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ABSTRACT

Face recognition has been of great importance in many applications as a biometric for its through-
put, convenience, and non-invasiveness. Recent advancements in deep Convolutional Neural Net-
work (CNN) architectures have boosted significantly the performance of face recognition based on
two-dimensional (2D) facial texture images and outperformed the previous state of the art using con-
ventional methods. However, the accuracy of 2D face recognition is still challenged by the change
of pose, illumination, make-up, and expression. On the other hand, the geometric information con-
tained in three-dimensional (3D) face data has the potential to overcome the fundamental limitations
of 2D face data.

We propose a multi-Channel deep 3D face network for face recognition based on 3D face data. We
compute the geometric information of a 3D face based on its piecewise-linear triangular mesh struc-
ture and then conformally ‘flatten’ geometric information along with the color from 3D to 2D plane
to leverage the state-of-the-art deep CNN architectures. We modify the input layer of the network to
take images with nine channels instead of three only such that more geometric information can be
explicitly fed to it. We pre-train the network using images from the VGG-Face Parkhi et al. [2015]
and then fine-tune it with the generated multi-channel face images. The face recognition accuracy of
the multi-Channel deep 3D face network has achieved 98.6%. The experimental results also clearly
show that the network performs much better when a 9-channel image is ‘flattened’ to plane based
on the conformal map compared with the orthographic projection.

Keywords Deep 3D face recognition · Multi-channel · Conformal mapping

1 Introduction

Face recognition has been of great importance in many applications as a biometric for its throughput, convenience,
and non-invasiveness. It has been an active research topic for years with the challenging of varying facial appearance
due to changes in pose, illumination, make-up, expression, or hard occlusions.

Recent advancements in deep Convolutional Neural Network (CNN) architectures have boosted significantly the per-
formance of face recognition based on two-dimensional (2D) facial texture images Taigman et al. [2014], Parkhi et al.
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[2015], Schroff et al. [2015]. Deep networks integrate different levels of facial features and recognize them in an end-
to-end fashion. They outperform the previous state of the art using conventional methods with hand-crafted feature
extractors including Local Binary Pattern Ahonen et al. [2004] and Fisher vectors Simonyan et al. [2013].

However, the accuracy of face recognition based on 2D facial texture image is still challenged by the change of pose,
illumination, make-up, and expression. It is highly desirable to input a CNN network with more robust information.
Therefore, the geometric information contained in a three-dimensional (3D) face point cloud has the potential to
overcome the fundamental limitations of 2D facial texture images.

Pioneering works have been done in Kim et al. [2017], Gilani and Mian [2018], which apply deep CNN architectures
for 3D face recognition. In both works, a 3D face point cloud is projected onto a 2D image plane with orthographic
projection, called the depth image. Kim et al. Kim et al. [2017] feed the VGG-Face network Parkhi et al. [2015]
with an augmented 3D face dataset consisting of 123,325 depth images. They test the network on three datasets:
Bosphorus Savran et al. [2008], BU3DFE Yin et al. [2006], and 3D-TEC (twins) Vijayan et al. [2011]. Their results
outperform the state-of-the-art conventional 3D face recognition methods in the Bosphorus dataset.

Considering a depth image occupies only one channel, Gilani et al. Gilani and Mian [2018] reserve another two chan-
nels for surface normals represented by spherical coordinates (θ, φ) to provide more geometric information. Normals
are calculated on the original 3D point cloud and then projected to a 2D image plane with orthographic projection. The
three channels are then normalized on the 0 − 255 range and rendered as an RGB image to feed to the Deep 3D Face
Recognition Network (FR3DNet) with a skeleton architecture similar to Parkhi et al. [2015]. The authors generate
millions of 3D facial images for training by simultaneously interpolating between the facial identities and expression
spaces. Results of FR3DNet outperform the accuracy of all conventional 3D face recognition methods of existing 3D
face datasets.

The primary downside of the two existing methods is that there is far richer geometric information on a surface that
represents the features of a face and the geometric information orthographically projected from 3D to 2D has been
largely distorted.

The multi-Channel deep 3D face network is completely different from the above works in that: (1) Geometric infor-
mation of a 3D face is conformally mapped from 3D to 2D plane. A conformal map preserves surface angles and local
shapes everywhere. (2) The network accepts images with multi-channel (more than three channels) that contain far
richer geometric information. Specifically, we convert the 3D face point cloud to a piecewise-linear triangular mesh
and then compute the geometric information of the 3D face based on the triangular mesh. The computed geometric
information along with the face color is conformally mapped to a 2D plane as a multi-channel face image to leverage
state-of-the-art deep CNN architectures. Note that the conformal map is intrinsic to the geometry of a 3D face, inde-
pendent of its triangulation resolution. We then modify the input layer of deep CNN architectures to take images with
more channels instead of just three. The multi-Channel deep 3D face network is trained first using images from the
VGG-Face Parkhi et al. [2015] and then fine-tuned with the multi-channel face images.

The rest of the paper is organized as follows: Section 2 explains the way to generate a multi-channel face image
from 3D face point cloud data. Section 3 introduces the multi-channel deep 3D face network. Section 4 gives the
experimental results. We conclude the paper in Section 5.

2 Multi-Channel Face Image

A scanned 3D face is stored as either a depth file or point cloud. It is straightforward to convert a depth file to a
triangular mesh. For a point cloud, we re-sample the points and then convert them to a triangular mesh.

The rich geometric information of a 3D face can be computed based on its piecewise-linear triangular mesh structure.
However, we need a tool to convert the computed geometric information and the stored color at each vertex from 3D to
2D. A simple orthographic projection in Kim et al. [2017], Gilani and Mian [2018] drops z dimensional information
in a brute force way. The implementation is simple, but the cost is high, which puts 3D face recognition vulnerable
under different poses as its 2D counterpart.

A conformal map preserves surface angles and local shape. The mapping itself is intrinsic to the geometry of a 3D
face, independent of its triangulation. These properties make a conformal map an ideal choice to convert the computed
geometric information from 3D to 2D, convenient for CNN architectures.

We explain briefly the concept of the conformal map in Sec. 2.1, the tool we use to compute the conformal map in
Sec. 2.2, and the geometric properties we compute in Sec. 2.3.
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2.1 Conformal Map

A conformal map between two surfaces preserves angles. Specifically, let S be a surface embedded in R
3 with a

Riemannian metric induced from the Euclidean metric of R3, denoted by g. Suppose u : S → R is a scalar function
defined on S. It can be verified that ḡ = e2ug is also a Riemannian metric on S. Furthermore, angles measured by g

are equal to those measured by ḡ. Therefore, we say ḡ is a conformal deformation from g. Riemann mapping theorem
states that any simply connected surface with a single boundary, i.e., a topological disk, can be conformally mapped
to a unit disk.

Figure 1 (a) shows a scanned 3D human face, i.e., a topological disk surface denoted as S, mapped to a unit disk
denoted as D by φ : S → D. Suppose γ1, γ2 are two arbitrary curves on the face surface S, and φ maps them to
φ(γ1), φ(γ2). If the intersection angle between γ1, γ2 is θ, then the intersection angle between φ(γ1) and φ(γ2) is also
θ. γ1 and γ2 can be chosen arbitrarily. Therefore, we say φ is conformal, meaning angle-preserving.

A conformal deformation maps infinitesimal circles to infinitesimal circles and preserves the intersection angles among
them, so locally a conformal map introduces no distortion, only scaling. Figures 1 (b) and (c) visualize the properties
based on texture mapping technique. Texture refers to an image on the plane. Based on the conformal map shown in
Figure 1 (a), we cover the planar disk by a checkerboard texture image and then pull back the image onto the 3D face
surface. Since the mapping is conformal, all the squares including their right angles of corners are well preserved on
the human face as shown in Figure 1 (b). If we replace the texture with a circle packing pattern, then planar circles
are mapped to circles on the surface. All the circles including their tangency relations are well preserved as shown in
Figure 1 (c).

(a) (b) (c)

Figure 1: Visualization of a conformal map with texture mapping: (a) A 3D face surface is conformally mapped to a
unit disk. (b) A planar checkerboard texture is pulled back to the 3D surface based on the inverse of the conformal
mapping where all the squares including their right angles are well preserved on the surface. (c) A circle packing
texture is pulled back to the 3D surface where all the circles including their tangency relations are well preserved on
the surface.

2.2 Discrete Surface Ricci Flow

Richard Hamilton first introduced Ricci flow in his seminal work Hamilton [1982]. Chow and Luo in Chow and Luo
[2003] proved a general existence and convergence theorem for the discrete Ricci flow on surfaces. Later computa-
tional algorithms of discrete surface Ricci flow are provided in Jin et al. [2008].

Discrete surface Ricci flow is a powerful tool to compute surface conformal deformation with the flexibility to design
target Gaussian curvatures. To briefly introduce the concept of discrete surface Ricci flow, we start from the definition
of discrete metric, discrete Gaussian curvature, and circle packing metric.

In discrete setting, we denote M = (V,E, F ) a connected triangular mesh embedded in R
3, consisting of vertices (V ),

edges (E), and triangle faces (F ). Specifically, we denote vi ∈ V a vertex, eij ∈ E an edge with two ending vertices
vi and vj ; fijk ∈ F a triangle face with vertices vi, vj , and vk.

Definition 1 (Discrete Metric). A discrete metric on M is a function l : E → R
+ on the set of edges, assigning to

each edge eij ∈ E a positive number lij such that the triangle inequalities are satisfied for all triangles tijk ∈ F :
lij + ljk > lki.

The edge lengths of a triangular mesh M are sufficient to define its discrete metric.

3
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Definition 2 (Discrete Gaussian Curvature). The discrete Gaussian curvature Ki on a vertex vi ∈ V can be computed
from the angle deficit:

Ki =

{

2π −
∑

fijk∈F θ
ij
i , vi 6∈ ∂M,

π −
∑

fijk∈F θ
jk
i , vi ∈ ∂M,

(1)

where θ
jk
i represents the corner angle attached to Vertex vi in Face fijk and ∂M is the boundary of the mesh.

It is obvious that the discrete Gaussian curvatures can be fully computed from the discrete metric.

Assign each vertex vi a circle with radius γi. We denote the radius function as Γ : V → R
+. The two circles centered

at vertices vi and vj , respectively of edge eij intersect with an acute angle φij . We call angle φij the weight on edge
eij . We denote the edge weight function as Φ : E → [0, π2 ].

The length of an edge eij can be computed from the vertex circle radii γi, γj and the weight φij by the following
cosine law:

leij
2 = γi

2 + γj
2 + 2γiγj cosφij . (2)

Thurston introduced the circle packing metric Thurston [1976]:

Definition 3 (Circle Packing Metric). A circle packing metric of a mesh M includes the circle radius function and the
edge weight function.

Definition 4 (Discrete Conformal Deformation). Two circle packing metrics (Γ1,Φ1) and (Γ2,Φ2) on the same mesh
are conformally equivalent if Φ1 ≡ Φ2. A conformal deformation of a circle packing metric modifies the vertex radii
but preserves their intersection angles.

Definition 5 (Discrete Surface Ricci Flow). Suppose mesh M has an initial circle packing metric (Γ0,Φ). Let ui be
the logarithm of γi associated with vertex vi. Discrete surface Ricci flow is defined as follows:

dui(t)

dt
= (K̄i −Ki), (3)

where K̄i and Ki are the target and current Gaussian curvatures at vi and t is the time. Discrete surface Ricci flow
deforms the circle packing metric according to the difference of the current and target Gaussian curvatures. The final
circle packing metric induces the metric that satisfies the target Gaussian curvature.

Discrete surface Ricci flow is a negative gradient flow of a special energy form, the so called discrete Ricci energy:

f(u) =

∫ (Γ,Φ)

(Γ0,Φ)

n
∑

i=1

(K̄i −Ki)dui, (4)

where (Γ0,Φ) is the initial circle packing metric, which induces the surface original metric. It has been shown
in Chow and Luo [2003] that the discrete Ricci energy is convex with a unique global minimum. The minimum
corresponds to the desired metric (Γ,Φ), which induces the target Gaussian curvature. Discrete surface Ricci flow
converges to this unique global minimum with an exponentially fast convergence speed that can be estimated by the
following formula Chow and Luo [2003]:

|Ki(t)− K̄i| < c1e
−c2t, c1, c2 > 0.

Since the boundary shape of a mapped 3D face mesh on a plane won’t affect the face recognition, and a fixed boundary
shape, e.g., a unit disk shape, will bring large area distortion to boundary regions, we apply the computational discrete
surface Ricci flow algorithm Jin et al. [2008] with free-boundary shape condition. Specifically, we assign the target
Gaussian curvatures of all interior vertices to zero and discrete surface Ricci flow deforms only non-boundary edge
lengths. The algorithm is as follows:

1. Initialization of circle packing metric: compute the initial circle packing metric based on the edge lengths of
the input 3D face mesh denoted as M .

2. Initialization of target Gaussian curvature: set the target Gaussian curvature of all non-boundary vertices
K̄i = 0 where vi 6∈ ∂M .

3. Set ǫ, the threshold of the curvature error between the current and target Gaussian curvatures.

4. Apply the algorithm in Jin et al. [2008] to compute the desired flat metric. Specifically, discrete surface Ricci

flow deforms the circle packing metric of non-boundary vertices until all |ki − ki| < ǫ where vi 6∈ ∂M .

4
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5. Planar embedding: When the discrete surface Ricci flow converges, the final circle packing metric determines
the edge lengths (i.e., {lij |eij ∈ E}) of M mapped in plane. Starting from one fijk , set their uv values as:

uv(vi) = (0, 0), uv(vj) = (lij , 0), and uv(vk) = (lkicosθ
jk
i , lkicosθ

jk
i ). In a breadth first search way,

for fjil with exactly two vertices (e.g., vi and vj) having uv values, compute the uv value of vl as the
intersection point of the two circles centered at uv(vi) and uv(vj) with radii lil and ljl, respectively, and
satisfying (uv(vl) − uv(vi)) × (uv(vj) − uv(vl)) > 0. Repeat the above process until every vertex has the
uv value, i.e., its planar coordinates.

Figure 2 (b) shows the mapped 3D face mesh on a plane under free-boundary condition.

2.3 Geometric Properties

Due to the piecewise-linear nature of a triangular mesh, the notions of normal, curvatures, their derivatives, and other
differential properties of surfaces, well known in Differential Geometry Abbena et al. [2006], become nontrivial.
We refer readers to Meyer et al. [2002], Cohen-Steiner and Morvan [2003], Rusinkiewicz [2004], Gatzke and Grimm
[2006] for detailed and more accurate approximation of these differential properties.

Normal vector at vertex vi is estimated as a weighted average of the normals of the triangle faces incident to vi:

Nori =

∑

i αiAiNi

||
∑

i αiAiNi||
, (5)

where αi, Ai, and Ni represent the corner angle, area, and normal of triangle attached to Vertex vi, respectively.

Gaussian curvature at vertex vi is approximated as the following weighted angle deficit:

Ki =

{

3
2
∑

i Ai
(2π −

∑

i αi), vi 6∈ ∂M,
3

2
∑

i
Ai

(π −
∑

i αi), vi ∈ ∂M,
(6)

where Ai and αi represent the area and corner angle of triangle attached to Vertex vi, respectively, and ∂M is the
boundary of the mesh.

Conformal mapping locally introduces no other distortion, only scaling. Such scaling is called conformal factor.
Conformal factor at vertex vi can be approximated as the ratio of the sum of the areas of triangles incident to vi in 3D
and 2D plane:

cfi =

∑

i A
3D
i

∑

i A
2D
i

,

where A3D
i and A2D

i represent the areas of triangle attached to Vertex vi in 3D and 2D, respectively.

3 Multi-Channel Deep 3D Face Network

3.1 Preprocessing

We pre-train the multi-Channel deep 3D face network using images from the VGG-Face Parkhi et al. [2015] and
then fine-tune the network with the generated multi-channel face images as introduced in Sec. 2. For all images,
we apply Multi-task Cascaded Convolutional Networks introduced in Zhang et al. [2016] for face alignment. The
framework adopts a cascaded structure with three stages of deep convolutional networks that predict the face and
landmark locations in a coarse-to-fine manner and achieves very good performance for alignment. All the aligned
images are resized to 182× 182.

3.2 Network Architecture

Residual Networks (ResNets) introduced in He et al. [2016] have achieved impressive, record-breaking performance
in ImageNet Russakovsky et al. [2015]. Training this form of networks has been shown to be easier than training plain
deep convolutional neural networks. The problem of degrading accuracy can also be resolved.

We use ResNet34 as the core architecture to minimize the triplet loss defined in Schroff et al. [2015]:

N
∑

i

||f(xa
i )− f(xp

i )||
2
2 − ||f(xa

i )− f(xn
i )||

2
2 + α, (7)
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where f(x) ∈ Rd represents the embedding of an image x into a d− dimensional Euclidean space, xa
i , x

p
i , and xn

i

represent a specific person (the anchor image), another image of the same person (the positive image), and any other
person (the negative image) respectively, and α is a margin that is enforced between positive and negative pairs. Note
that N = 9 with 9 channels for each image in the multi-Channel deep 3D face network. We set the dimension d to
128 and the margin α to 0.5.

Figure 2 (a) shows the skeleton structure of the multi-Channel deep 3D face network where a shortcut connection is
added every two convolutional layers. The first convolution layer takes images with 9 channels and the kernel size is
7× 7 as suggested in Gilani and Mian [2018]. Note that each convolutional layer is followed by a batch normalization
(BN) Ioffe and Szegedy [2015] and a ReLU layer both of that are not shown in Figure 2.

(a) Architecture of the multi-Channel deep 3D face network

(b) An example of the 9-channel image

Figure 2: (a) ResNet34 is the core architecture of the multi-Channel deep 3D face network where a shortcut connection
is added every two convolutional layers. The first convolutional layer takes images with 9 channels and the filter size
is 7x7. Note that each convolutional layer is followed by a batch normalization (BN) Ioffe and Szegedy [2015] and
a ReLU layer both of that are not shown in the figure. (b) An example of the 9-channel image: the nine channels
correspond to the R, G, B colors, the three dimensions of a normal vector, the Gaussian curvature, the conformal factor,
and the depth information respectively.

3.3 Implementation

We implement the multi-Channel deep 3D face network using PyTorch. We then start from VGG-Face Parkhi et al.
[2015] with 1, 648, 187 images and 2, 613 subjects in total to pre-train the network from scratch. The input to the
network is 182 × 182 × 9 image where the nine channels correspond to repeated R, G, B colors, respectively. We
initialize the weights as in He et al. [2015] and then optimize the learning using Stochastic Gradient Descent (SGD)
with a mini-batch size of 128 and two GPUs. The learning rate starts from 0.01, reduced by a factor of 10 after every
50 epochs. The models are trained for up to 150 epochs. We use a weight decay of 0.0001 and a momentum of 0.9.

We then fine-tune the network with the generated multi-channel 3D face images. The input to the network are 182×
182 × 9 images where the nine channels correspond to the R, G, B colors, the three dimensions of a normal vector,
the Gaussian curvature, the conformal factor, and the depth information respectively. Figure 2 (b) shows an example
of the 9-channel image. From the training set, we randomly select 90% scans of each identity for training and use the
remaining scans for validation.

4 Experiments

4.1 3D Face Databases

We report face recognition performances on the two standard public 3D databases: Bosphorus Savran et al. [2008] and
TexasFRD Gupta et al. [2010]. We randomly choose 15% from the combined two databases for testing. The remaining
is for training and validation.

6
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• The Bosphorus database contains 4, 666 3D facial scans with rich expression variations, poses, and occlusions
from 105 subjects generated by a stereo scanner.

• The TexasFRD database contains 1, 151 3D facial scans with rich expression variations from 118 subjects
generated by a stereo scanner.

4.2 Performance

1 2 3 4 5 6 7 8 9 10

Rank

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

R
ec

og
ni

tio
n 

R
at

e

Cumulative matching curve

Nine-channel with conformal
Nine-channel with orthographic
FaceNet with color
FaceNet with depth

(a) CMC curve (b) ROC curve

Figure 3: Comparison of face recognition: FaceNet with the face color image as input; FaceNet with the depth image
as input; multi-Channel deep 3D face network with the 9-channel image “flattened” to plane based on orthographic
projection as input; multi-Channel deep 3D face network with the 9-channel image“flattened”to plane based on
conformal mapping as input.

We randomly select one scan of each identity from the testing set to place in the gallery while the remaining scans are
used as probes. Face recognition is performed by computing the embedded L2 distance of a probe with all identities
in the gallery. The identity with the smallest distance is assigned to the probe.

We compare the results with the state-of-the-art 2D face recognition network: FaceNet Schroff et al. [2015]. We
feed FaceNet with the face color image and depth image, respectively. We also compare the results with a multi-
Channel deep 3D face network where the nine-channel information is “flattened” to plane based on orthographic
projection. To perform the orthographic projection, we align all the facial 3D models together using a classical rigid-
ICP Castellani and Bartoli [2012] between each 3D scan and a reference facial model as Kim et al. [2017].

We report the comparison results of recognition in the form of Cumulative Matching Curve (CMC) as shown in
Figure 3 (a) and Receiver Operating Characteristic curve (ROC) as shown in Figure 3 (b). Specifically, CMC
provides face recognition precision for each rank. For each probe from the testing set, we sort the distances against the
whole gallery and obtain the rank of the match. Face recognition performance is then stated as the fraction of probes
whose gallery match is at rank r or lower. It gives an estimation of the rate at which probe images will be successfully
recognized at rank r or better Grother et al. [2003]. ROC is computed where a varying threshold is applied to the
L2 distance of the probe and each identity in the gallery. It shows the trade-off between the true positive (true
recognition) and false positive (false recognition) rates as a parametric function of the prior distance threshold, where
the true positive rate is the fraction of probes whose gallery match has distance smaller than or equal to the threshold
value Grother et al. [2003].

Table 1 details the Rank-1 identification results of the multi-Channel deep 3D face network and compares with the
state-of-the-art conventional and deep CNN based methods. Note that for those cited comparison methods we report
the results from the original papers.

4.3 Discussions and Limitation

It is clear that the multi-Channel deep 3D face network performs much better when a 9-channel image is “flattened”
to plane based on conformal mapping compared with orthographic projection.

7
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Table 1: Comparison of the Rank-1 identification results
Method Model Input Bosphorus TexasFRD

conventional
MMH Mian et al. [2007] 3D mesh + RGB image 96.4% 98.0%

K3DM Gilani et al. [2018] 3D mesh 98.6% 98.1%

Deep CNN
FaceNet RGB image 95.5% 95.5%
FaceNet Depth 93.9% 93.9%

Deep CNN

DCNN Kim et al. [2017] Depth 99.2 -
FR3DNet Gilani and Mian [2018] Depth + Normal 96.18% 100%

FR3DNetFT Gilani and Mian [2018] Depth + Normal 100% 100%
Our Nework Nine channels (orthographic) 95.6% 95.6%
Our Network Nine channels (conformal) 98.6% 98.6%

The limitation is the dearth of labeled 3D face data for training the multi-Channel deep 3D face network. The authors
in Kim et al. [2017] synthesize new 3D face data using multi-linear 3D morphable models such that their network is
trained with depth images of 127K 3D scans of 700 identities. The authors in Gilani and Mian [2018] apply non-linear
heterogeneous variations in 3D shape, facial expressions, pose and occlusions to generate a training dataset of 3.1M
3D scans of 100K identities.

It is obvious that without enough training data, the performance of the multi-Channel deep 3D face network is still
below the two CNNs Kim et al. [2017], Gilani and Mian [2018] , although the input to the network contains far more
accurate geometric information produced by conformal mapping.

5 Conclusion and Future Works

We have designed a multi-channel deep 3D face network for face recognition. We first compute the geometric infor-
mation of a scanned 3D face. By employing a novel mathematical tool, discrete surface Ricci flow, we conformally
“flatten” the geometric information and the face color from 3D to 2D plane to leverage the state-of-the-art deep CNN
architecture. We modify the input layer of the network to take images with nine channels such that more informa-
tion can be explicitly fed to the network. Although the amount of the multi-channel face images is limited, the face
recognition accuracy of the multi-channel deep 3D face network has achieved 98.6%. The experimental results clearly
show that the network performs much better when a 9-channel image is “flattened” to plane based on a conformal map
compared with orthographic projection. As our future works, we will train the network on larger 3D database sets
with automatically generated 3D face data.
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