
Link Prediction Based Minimum Cost and Balanced
Partition of Large Online Social Networks

Romas James Hada, Miao Jin
Center for Advanced Computer Studies

University of Louisiana at Lafayette
Lafayette, LA 70504

miao.jin@louisiana.edu

Ying Xie, Linh Le
College of Computing and Software Engineering

Kennesaw State University
Kennesaw, GA 30144

Abstract—Social networking has been one of the fastest grow-
ing information technologies as evidenced by the popularity of
online social network (OSN) sites. These highly active OSNs
generate an enormous volume of data as well as work load
every day. A cost-effective solution is horizontal scaling where
an OSN is partitioned and deployed on a set of low-cost servers.
The goal of the paper is to achieve an optimal partitioning by
minimizing the overall cost (sum of the inter-server write traffic
cost and moving cost) while maintaining a load balance across
servers. Given the NP-hardness of the problem, we introduce a
deep learning based model for incremental online learning and
dynamic link prediction. We then propose a Dynamic Link Predic-
tion based online algorithm named FLOAT that incorporates the
predicted future link information into the online user assignment.
Relying upon future and current link based node relocation/swap
gain estimations (Adjusted Server Change Benefit (ASCB) and
Adjusted Server Exchange Benefit (ASXB), FLOAT strategically
assigns user nodes across servers. The simulation results confirm
that a projected benefit based on the knowledge of future links
help reduce the overall cost significantly compared with existing
algorithms, at the same time, maintaining a low inter-server write
traffic cost.

Index Terms—Social Networks, Load Balancing, Scalability,
Link Prediction, Deep Learning.

I. INTRODUCTION

Social networking has been one of the fastest growing infor-
mation technologies as evidenced by the popularity of online
social network (OSN) sites as Facebook, Twitter, LinkedIn,
and Instagram. These popular and highly active OSNs generate
an enormous volume of data as well as work load every day.
It is expensive or even impossible to deploy a large OSN on
a single server. A cost-effective solution is horizontal scaling
where an OSN is partitioned and deployed on a set of low-cost
servers as adapted by many OSNs like Facebook.

Later, a replication-based architecture is introduced to avoid
inter-server read traffic cost of horizontal scaling. If two
socially connected users are placed in two separate servers,
their data are replicated in both servers to reduce the query
delay and the hassle of complex distributed programming.
However, the prices are not just the extra storage cost of the
replicas but also the inter-server write traffic cost where any
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update of a social user must be pushed to all of its replicas
in different servers to maintain the system consistency. State-
of-the-art algorithms including SPAR in [25], Gossip in [24],
TOPR in [30], and Online & Offline algorithms in [12] exploit
social relationships to minimize the inter-server write traffic
cost while maintaining a load balance among servers. These
methods repeatedly choose a user in either a random or greedy
way to relocate to or swap with a different user in another
server to reduce the total inter-server write traffic cost.

Since almost all OSNs gather surfeit of data associated with
each user, a user is potentially associated with a high volume
of data. For example, a long time active Facebook user may
have stored thousands of photos, videos, messages, and posts.
Additionally, Facebook also stores user related information
including location history, payment history, targeted ads, pro-
file information, comments, apps, group information, search
history, and many more [4]. Therefore, the cost associated
with migrating such a high volume of user data across servers
to minimize the total inter-server write traffic cost cannot be
overlooked.

Considering that existing research has not considered the
moving cost into the optimization, the goal of this paper is
to achieve an optimal partitioning of an OSN to minimize
the overall cost including the inter-server write traffic cost
and total moving cost while maintaining a balanced load
distribution among the servers.

A. Problem Formulation

We use graph G = (V,E) to model social network, where
the nodes in V represent users and the edges in E represent
social relationships between them. Let N denote the total
number of nodes or users and K denote the number of servers.
Let us introduce first the terminologies and then discuss the
problem.

Definition 1. Primary replica. Primary replica refers to
the master copy of a user data that handles read and write
requests from users and maintains replicas consistency across
servers.

Definition 2. Non-primary replica. Non-primary replica
refers to the slave copy of a user data that stores only
frequently accessed data associated with the user. Note that978-1-7281-2522-0/19/$31.00 ©2019 IEEE
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TABLE I: The Minimum Overall Cost Balanced Partitioning Problem.

maintaining the consistency of the non-primary replicas intro-
duces the inter-server write traffic cost.

Definition 3. Pseudo primary replica. Pseudo primary
replica refers to an exact copy of a primary replica that is to
fulfill the data availability requirement. Note that maintaining
the consistency of the pseudo primary replicas also introduces
the inter-server write traffic cost.

Definition 4. Inter-server write traffic cost. Let τ be an
average write traffic cost associated with a single write and
ωi be an average writing frequency of user i. The inter-server
write traffic cost associated with user i can be represented
as τωi. As the inter-server write traffic cost is proportional
to the number of pseudo primary and non-primary replicas
distributed across servers, if user i has r replicas (including
both pseudo primary and non-primary replicas), the inter-
server write traffic cost to maintain the replica consistency
for user i is τ(ωir).

Definition 5. Total moving cost. Let si be the storage
weight of primary replica of user i and µ be an average
cost associated with relocating a unit storage weight across
servers. Let Mik be the number of times the primary and
pseudo primary replicas of user i being relocated to server k.
The total moving cost of user i across a OSN with K servers
is

∑K
k=1 µ(siMik).

It is obvious that we can reduce the total moving cost
to a minimum by not relocating any primary replica across
servers, which in turn increases inter-server write traffic cost
significantly. Our goal is to achieve the best partitioning of an
OSN by minimizing the overall cost while maintaining load
balance across servers.

Let Rpik = 1, Rnik = 1, and Rsik = 1 indicate the primary,
a non-primary , and a pseudo primary replica of node i are
assigned to server k, respectively. otherwise Rpik = 0, Rnik = 0,
and Rsik = 0, respectively. Table I gives a formal definition of
the problem.

Specifically, we want to minimize the total inter-server
write traffic cost and moving cost:

∑K
k=1

∑N
i=1(wiτ)(Rsik +

Rnik) + µ(Miksi), subject to a set of constraints. As the
number of pseudo primaries is fixed by the data availabil-
ity requirement, we can simplify the objective function as∑K
k=1

∑N
i=1 τ(wiR

n
ik) + µ(siMik).

The first constraint makes sure that only one type of replica
(either a primary, a pseudo primary or, a non-primary replica)
of each user exists in one server.

The second constraint ensures that if the primary replica of
user i is in Server k, and there is a social link between users
i and j (i.e., lij = 1), then a copy of user j (either primary,
non-primary, or pseudo-primary) must be stored in Server k
too.

The third constraint makes sure the data availability require-
ment (fault tolerance), i.e., each node must maintain ψ pseudo
primaries distributed across servers.

The fourth constraint ensures that each node has exactly one
primary replica assigned to one server of an OSN.

The last constraint ensures that the load difference between
any two servers is no greater than a constant ε. Note that the
storage weight (si) for any user i cannot exceed the maximum
allowed capacity by OSNs [2], [5], and [6].

Theorem 1. The problem of minimizing the overall cost while
maintaining a balanced load distribution of online social
networks is NP-hard.

Proof. The problem can be reduced to the MIN REPLICA
one that has been proved to be NP-hard [25] in polynomial
time. Assume zero cost to relocate a unit storage weight across
servers, i.e., µ = 0, and the same writing frequency of all
users, i.e., ωi = 1 ∀i ∈ [1, N ], then the overall cost defined
in Table I is equivalent to the one defined in MIN REPLICA
problem. Assume the same storage weight of all users, i.e.,
si = 1 ∀i ∈ [1, N ], then the load balance constraint in
Table I is equivalent to the one in MIN REPLICA. The other
constraints in Table I are similar to those in MIN REPLICA.
As MIN REPLICA is NP-hard, the one defined in Table I is
also NP-hard.

B. Our Contributions

We are the first to add the total moving cost into the problem
formulation of the online large-size OSN partition. The cost
should not be overlooked in practice when partitioning a large-
size OSN. Our goal is to achieve an optimal partitioning by
minimizing the overall cost (sum of the inter-server write
traffic cost and moving cost) while maintaining a load balance
across servers.



Given the NP-hardness of the problem, we are also the
first to propose a Dynamic Link Prediction based online
algorithm named FLOAT that incorporates the predicted future
link information into the online user assignment. Specifically,
when an online event happens (new user arrival, new edge
addition, etc.), our dynamic link prediction models predict
the future links between the newly arrived node and existing
ones. We then introduce future and current link based gain
estimation techniques (Adjusted Server Change Benefit (ASCB)
and Adjusted Server Exchange Benefit (ASXB). Relying upon
ASCB and ASXB, FLOAT strategically assigns user nodes
across servers with the goal of minimum overall cost and
balanced partitioning. The simulation results confirm that a
projected cost based on the knowledge of future links help
reduce the overall cost significantly compared with existing
algorithms, at the same time, maintaining a low inter-server
write traffic cost.

In Section II, we give a brief review of state-of-the-art works
closely related to our research. We introduce our dynamic link
prediction models in Section III and the proposed algorithm
FLOAT In Section IV. We present simulation results in Sec-
tion V and conclude this paper in Section VI.

II. RELATED WORK

OSNs have adopted practical approaches including dis-
tributed hash tables [28], NoSQL databases [23], and key-
value stores [9] to handle a massive amount of data across
multiple commodity servers. These approaches partition and
distribute data in a random manner without consideration of
social connections between OSN users, which may lead a
high inter-server write traffic cost when two users frequently
communicating with each other are assigned to two different
servers.

The minimum-cut problem in graph theory, minimizing the
number of inter-partition edges (edge cuts) when partitioning
a graph, has been well studied in [11], [16], [17]. It is related
but not equivalent to the minimization of inter-server write
traffic cost of OSNs. Examples given in [25] and [12] have
demonstrated that minimizing edge cuts does not necessarily
reduce the replication cost.

There are some works contributing to the minimization
of inter-server write traffic cost. The Social Partitioning and
Replication middleware (SPAR) [25] provides a simple scheme
to minimize the replication cost assuming that all users
generate equal write traffic. The Gossip-based Partitioning
and Replication Middleware (GPRM) [24] introduces a cost
function to swap nodes in different servers to minimize the
inter-server write traffic cost. Jiao et. al. [14], [15] consider
the optimization problem in a geo-distributed cloud scenario,
optimizing the storage cost and the intercloud write traffic
cost, at the same time, providing a geo-distributed satisfactory
quality of service (QoS) and data availability to OSN users.
Liu et. al. [21] propose a selective data replication scheme to
reduce the read and write traffic between data centers. Their
strategy is to avoid replicating data of users with low read

but high write traffic. The authors in [30] introduce a Traffic-
Optimized Partitioning and Replication (TOPR) method by
considering both read and write rates of users. However,
according to Wittie [33], OSNs (like Facebook) push the
updates of a user (like wall posts) to all of the connected
friends. Accordingly, the communication cost is determined
regardless of the read rate. Hada et. al. [12] propose Server
Change Benefit (SCB) based online and offline algorithms that
relocate or swap users based on the computed SCB value.
Their goal is to minimize the inter-server write traffic cost
while maintaining a strict balanced load distribution across
servers.

None of the existing research considers the moving cost as
part of the optimization goal. None of these works incorporates
future link information to assign each incoming user to the
most likely appropriate server.

III. DYNAMIC LINK PREDICTION

We propose two dynamic link prediction models. To train
each model, we first prepare the training data.

Specifically, we create a sampled list of unconnected pairs
of nodes by the end of the first month of each quarter. We
randomly select a node vi and add the pairs of vi and its
two-hop neighbors, i.e., (vi, vk) to the list. For each pair in
the list, we compute the following common neighbor based
features including Adamic/Adar Coefficient [7], Jaccard Index
[13], Leicht-Holme-Newman [18], Resource Allocation Index
[35], Sorensen Index [29], Salton Cosine Similarity [27], Hub
Promoted [10], and Hub Depressed [10]. By the end of the
second month of the quarter, we then check the status of each
pair in the list and label it as Positive if the two nodes are
connected or Negative if they are not connected after a month.
These labeled samples, along with their previously computed
eight features, form a training data set. Considering the size
of negative samples is much larger than the size of positive
ones, we randomly pick negative samples with twice the size
of positive ones.

Support Vector Machine (SVM) is a supervised machine
learning model that performs good classification and out-of-
sample generalization. We choose SVM with Radial Basis
Function (RBF) kernel as the first dynamic link prediction
model [8]. Despite its good prediction rate, traditional machine
learning models including SVM, are trained in an offline
model. In order to be adapted to new data, an SVM model
trained on old data needs to be re-trained completely on
the aggregation of old and newly formed training data, as
illustrated in the following Fig. 1 (a). As can be seen, the
accumulation of training data along the time makes the type of
model training impractical with the time complexity of SVM
training O(n3) where n is the size of the training set.

To reduce the time complexity of training SVM during each
interval, we randomly select a limited number of negative
and positive samples (while maintaining their ratio to 2) from
the training set. Sampling certain percentage of data from the
overall training set could only mitigate the situation to a very
limited extent because there will be a time point when the



Training data
formed at T0

.........

New training 
data formed at 

T1

.........

Model trained
at T0

Model trained
at T1

Model trained
at Tn

New training 
data formed at 

Tn

Training data
formed at T0

.........

New training 
data formed at 

T1

.........

Model initially 
trained at T0

Model is refined
at T1

Model is refined
at Tn

New training 
data formed at 

Tn

Training data
formed at T0

.........

New training 
data formed at 

T1

.........

Model initially 
trained at T0

Model is refined
at T1

Model is refined
at Tn

New training 
data formed at 

Tn

New training 
data formed at 

Tx

Model is refined
at Tx

Online Increment Learning Offline Learning by Tx

Batch 
Learning

......... .........

(a) (b) (c)

Fig. 1: (a) Illustration of Challenges for SVM in a Dynamic Environment. (b) Scalable Online Learning Strategy. (c) Online
Incremental Learning.

sampling records can no longer represent the training data
due to the limited sampling rate. An alternative is that the
SVM model will be trained only on the most recent N records
from the overall training set. However, this strategy is totally
unaware of a big portion of the graph that is represented by
the records before the most recent N records. There will be a
time point when the most recent N samplings only represent
a very small portion of the graph.

Therefore, we need a scalable online learning strategy that
can handle the continuous growth of data, as described in
Fig. 1 (b). Specifically, a machine learning model is initially
trained on the training data formed at T0, then the trained
model is refined with ONLY the new training data formed at
T1, and continuously being refined at T2, , Tn. In other words,
at any time point Tx, the model is refined with only the training
data that are newly formed at Tx. Furthermore, since the model
is refined in an incremental way, it always keeps a complete
perspective of the whole graph.

A deep learning model is a natural fit of this incremental
online learning as illustrated in Fig. 1 (c). We can view each
refinement at time Tx as a batch learning with only the new
training data formed at Tx. Furthermore, we add an Offline
Learning that runs as a background process then re-iterates all
the previous training data in order to remove the bias of the
model towards the most recent training data. Therefore, we
propose the second dynamic link prediction model, based on
deep neural networks (DNNs). We choose a four-layer fully-
connected deep learning architecture. Each hidden node uses
ReLu as the activation function. The output node uses sigmoid
activation to indicate the probability of the input pair with
potential future linkage.

As the common neighbor based features cannot be com-
puted for a pair of nodes more than two hops away, both
link prediction models predict future links between the newly
arriving node and others within two hops away. The training
set is constantly updated with newly labeled pairs, feature
values, and labels of existing labeled pairs.

IV. PROPOSED ONLINE ALGORITHM

We introduce first the definitions of Adjusted Server Change
Benefit (ASCB) and Adjusted Server Exchange Benefit (ASXB)
and then equations to project the estimated benefit based on
both current and future links for node relocation and swapping,
respectively in Sec. IV-A. We introduce Decision Threshold
(Tσ) to make a strategic decision for node relocation and swap-
ping, with the goal to greedily maximize the moving benefit
(ASCB/ASXB) per moving cost in Sec. IV-B. In Sec. IV-C,
we present FLOAT , a comprehensive online algorithm built
upon the techniques described above. The scalable algorithm
FLOAT achieves a minimum overall cost with a balanced
partition of large-size OSNs.

A. Predicted Benefit

We introduce the concepts of Server Change Benefit (SCB)
and Server Exchange Benefit (SXB), respectively. SCB com-
putes an estimated inter-server write traffic benefit if relocating
the primary replica of one user from the current server to
another one. SXB, also known as Swap Benefit, computes
an estimated inter-server write traffic benefit if swapping the
primary replicas of two users from different servers.

We adopt the method to compute SCB from [12]. We have
the following definitions first.

Definition 6. Same Side Neighbor Number (SSNN ):
SSNN(vi) represents the number of 1-hop neighbors of node
vi that are assigned to the same server as vi.

Definition 7. Pure Same Side Neighbor Number (PSSNN ):
PSSNN(vi) represents the number of same side neighbors
of node vi with their 1-hop neighbors that are also assigned
to the same server as vi.

Definition 8. Different Side Neighbor Number (DSNN ):
DSNN(vi) represents the number of 1-hop neighbors of node
vi that are assigned to different servers.

Definition 9. Pure Different Side Neighbor Number
(PDSNN ): PDSNN(vi) represents the number of different
side neighbors of node vi with their 1-hop neighbors that
are assigned to different servers too. Assuming vi currently



locating in server A, PDSNN(vi, B) represents the number
of pure different side neighbors of vi in server B.

Then the SCB value of relocating node vi from Server A
to Server B can be computed as the following:

SCB(vi, B) = PDSNN(vi, B) + PDSNN(vi, AB)−

PSSNN(vi)−DSNN(vi, AB)+DSNN(vi)+SSNN(vi),

where DSNN(vi, AB) and PDSNN(vi, AB) are DSNN
and PDSNN of vi on servers excluding A and B, respectively.

If vi and vj are non-neighboring users assigned to server A
and B, respectively, the swap benefit SXB(vi, vj) of swapping
nodes vi and vj can be simply computed as the following:

SXB(vi, vj) = SCB(vi, B) + SCB(vj , A).

If vi and vj are neighboring users on server A and B,
respectively, their primary and non-primary replicas will swap
simultaneously, which will cancel out the change of DSNN
and SSNN because their own non-primary replicas remain
intact. Additionally, if vi has no DSNN on Server B except
vj , then vj is PDSNN of node vi. If we swap vi and vj , the
benefit represented by PDSNN(vi) will get canceled out by
reducing a non-primary replica of vj on Server A but in turn
increasing a non-primary replica of vj on Server B. The same
rule applies to node vj if node vi is PDSNN of vj .

In summary, we compute the swap benefit SXB(vi, vj) of
non-neighboring nodes vi and vj as:

SXB(vi, vj) = SCB(vi, B) +SCB(vj , A)− (DSNN(vi)+

DSNN(vi) + SSNN(vi) + SSNN(vi) + PDSNN(vj , A)

+PDSNN(vi, B)).

Both SCB and SXB are estimated benefits based on current
link information. Similarly, we compute the Link Prediction
based Server Change Benefit (LSCB) and Link Prediction
based Server Exchange Benefit (LSXB) to estimate the inter-
server write traffic benefit of user relocation or swapping
based on predicted future link information, respectively. The
equations to compute LSCB and LSXB are same as SCB and
SXB.

We then combine SCB and LSCB to Adjusted SCB (ASCB),
and SXB and LSXB to Adjusted SXB (ASXB) to guide our
online partition algorithm.

Definition 10. Adjusted SCB (ASCB). A projected benefit of
Node vi relocated from Server A to server B:

ASCB(vi, B) =

{
LSCB(vi, B), 0 ≤ SCB(vi, B) ≤ Tσ
SCB(vi, B), otherwise,

where Tσ , called decision threshold, will be discussed in
Sec. IV-B.

Definition 11. Adjusted SXB (ASXB). A projected benefit of
Node vi in Server A swapped from Node vj in server B:

ASXB(vi, vj) =

{
LSXB(vi, vj), 0 ≤ SXB(vi, vj) ≤ Tσ
SXB(vi, vj), otherwise.

B. Decision Threshold

Our intuition of decision threshold is to greedily maximize
the moving benefit (ASCB/ASXB) per moving cost. We first
define Trending Benefit and Trending Variable denoted by Tβ
and Ω, respectively. The former measures the moving benefit,
i.e., the decrease of inter-server write traffic cost, per moving
cost. The latter is the ratio of the Total Moving Cost and the
Total Inter-Server write Traffic Cost. Based on Tβ and Ω, we
discuss the way to compute the decision threshold Tσ .

Definition 12. Trending Benefit (Tβ): the cumulative pro-
jected moving benefit per moving cost. Tβ is computed as:

Tβ =
∑N
i=1

∑K
j=1

ASCB(Rp
ij ,l)+ASXB(Rp

ij ,R
p
ml)

µMilsi
,

∀1 ≤ i ≤ N, 1 ≤ m 6= i ≤ N, ∀1 ≤ j, l ≤ K, j 6= l

where N represents the number of nodes, K the number of
servers, and Rpik the primary replica of node i stored in server
k.

Note that the total projected moving benefit and the total
moving cost are counted by

∑N
i=1

∑K
j=1ASCB(Rpij , l) +

ASXB(Rpij , R
p
ml) and

∑N
i=1 µMilsi), respectively.

Definition 13. Trending Variable (Ω ): the ratio of the total
inter-server write traffic cost

∑
τ(wiR

n
ik) as in Definition 4

and the total moving cost
∑
µ(siMik) as in Definition 5. Ω

is computed as:

Ω =
∑K
k=1

∑N
i=1

τ(wiR
n
ik)

µ(siMik)
,∀1 ≤ k ≤ K, 1 ≤ i ≤ N

If we set Tσ = Tβ , we only relocate nodes with a high
contribution to the relocation benefit. Therefore, we can expect
a significantly decreased total moving cost with an increased
inter-server write traffic cost. On the other hand, we can set
Tσ to zero such that a node will be relocated as long as the
relocation benefit is greater than zero. Similarly, we can expect
a significantly decreases inter-server write traffic cost with
an increased total moving cost. With the goal to achieve a
minimum overall cost, we compute Tσ = Ω ∗Tβ with Tβ and
Ω updated.

C. Future and Current Links based Online Algorithm with
Decision Threshold (FLOAT)

We now present FLOAT , a comprehensive online algo-
rithm built upon techniques described above. The scalable
algorithm FLOAT achieves minimum overall cost with a
balanced partition of large-size OSNs. There are basically six
distinct parts in the proposed algorithm as described below:

1) Initial Assignment. FLOAT assigns the primary replica
of a newly arriving user vi to a server with the minimum
load. If vi has neighbors assigned to different servers,
FLOAT will create non-primary replicas of vi and store
at those servers to maintain social locality. FLOAT also
fulfills the data availability requirement by arbitrarily
assigning a fixed number of pseudo-primary replicas of
vi across servers.



2) Relocation and Swap. FLOAT predicts the set of
nodes connecting to vi in the near future. FLOAT then
determines the best server denoted by B to relocate
node vi with the highest projected ASCB(vi, B), if
node relocation does not violate load balance constraint.
Otherwise, FLOAT will determine the best node vj from
server B with the largest ASXB(vi, vj) and swap if the
projected swap benefit exceeds the decision threshold
(Tσ).

3) Edge Addition/Deletion Events. Let e(viA, vjB) be a
newly added edge between existing nodes vi and vj lo-
cated in Servers A and B, respectively. FLOAT computes
the projected benefits ASCB(vi, B) of relocating node
vi to server B and ASCB(vj , A) of relocating node vj
to server A. FLOAT will select the node with a higher
ASCB and move the node if the load balance constraint
is satisfied and the projected benefit is greater than Tσ .
If node relocation fails, FLOAT proceeds with the swap
option by selecting one node denoted by vm with
the highest ASCB(vm, A) from server B and one
node denoted by vn with the highest ASCB(vn, B)
from server A. FLOAT compares ASXB(vi, vm) and
ASXB(vj , vn) and choose the pair with a higher value
to swap.
FLOAT does nothing in the case of edge removal as
such event does not increase the total inter-server write
traffic cost.

4) Node Removal. If node vi is removed from server
A, FLOAT determines a node with the highest pro-
jected ASCB(vi, B) in the server with the highest load.
FLOAT moves the node to server A if the projected
benefit is greater than Tσ .

5) Server Addition/Removal. Server addition or removal is
a normal process for a dynamic infrastructure. For each
addition of servers, FLOAT either allows newly arrived
nodes to be assigned to the newly added server until the
requirement of balanced distribution is guaranteed, or
relocates nodes with the highest ASCB from servers
with a heavy load to the newly added one. In case
of server failure or removal, FLOAT migrates primary
replicas of nodes from the removed server to others with
a light load and achieving the highest ASCB.

V. SIMULATION RESULTS

We implemented the proposed online algorithm FLOAT
and four existing ones for comparison including Online [12],
QoS [14], [15], SPAR [25], and Random. To make a fair
comparison with QoS [14], [15], we modified their assump-
tion of clouds with virtually infinite storage to servers with
limited storage. We implemented both the online and offline
algorithms of QoS and run them on all nodes until the total
inter-server write traffic cost cannot be reduced further. When
implementing the Random approach, we distribute the nodes
across servers in a uniformly random manner.

As popular OSNs including Facebook [2], Twitter [6], and
Pinterest [5] have set policies regarding the maximum storage

and number of connections per user, we require the storage
weight of all users under a maximum allowed capacity defined
by OSNs. When computing the moving cost, si represents
the actual storage weight related to user vi. As non-primary
replicas act like cache, we consider their memory footprint
negligible. To ensure a balanced partition, we set ε = 1 in the
last constraint of Table I.

Considering the fact that cloud service providers charge
their vendors a specific rate for inter-cloud data transfer /
internet data transfer [3] and [1], the overall cost we evaluate
is transformed into monetary cost charged in one billing cycle
by cloud service providers for maintaining a social network in
their platform.

We evaluate all implemented algorithms on a set of real
world OSN datasets including Arxiv [19], Gnutella [26],
Facebook SNAP [20], Facebook Stanford [31], Twitter [20],
Amazon [34], Facebook Wall [32], Facebook Links [32], and
Twitter Dynamic [22].

Specifically, Arxiv collects authors and their relationships
of papers submitted to General Relativity and Quantum
Cosmology (GR-QC). Gnutella is a dataset collected from
p2p-Gnutella showing the connections between p2p-Gnutella
nodes. The Facebook SNAP dataset is a sparse graph repre-
senting Facebook users and their relationships. Facebook Stan-
ford represents a friendship network of Stanford University.
The Twitter dataset was built, crawling from public sources.
The Amazon dataset was collected by crawling Amazon
website based on the “Customers Who Bought This Item Also
Bought” feature of the giant online shopping portal. Facebook
Wall is part of the Facebook New Orleans network [32].
Each row in Facebook Wall contains two user nodes and a
time stamp when the second user posted on the Facebook
wall of the first one. Facebook Links is also part of the
Facebook New Orleans network [32]. Each row in Facebook
Links contains two user nodes and a time stamp when they
form a link, i.e., being friends. Twitter Dynamic dataset
contains the most popular users on Twitter, i.e., Lady Gaga
and randomly collected 10, 000 of her followers and followers
of these followers crawled over the period of 10/12/2010 to
12/23/2010.

Table II gives the size of nodes and edges of each dataset.

Dataset Nodes Edges
Arxiv 5,242 14,496
Gnutella 8,114 26,013
Facebook SNAP 4,039 88,234
Facebook Stanford 11,586 568,309
Twitter 81,306 1,768,149
Amazon 334,863 925,872
Facebook Wall 45,778 182,964
Facebook Links 63,680 805,809
Twitter Dynamic 90,908 443,399

TABLE II: Datasets used in simulation.

Fig. 2 and Fig. 3 compare the overall cost and the inter-
server write traffic cost of FLOAT, Online [12], QoS [14],
[15], and SPAR [25] running on various datasets including
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Fig. 2: Overall Cost of FLOAT, Online [12], QoS [14], [15],
and SPAR [25] running on various datasets including Arxiv,
Gnutella, Facebook SNAP, and Facebook Stanford with the
size of servers K = 100 and data availability requirement
ψ = 3.
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Fig. 3: Inter-server write traffic cost of FLOAT, Online [12],
QoS [14], [15], and SPAR [25] running on various datasets
including Arxiv, Gnutella, Facebook SNAP, and Facebook
Stanford with the size of servers K = 100 and data availability
requirement ψ = 3.

Arxiv, Gnutella, Facebook SNAP, and Facebook Stanford,
respectively. We assume the size of servers K = 1000, data
availability requirement ψ = 3, and constant storage weight of
primary replica si and average writing frequency wi of user
vi. FLOAT achieves superior performance of the overall cost
compared to existing algorithms and still maintains the lowest
inter-server write traffic cost with Online [12].

Fig. 4 and Fig. 5 compare the overall cost of FLOAT,
Online [12], QoS [14], [15], and SPAR [25] running on various
datasets including Facebook Wall, Facebook Links, Twitter
Dynamic, Twitter, and Amazon with K = 100, ψ = 0, and
constant si and wi of user vi. Again, FLOAT achieves the
lowest overall cost compared to existing algorithms.

Fig. 6 and Fig. 7 compare the inter-server write traffic
cost of FLOAT, Online [12], QoS [14], [15], and SPAR
[25] running on various datasets including Facebook Wall,
Facebook Links, Twitter Dynamic, Twitter, and Amazon with
K = 100, ψ = 0, and constant si and wi of user vi. FLOAT
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Fig. 4: Overall Cost of FLOAT, Online [12], QoS [14],
[15], and SPAR [25] running on various datasets including
Facebook Wall, Facebook Links, and Twitter Dynamic with
the size of servers K = 100 and data availability requirement
ψ = 0.
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Fig. 5: Overall Cost of FLOAT, Online [12], QoS [14], [15],
and SPAR [25] running on various datasets including Twitter
and Amazon with the size of servers K = 100 and data
availability requirement ψ = 0.

consistently maintains the lowest inter-server write traffic cost
with Online [12].

Fig. 8 and Fig. 9 compare the overall cost and inter-server
write traffic cost of FLOAT and Online [12], respectively. We
assume K = 1000 and ψ = 1. We randomly generate the
storage weight of primary replica si and the average writing
frequency wi of user vi for all testing datasets using Gaussian
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Fig. 6: Inter-server write traffic cost of FLOAT, Online [12],
QoS [14], [15], and SPAR [25] running on various datasets
including Facebook Wall, Facebook Links, and Twitter Dy-
namic with the size of servers K = 100 and data availability
requirement ψ = 0.
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Fig. 7: Inter-server write traffic cost of FLOAT, Online [12],
QoS [14], [15], and SPAR [25] running on various datasets
including Twitter and Amazon with the size of servers K =
100 and data availability requirement ψ = 0.
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Fig. 8: Overall Cost of FLOAT and Online [12] running on
various datasets including Arxiv, Gnutella, Facebook SNAP,
and Facebook Stanford with the size of servers K = 1000
and data availability requirement ψ = 1.

distribution. As demonstrated in Fig. 8 and Fig. 9, FLOAT
achieves a less overall cost while an equivalent inter-server
write traffic cost with Online [12].

Figs. 10 and 11 compare the overall cost and the inter-
server write traffic cost of FLOAT, Online [12], QoS [14],
[15], SPAR [25], and Random running on Facebook Wall with
varying number of servers K. We assume constant si and wi
of user vi, and the data availability requirement ψ = 3. Both
the overall cost and inter-server write traffic cost increase for
all algorithms with the increased number of servers. FLOAT
performs consistently the best in terms of the overall cost
compared to all existing algorithms. At the same time, FLOAT
achieves an equivalent performance of the total inter-server
write traffic cost with Online [12].

A. Comparison of DNN and SVM

We train the DNN in a virtual machine with specs as
follows: Red Hat 7.6 / Linux 3.10, Intel(R) Xeon(R) Gold
6126 CPU 2.60GHz with 22-cores available to the VM, and
88.5 GB of RAM. Table III compares the performance of DNN
and SVM based link prediction models in terms of prediction
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Fig. 9: Inter-server write traffic cost of FLOAT and Online
[12] running on various datasets including Arxiv, Gnutella,
Facebook SNAP, and Facebook Stanford with the size of
servers K = 1000 and data availability requirement ψ = 1.

Fig. 10: Overall Cost of FLOAT, Online [12], QoS [14], [15],
SPAR [25], and Random running on Facebook Wall with
varying K and ψ = 0.

accuracy and the training time. For a small data set like Arxiv,
SVM performs well in terms of both accuracy and the training
time. However, as the size of the data set increases, the training
time of SVM grows dramatically. DNN, on the contrary, keeps
consistent high accuracy and low training time.

VI. CONCLUSION

We introduce a deep learning based model for incremental
online learning and dynamic link prediction. We then propose
a Dynamic Link Prediction based online algorithm named

Fig. 11: Inter-server write traffic cost of FLOAT, Online [12],
QoS [14], [15], SPAR [25], and Random running on Facebook
Wall with varying K and ψ = 0.



Dataset Accuracy (%) Training Time (s)
DNN SVM DNN SVM

Arxiv 93.25 92.95 12.86 6.37
Gnutella 86.85 87 28.86 2566.33
Facebook SNAP 84.54 - 290.24 -
Facebook Wall 98.92 - 313.17 -

TABLE III: Performance comparison of DNN and SVM based
link prediction models in terms of prediction accuracy and the
training time. - represents that SVM does not converge within
a reasonable time with a large size data set.

FLOAT that incorporates the predicted future link information
into the online user assignment of a large-size OSN. Relying
upon future and current link based node relocation/swap gain
estimations ASCB and ASXB, FLOAT strategically assigns
user nodes across servers to achieve an optimal partitioning by
minimizing the overall cost while maintaining a load balance
across servers. The simulation results confirm that a projected
benefit based on the knowledge of future links help reduce the
overall cost significantly compared with existing algorithms,
at the same time, maintaining a low inter-server write traffic
cost.
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[35] T. Zhou, L. Lü, and Y.-C. Zhang. Predicting missing links via local
information. The European Physical Journal B, 71(4):623–630, Oct

2009.


