, t2, and t3 are subject to the constraint t1 +
t2 + t3 = 1. t1, t2, and t3 are called Barycentric Coordinates of
Point p on fi jk.

Assume three anchor nodes - sensor nodes equipped with
GPS - are randomly deployed with other sensors. Each anchor
node is assigned planar coordinates, e.g., mapped to plane by
f2. Denote the planar point of an anchor node mapped by f2
with a complex numbers zi(1≤ i≤ 3).

Each anchor node then checks its stored M1 or simply sends
a request with its known geographic position to a server to
locate three nearest grid points of the DTM, denoted as vi,v j,
and vk. Since M1 and M2 are not perfectly overlap in general,
the anchor node does not necessarily locate inside fi jk ∈M1.
We compute the projection point of the anchor node to fi jk.
The projection point is the closest point of M1 to the anchor
node. Since f1 is a continuous and one-to-one mapping, we
can compute the planar coordinates of the projection point
mapped by f1 based on the planar coordinates of vi,v j, and
vk. Specifically, denote (t1, t2, t3) the Barycentric Coordinates
of the projection point on fi jk, f1(vi), f1(v j), and f1(vk) the
planar coordinates of vi, v j, and vk mapped by f1, the planar
coordinates of the projection point mapped by f1 is: t1 f1(vi)+
t2 f1(v j)+ t3 f1(vk). Denote the planar point of the projection
point mapped by f1 with a complex number wi( 1≤ i≤ 3).

Each anchor node conducts a flooding to send out its zi
and wi to the whole network. When receiving the three pairs
of planar coordinates, a non-anchor node vi ∈ M2 simply
plugs them and its planar coordinates by f2 into Eqn. 6. The
computed one is the aligned planar coordinates of the sensor
node.

C. Localization

With the aligned planar coordinates, each sensor node
locates three nearest grid points on plane. Denote vi, v j, and
vk the three nearest grid points on plane. The mapped planar
point of the sensor node locates inside the planar triangle
fi jk ∈ M1. Denote (ti, t j, tk) the Barycentric Coordinates of
the mapped planar point of the sensor node on fi jk. The 3D
geographic coordinates of the sensor node can be computed as
ti p(vi)+ t j p(v j)+ tk p(vk), where p(vi), p(v j), and p(vk) are
the 3D geographic coordinates of v j, vk, and vl respectively.

D. Time Complexity and Communication Cost

Assume we measure the communication cost by the num-
ber of exchanged messages. Both the time complexity and
communication cost of the proposed localization algorithm
are dominated by the step to compute conformal mapping
of M1 and M2 to plane. The time complexity of discrete
surface Ricci flow is measured by the number of iterations,
given by −C logε

λ
, where C is a constant, ε is a threshold

of curvature error, and λ is the step length of each iteration
(we set to 0.05 in our experiments) [39]. Since each vertex
only needs to exchange u values with its direct neighbors, the
communication cost is given by O(−C logε

λ
ng), where g is the

average vertex degree of M, and n is the size of M. Note
that g is six for a triangular mesh. The time complexity and
communication cost of planar embedding based on computed
edge lengths by discrete surface Ricci flow are linear to n.

The time complexity and communication cost of the other
steps of the localization algorithm are either linear to the size
of the network or constant complexity.

A special note is that we don’t need to compute the
conformal mapping of M1 each time. We only need to compute
it once before we start to deploy a network, and then pre-load
only the mapping data related with the FoI (Field of Interest)
to sensor nodes if they have sufficient storage. Otherwise, a
server may be designated to keep the DTM database.

IV. DISCUSSION

A. The Size of Anchor Nodes

Theoretically speaking, the proposed localization algorithm
requires only three anchor nodes to align two triangular
meshes on plane, even one triangular mesh is extracted from
the connectivity graph of a network with thousands or even
tens of thousands of sensor nodes. If there are more than three
anchor nodes deployed with the network, we can apply the
least-square conformal mapping method introduced in [42]
instead of Möbius transformation to incorporate all anchor
nodes into the alignment to improve the localization accuracy.



Fig. 3 shows one example. For a network with size 2.6k de-
ployed on a 3D surface as shown in Fig. 1(d), the localization
error of the network decreases with the increased number of
anchor nodes. Compared with Möbius transformation based
alignment introduced in Sec. III-B, least-square conformal
mapping based alignment is more flexible to take anchor nodes
into alignment. But from the other side, least-square conformal
mapping method introduced in [42] is centralized with high
computational complexity.
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Fig. 3. Localization error decreases with the increased number of anchor
nodes.

B. Anchor Node Free

As we introduced in Sec. II-A, conformal mapping maps
infinitesimal circles to infinitesimal circles, so locally con-
formal mapping introduces no distortion, only scaling. Such
scaling is called conformal factor. conformal factor at vi can
be approximated as the ratio of the triangle areas in 3D and
mapped in 2D plane of all fi jk incident to vi,

c f (vi) =
∑ fi jk∈F Area3D| fi jk|
∑ fi jk∈F Area2D| fi jk|

.

Conformal factor at the peak of a terrain surface is usually
huge. We can demonstrate the fact by an extreme case.
Suppose we have a long and open tube-shape can and we
conformally map it to plane. The center of the bottom of the
can is mapped to the origin. No matter what conformal map-
ping we construct, conformal factor increases exponentially
fast as the mapped point on plane close to the origin.

Based on the fact, vertices of M2, i.e., sensor nodes, with
the highest conformal factors are around the peaks of a terrain
surface. We can apply them as anchor nodes for alignment.
Assume the network shown in Fig. 1(d) is anchor node free.
We compute conformal factors of the triangular meshes of the
DTM and the network and use colors to encode them at the
mapped planar regions shown in Fig. 4. It is obvious that areas
marked with red represent the regions with high conformal
factors. We pick one vertex with the highest conformal factor
for each red marked region. Suppose we pick v1 and v2 for the
triangular mesh of the network, v3 and v4 for the triangular

mesh of the DTM. Suppose v1 shares a similar conformal
factor with V3. v1 simply determines its 3D coordinates the
same as v3. Similarly, v2 determines its 3D coordinates the
same as v4.

Note that if the shape of a mountain region is extremely
complicated, conformal factors may identify wrong pairs of
nodes between M1 and M2. The anchor free localization
method is not stable in that case.

(a) (b)

Fig. 4. We use colors to encode conformal factors of mapped triangular
meshes on plane: (a) the mapped triangular mesh of the terrain surface shown
in Fig. 1(b). (b) the mapped triangular mesh of the network shown in Fig. 1(d).

C. Connectivity Only

When range distance measurement is not available, we
can still extract a sparse triangular mesh from a network
connectivity graph. A simple landmark-based algorithm dis-
cussed in [43], [44] uniformly selects a subset of nodes in
a distributed way and denotes them as landmarks, such that
any two neighboring landmarks are approximately a fixed K
hops away (K ≥ 6). The dual of a discrete Voronoi diagram
with generators the set of landmarks forms a triangulation.
Vertices of the triangulation is the set of landmarks. Edge
between two neighboring vertices is a shortest path between
the two landmarks. We simply assume the edge length of
the triangulation a unit one, and then apply exactly the same
localization algorithm for landmark nodes as discussed in
Sec. III.

A non-landmark node, denoted as ni, finds its three nearest
landmarks, denoted as v1, v2, v3 with computed 3D coordinates
p(v1),p(v2), and p(v3) respectively. Denote d1, d2, and d3
the shortest distances (hop counts) of node ni to the three
landmarks v1, v2, v3 respectively. Then node ni computes its
3D coordinates p(ni) simply by minimizing the mean square
error among the distances:

3

∑
j=1

(|p(ni)− p(v j)|−d j)
2. (7)

D. Network Density

The algorithm in [41] to extract a triangular mesh from
the connectivity graph of a network assumes that a triangular
graph is a sub-graph of the connectivity graph of the network.
Such assumption is true only when the node density of the
network is not too low. In our simulations, the average node
degree of the connectivity graph of a network is around or
above 8.



(a) DTM I (b) DTM II (c) DTM III (d) DTM IV

Fig. 5. The first row shows a set of DTMs of representative terrain surfaces. The second row shows wireless sensor networks marked with black points
randomly deployed on these terrain surfaces. The third row shows the localized sensor networks with anchor nodes marked with red. The given set of anchor
nodes provides each network an median localization error of the repeated tests.

V. SIMULATIONS

We pick a set of representative terrain surfaces and their
corresponding DTMs as shown in Fig. 5, on which wireless
sensor networks are randomly deployed (see the black points
on these terrain surfaces). Both the terrain surfaces and the
networks are not necessarily convex shape. The sizes of the
sensor networks deployed on DTM I, II, III, and IV, are
0.5k, 2.6k, 3k, and 2k respectively. We carry out extensive
simulations under various scenarios to evaluate the overall
performance of the proposed algorithm with different factors
such as the positions of the three anchor nodes, the resolution
of a DTM, and the one-hop distance measurement error. We
compute the localization error as the ratio of the average node
distance error (all sensors in the network) and the average
transmission range. Note that there is no simple alternative to
localize a surface network as we discussed in Sec. I, so there
is no comparison made.

A. Deployment of Anchor Nodes

We assume sensor nodes with accurate one-hop distance
measurement and DTMs with high resolutions. For each
network, we randomly deploy three anchor nodes and cal-
culate the localization errors of the network based on the
proposed algorithm in Sec. III. We repeat eight times for
each network. Denote xi the ith localization error. We compute
the arithmetic mean µ = 1

8 ∑
8
i=1 xi and the standard deviation

σ=
√

1
7 ∑

8
i=1(xi−µ)2. Table I shows the mean, the median (x̃),

and the standard deviation of localization errors under different
sets of anchor nodes. The positions of the three anchor nodes
affect the performance of the proposed localization algorithm

TABLE I
THE DISTRIBUTION OF LOCALIZATION ERRORS UNDER DIFFERENT SETS

OF ANCHOR NODES

DTM I DTM II DTM III DTM IV

Error
µ 0.2579 0.1356 0.0951 0.2098
x̃ 0.2306 0.1343 0.0956 0.1512
σ 0.1089 0.1717 0.0158 0.0352

(a) DTM II (b) DTM IV

Fig. 6. The same set of DTMs as shown in Fig. 5 with very low resolutions.

slightly. In general, the more scattered we deploy the three
anchor nodes in a network, the lower the localization error is.

B. Terrain Models with Different Resolutions

To evaluate the impact of the resolution of a DTM, we
compute the localization errors of a network deployed on a
terrain surface with four different resolutions of the DTM.
The resolution of the highest one is almost twenty times of
the resolution of the lowest one. Fig. 5(b) and (d) show the two
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Fig. 7. The resolution of a DTM has a small impact on the performance of
the localization algorithm.
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DTMs of our testing with very high resolutions, and Fig. 6(a)
and (b) show the same two DTMs with very low resolutions.
The results given in Fig. 7 show that the resolution of a DTM
has a small impact on the performance of the localization
algorithm unless it is too low. Note that for each network,
we choose the set of anchor nodes that gives an median
localization error based on the repeated tests in Sec. V-A

C. Distance Measurement Error

We have also evaluated our algorithm when the one-hop
distance information exists measurement error. For each net-
work, we choose the set of anchor nodes that gives the median
localization error based on the repeated tests in Sec. V-A.
Fig. 8 shows that the proposed localization algorithm is sen-
sitive to measurement error. A possible solution for a network
with potentially large measurement errors is that we select
uniformly a set of landmark nodes such that each landmark
node has one hop distance to its landmark neighbors, i.e., a
Voronoi diagram with a small and constant cell size, and then
build a triangular mesh from the chosen landmark nodes with
edge length approximately the averaged transmission range.
Similar as connectivity based surface localization discussed in
Sec. IV-C, we localize the landmark nodes first and then other
non-landmark nodes.

(c) DTM III (d) DTM IV

Fig. 9. Networks with Connectivity Information Only.

D. Networks with Connectivity Information Only

As we discussed in Sec. IV-C, we uniformly select a
subset of nodes marked as landmark nodes and build a sparse
triangulation for a network with mere connectivity. Each vertex
is a landmark node and each edge has an approximately
constant length. Fig. 9 shows the sparse triangular meshes
generated from the network with size 3k deployed on DTM
III and the network with size 2k deployed on DTM IV. The
localization errors for landmark nodes of the two networks are
0.2037 and 0.2610 respectively.

E. The Convergence Time

We carry out experiments to test the number of iterations of
discrete surface Ricci flow required for convergence. Fig. 10
shows the convergence rates of discrete surface Ricci flow
on network with size 3k deployed on DTM III and network
with size 2k deployed on DTM IV. As we can pre-compute
the planar conformal mapping of the DTM triangulation of
a terrain surface, we can apply Newtons numerical method
to compute the solution of discrete surface Ricci flow. The
computation of this centralized method is very efficient with
less than ten iterations in a few seconds for a triangulation
with 10k size.
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Fig. 10. The convergence rate of the discrete surface Ricci flow algorithm.

VI. CONCLUSION AND FUTURE WORKS

In this paper we have proposed a fully distributed algorithm
to localize a wireless sensor network deployed on the surface
of a complex 3D terrain. The algorithm constructs a well-
aligned mapping between the triangular mesh of the DTM



of the terrain surface and the triangular mesh extracted from
the connectivity graph of the network deployed on the terrain
surface. Based on the mapping, each sensor node of the
network can easily locate reference grid points from the DTM
to calculate its own geographic location. We have carried out
extensive simulations under various scenarios to evaluate the
overall performance of the proposed algorithm with different
factors. We have also discussed the possibility of 3D surface
network localization with mere connectivity only.

As a future work, we will explore the best strategy to
deploy the three anchor nodes. We will incorporate those
useful contour features of surfaces like the peaks of valleys
into the alignment algorithm. We will extend the proposed
localization algorithm to be efficient in mobile environments.
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