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ABSTRACT
With both computational complexity and storage space bounded
by a small constant, greedy routing is recognized as an appealing
approach to support scalable routing in wireless sensor networks.
However, significant challenges have been encountered in extend-
ing greedy routing from 2D to 3D space. In this research we de-
velop decentralized solutions to achieve greedy routing in 3D sen-
sor networks. Our proposed approach is based on a unit tetrahe-
dron cell (UTC) mesh structure. We propose a distributed algo-
rithm to realize volumetric harmonic mapping of the UTC mesh
under spherical boundary condition. It is a one-to-one map that
yields virtual coordinates for each node in the network. Since a
boundary has been mapped to a sphere, node-based greedy routing
is always successful thereon. At the same time, we exploit the UTC
mesh to develop a face-based greedy routing algorithm, and prove
its success at internal nodes. To deliver a data packet to its destina-
tion, face-based and node-based greedy routing algorithms are em-
ployed alternately at internal and boundary UTCs, respectively. As
far as we know, this is the first work that realizes truly deterministic
greedy routing with constant-bounded storage and computation in
3D wireless sensor networks.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols—Routing Protocols

General Terms
Algorithms, Design, Theory
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1. INTRODUCTION
With both of its computation complexity and storage space bounded

by a small constant, greedy routing is known for its scalability to
large networks with stringent resource constraints on individual
nodes. Under most greedy routing algorithms, a node makes its
routing decision by standard distance calculation based on a small
set of local coordinates only. Such salient property is imperatively
needed in the emerging 3D sensor network [1–12], where the prob-
lem in routing scalability is greatly exacerbated in comparison with
its 2D counterpart, due to dramatically increased sensor nodes in
order to cover a 3D space.

The conventional greedy routing algorithms are node-based [13,
14]. More specifically, a node always forwards a packet to one of
its neighbors, which is the closest to the destination of the packet.
However, such greedy forwarding is not always achievable. A node
is called a local minimum if it is not the destination but closer to the
destination than all of its neighbors. Clearly, greedy routing fails
at the local minimum. Such local minimums may appear at either
boundary or internal nodes (as highlighted in red in Fig. 1(b)). A
node on a boundary, especially a concave boundary, usually be-
comes a local minimum when the source and destination nodes
are located on two sides of the boundary. Although it seems anti-
intuitive, an internal node can be a local minimum too, due to local
concavity under random deployment of sensor nodes.

Various approaches have been developed to address the problem
of local minimum in 2D networks, with primary focus on bound-
aries. For example, face routing and its alternatives and enhance-
ments [13–20] exploit the fact that a concave void in a 2D planar
network is a face with a simple line boundary. Thus when a packet
reaches a local minimum on a boundary, it employs a local deter-
ministic algorithm to search the boundary in either clockwise or
counter-clockwise direction as shown in Fig. 2(a), until greedy for-
warding is achievable. In a 3D network, however, a void is no
longer a face. Its boundary becomes a surface, yielding an arbitrar-
ily large number of possible paths to be explored (see Fig. 2(b)) and
thus rendering face routing infeasible. On the other hand, greedy
embedding [21–27] provides theoretically sound solutions to en-



(a) A 3D sensor network (Network
model 1).

(b) Local minimums in nodal greedy
routing.

(c) Unit tetrahedron cells (UTCs).

(d) Volumetric Harmonic mapping.
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(f) A greedy routing path in original
network.

Figure 1: Illustration of the proposed greedy routing protocol. (a) A 3D sensor network that has irregular outer and inner boundaries
and consists of about 2,000 nodes. This is one of the network models used on our simulation (see Fig. 6 for other network models).
The nodes on the inner boundary are highlighted in red. (b) The nodes that are local minimums under node-based greedy routing
are highlighted as blue squares and red triangles, for boundary nodes and internal nodes, respectively. (c) The established unit
tetrahedron cells (UTCs). (d) The result after volumetric Harmonic mapping, with both outer and inner boundaries mapped to
spheres. (e) A greedy routing path shown in virtual coordinates created by volumetric Harmonic mapping. (f) The greedy routing
path shown in the original network.

sure the success of greedy routing. Unfortunately, none of the
greedy embedding algorithms in literatures can be extended from
2D to 3D general networks. The challenge of greedy routing in
3D networks is further revealed in [28], which proves that there
does not exist a deterministic algorithm that can guarantee delivery
based on local information only in 3D networks.

In view of the above challenges, several approaches have been
proposed for recovery from local minimums in 3D networks. First,
mapping and projection are introduced to reduce routing complex-
ity in a 3D space. For example, a 3D network is projected to a 2D
plane in [4,5] in order to apply face routing. However, face routing
on the projected plane does not ensure a packet to move out of a
void in the original 3D network. A different projection scheme is
proposed in [7] for load balancing, which does not guarantee deliv-
ery either. Second, guarantee delivery can be achieved at the cost of
more (non-constant-bounded) storage space. For example, a con-
vex hull-based tree structure is introduced in GDSTR-3D [8]. A
packet is greedily forwarded to its destination. If a local minimum
is reached, GDSTR-3D switches to forwarding the packet along the
edges of a spanning tree, guiding the packet to escape from the lo-
cal minimum. GDSTR-3D offers deterministic routing. However,
each node must maintain a set of convex hulls, and thus requires a
storage space proportional to network size and some nodes (such
as the roots of trees) are heavily loaded (see Fig. 3). Finally, local

searching may be employed to jump out a local minimum. It is pro-
posed in [3] to construct hulls to partition a network into subspaces,
limiting the recovery to search a subspace only. Separately, the
Random-Walk algorithm is proposed in [6] where random walk is
employed on a local spherical structure to escape from voids when
a local minimum is reached. However, such attempts for random-
ized recovery of local minimums are non-deterministic and often
lead to high overhead or long delay. Among all routing algorithms
discussed in literatures for 3D sensor networks, Random-Walk [6]
is the sole truly greedy routing scheme with constant-bounded stor-
age and computation complexity.

Our proposed solution is based on a unit tetrahedron cell (UTC)
mesh structure. We propose a distributed algorithm to realize volu-
metric harmonic mapping of the UTC mesh under spherical bound-
ary condition. It is a one-to-one map that yields virtual coordinates
for each node in the network. Since a boundary has been mapped to
a sphere, node-based greedy routing is always successful thereon.
At the same time, we exploits the UTC mesh to develop a face-
based greedy routing algorithm, and prove its success at internal
nodes. To route a data packet to its destination, face-based and
node-based greedy routing algorithms are employed alternately at
internal and boundary UTCs, respectively. As far as we know, this
is the first work that realizes truly deterministic greedy routing with
constant-bounded storage and computation in 3D sensor networks.
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Figure 2: Comparison of face routing in 2D and 3D networks.
Node S has a shorter distance to Destination D than all of its
neighbors, and thus is a local minimum. (a) Face routing is
successful in a 2D planar network because a concave void is a
face with a simple line boundary, and thus a local deterministic
algorithm can be employed to search the boundary in either
clockwise or counter-clockwise direction as shown by the blue
and red lines. (b) In a 3D network, a void is no longer a face.
Its boundary becomes a surface, yielding an arbitrarily large
number of possible paths to be explored (as indicated by the
arrows). Thus face routing fails.
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Figure 3: Storage load distribution in GDSTR-3D, where the
storage load of a node is measured by the number of entries in
its local convex hull table.

Each node simply stores the virtual coordinates of itself and its
neighbors to make routing decisions.

The rest of this paper is organized as follows: Sec. 2 introduces
the construction of UTC and related definitions. Sec. 3 proposes
the face-based greedy routing algorithm. Sec. 4 elaborates the dis-
tributed volumetric harmonic mapping algorithm that yields virtual
coordinates to support global end-to-end greedy routing. Sec. 5
presents our simulation results. Finally, Sec. 6 concludes the paper.

2. CONSTRUCTION OF UNIT TETRAHE-
DRON CELLS

We represent a wireless sensor network by a graph G(V,E), where
the vertices (V ) denote the sensor nodes and the edges (E) indicate
the communication links in the network.

Definition 1. A unit tetrahedron cell (UTC) is a tetrahedron
formed by four network nodes, which does not intersect with any
other tetrahedrons.

We let UTC(A,B,C,D) denote the UTC formed by Nodes A,B,C
and D, which includes four faces, i.e., Face(A,B,C), Face (A,B,D),
Face(A,C,D) and Face(B,C,D). The union of all UTCs, called a
UTC mesh (see Fig 1(c)), represent the network.

A simple algorithm is employed to create a UTC mesh, which
starts from any arbitrary tetrahedron that contains its own vertex
nodes only. By removing all edges that intersect this tetrahedron,
the algorithm yields the first UTC, denoted by UTC(A,B,C,D).
Next the algorithm expands it to form other UTCs. Based on each
face of UTC(A,B,C,D), such as Face(A,B,C), the algorithm looks
for the common neighbors of Nodes A, B and C. Let E be such a
common neighbor. Nodes A, B, C and E form a valid UTC only if
it neither overlaps with any existing UTCs nor contains any other
nodes. Multiple such nodes like E may exist, and the algorithm ar-
bitrarily chooses one of them to form the new UTC. The algorithm
repeats the above procedure until no new UTC can be formed.

Here we have assumed no degenerated edges or nodes exist in
the network, and any internal hole (as small as a unit cube) has
been identified by [29] to ensure the successful establishment of
the UTC mesh. Moreover, we assume a node can create a local co-
ordinates system by using local distance information estimated via
standard methods [30]. Multiple available schemes are available for
creating such a local coordinates system [31–34]. Our implemen-
tation adopts [34] for its efficiency of filtering noises in distance
measurement and its tolerance of distance errors.

Definition 2. A Delaunay unit tetrahedron cell (DUTC) is a
UTC whose circumsphere contains no other nodes except its ver-
tices.

For example, UTC(A,B,C,D) shown in Fig. 4(a) is a DUTC,
since its circumsphere contains no nodes except A,B,C and D. On
the other hand, Fig. 4(b) illustrates UTC(A,B,C,D) that is not a
DUTC because Node E is inside its circumsphere. Similarly, nei-
ther is UTC(E,B,C,D) a DUTC. Note that the UTCs constructed
by the algorithm introduced above are not necessarily DUTCs.

Definition 3. A face is a boundary face if it is contained in one
UTC only.

Definition 4. A UTC is a boundary UTC if it contains at least
one boundary face. A non-boundary UTC is call an internal UTC.

Definition 5. A hole of a network is formed by a closed surface
that consists of boundary faces. The outer boundary of the network
is considered as a special hole.

For example, a set of boundary faces are highlighted in magenta
in Fig 1(c), which together form the surface of the hole.

Definition 6. Two UTCs are neighbors if and only if they share
a face.

Apparently, a UTC has at most 4 neighboring UTCs. Similarly,
we have

Definition 7. Two faces are neighbors if and only if they share
an edge.

Definition 8. Node i is greedily reachable to Node j if a packet
can be greedily routed from the former to the latter based on a
metric that is kept locally and consumes constant storage space.
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Figure 4: Illustration of Delaunay unit tetrahedron cell
(DUTC), under an arbitrary (non-unit disk graph (UDG)) com-
munication model.

Our objective is to enable greedy routing from any source to any
destination in a given sensor network. More specifically, we aim
to map an arbitrary 3D sensor network to a greedily reachable net-
work as defined below:

Definition 9. A network is called a greedily reachable network
if every two nodes in the network are greedily reachable to each
other.

Based on the above definitions, we next discuss how to enable
a greedily reachable network. We first examine a simple case, i.e.,
greedy routing at internal nodes, which appears trivial but is anti-
intuitively unachievable by straightforward application of the node-
based greedy routing algorithm. Then we introduce our proposed
approach based on volumetric harmonic mapping for global end-
to-end greedy routing.

3. ROUTING AT INTERNAL UTCS: FACE-
BASED GREEDY ROUTING

As discussed in Sec. 1 and demonstrated in Fig. 1(b), the node-
based greedy routing scheme ensures success at neither boundary
nor internal nodes in a 3D wireless sensor network. We focus on
the latter in this section.

We first show that node-based greedy routing is not always suc-
cessful even under the UTC structure, for example, in a case as
simple as across two neighboring UTCs. More specifically, let’s
consider two UTCs, UTC(A,B,C,D) and UTC(B,C,D,E), which
share Face(B,C,D). If they are DUTCs as illustrated in Fig. 4(a),
Nodes A and E are greedily reachable to each other. However,
building DUTCs is expensive and often impractical in sensor net-
works. The UTCs constructed by the algorithm introduced in Sec. 2
are not necessarily DUTCs. For a UTC shown in Fig. 4(b) for ex-
ample, lEA can be shorter than lBA, lCA, and lDA (where li j denotes
the distance between Nodes i and j), thus resulting in a failure in
node-based greedy routing from E to A. Obviously, the UTC mesh
is a special structure of a 3D sensor network. Since the node-based
greedy routing is not always successful under UTCs, it offers no
guarantee of data delivery in a general 3D sensor network either.

To this end, we propose a face-based greedy routing algorithm.
Let’s consider a data packet that is to be delivered from Source S to
Destination D. Similar to conventional node-based greedy routing
algorithms, we assume the data packet contains the IDs and coor-
dinates of S and D. Note that, the coordinates are not necessarily
based on GPS. Instead, they can be virtual coordinates, e.g., pro-
duced by our proposed volumetric harmonic mapping algorithm as
to be discussed later in Sec. 4.

Node S first computes a line segment between S and D, which
is denoted by Γ. Clearly, Γ passes through a set of UTCs be-
tween S and D, and intersects with a sequence of faces, denoted
by Φ = {Face(Ai,Bi,Ci)|1≤ i≤ k}, where k is the total number of
such faces (see Fig. 5). The distance from Face(Ai,Bi,Ci) to Des-
tination D is defined as the distance between D and the intersec-
tion point of Γ and Face(Ai,Bi,Ci). As to be proved in Lemma 1,
Face(Ai,Bi,Ci) and Face(Ai+1,Bi+1,Ci+1) must be neighboring
faces, and thus share an edge. Let’s denote the shared edge as τi.

Under the proposed face-based greedy routing algorithm, data
packets are forwarded from Face(A1,B1,C1) to Face (Ak,Bk,Ck).
Each intermediate node only needs to calculate the next face in
Φ. For example, Node S can easily determine Face(A1,B1,C1),
because the latter must be one of the faces in the UTCs that con-
tain the former. Therefore, Node S can check which of them in-
tersects with Γ, with a computation time bounded by a small con-
stant. Face(A2,B2,C2) is determined similarly. Thus the packet is
routed from S to one of the end nodes of Edge τ1, i.e., the edge
shared by Face(A1,B1,C1) and Face(A2,B2,C2). The above pro-
cess repeats at each intermediate node, until the packet arrives at
Face(Ak,Bk,Ck) that contains Destination D, or it fails to find the
next face in Φ based on locally available information.

Next we prove that the proposed face-based greedy routing algo-
rithm is always successful at internal nodes.

Lemma 1. The face-based greedy routing does not fail at a
non-boundary UTC.

PROOF. Γ intersects with a sequence of faces, i.e., Φ. Since Γ

is a straight line segment, it is obvious that Face(Ai+1, Bi+1,Ci+1)
must be closer to the destination compared with Face(Ai,Bi,Ci)
for i < k, as illustrated in Fig. 5. To prove the lemma, we only
need to show that Face(Ai,Bi,Ci) and Face(Ai+1,Bi+1,Ci+1) are
neighboring faces and thus a routing decision can be made by using
local information only, if Face(Ai,Bi,Ci) is a non-boundary face.

Γ penetrates through a set of UTCs. According to Definitions 3
and 6, a non-boundary face is always shared by two UTCs. Thus
when Γ intersects with a non-boundary face, it can be consider as
exiting from the current UTC or entering into the next UTC.

Let’s consider that Γ enters a UTC when it intersects with a non-
boundary face, e.g., Face(Ai,Bi,Ci). According to Definition 1,
Γ does not meet any faces inside the UTC. Thus the next face
it meets, i.e., Face(Ai+1,Bi+1,Ci+1), must be another face of the
same UTC, as along as Face(Ai,Bi,Ci) is not a boundary face.
Since any two faces of a tetrahedron share an edge, Face(Ai,Bi,Ci)
and Face(Ai+1,Bi+1,Ci+1) must be neighboring faces according to
Definition 7. As a result, routing from the former to the latter can
be achieved by using local information only. The lemma is thus
proven.

Lemma 1 shows that greedy routing via Φ always advances data
packets toward the destination at internal UTCs, which is in a sharp
contrast to node-based greedy routing where local minimum exists
at internal nodes (as demonstrated in Fig. 1(b)).

4. GLOBAL END-TO-END GREEDY ROUT-
ING: VOLUMETRIC HARMONIC MAP-
PING (VHM)

The face-based greedy routing algorithm supports greedy data
forwarding at internal UTCs. However, as depicted in Fig. 1, it
may fail at boundaries, which are generally complex and concave.
This naturally motivates us to map a boundary to a sphere, yielding
virtual coordinates for boundary nodes such that any two nodes on



S

D

Figure 5: A packet is routed through a sequence of faces under
face-based greedy routing.

a boundary are greedily reachable to each other. But note that it
is insufficient to map boundaries only, because the virtual coordi-
nates for boundary nodes would become inconsistent with the coor-
dinates of the internal nodes. As a result, greedy routing fails when
a routing path involves both boundary nodes and internal nodes.
More specifically, although greedy routing is supported between
any two nodes on a boundary based on their virtual coordinates, a
node cannot identify the correct target on the boundary, in order to
advance the packet to its destination. To this end, we propose a dis-
tributed algorithm to realize volumetric harmonic mapping (VHM)
under spherical boundary condition. It is a one-to-one map that
yields virtual coordinates for each node in the entire 3D wireless
sensor network to enable global end-to-end greedy routing.

4.1 Theoretical Insights
First, we briefly introduce the necessary theoretical background

knowledge that provides useful insights and underlies our proposed
algorithm.

4.1.1 Volumetric Embedding
The volumetric embedding is the process of computing a map

between the original volumetric data and a canonical domain in
R3.

For the purpose of computation, a volume is usually modeled as
point clouds or a piecewise linear tetrahedral mesh:

M= (T,F,E,V,C) , (1)

where T, F, E and V are the sets of tetrahedra, triangular faces,
edges and vertices in the mesh, while C describes the connectivity
among them.

Volumetric embedding is to assign a set of 3D coordinates to ev-
ery vertex in the volumetric data. Note that although the mapping
function is by definition restricted on vertices, it can be extended
through out the whole tetrahedral mesh piecewisely. More specif-
ically, the function value for an arbitrary point in the volume is
defined as the interpolation of the values on the four vertices of the
enclosing tetrahedron, inducing a piecewise-linear map from the
original volumetric mesh M to a canonical domain N. The domain
N is a subset of R3, and should ideally have a regular shape. In our
case, the canonical domain is a solid ball in order to support greedy
routing.

4.1.2 Volumetric Harmonic Function
Our goal is to construct virtual coordinates for a 3D sensor net-

work to support successful greedy routing. The virtual coordinates

must be one-to-one correspondent to the sensor nodes. To this end,
we resort to volumetric harmonic mapping (VHM) under spherical
boundary condition.

In general, a function f is harmonic if it satisfies the Laplace’s
equation 4 f = 0. If Dirichlet boundary condition is imposed on
this partial differential equation, a harmonic function is the solution
of the Dirichlet’s problem.

The same concepts can be well formulated on volumes in a dis-
crete setting. To this end, we first introduce the definition of edge
weight.

Definition 10. For Edge ei j which connects Vertices vi and v j,
its edge weight ki j is a real value determined as follows. Suppose
Edge ei j is shared by t adjacent tetrahedra. Then it lies against t
dihedral angles {θm|1≤ m≤ t}. The weight of ei j is defined as

ki j =
1
t

t

∑
m=1

lm cotθm, (2)

where lm is the length of edge to which ei j is against in the UTC
mesh.

Based on edge weight, we next define the piecewise Laplacian
under discrete setting.

Definition 11. The piecewise Laplacian is the linear operator
4PL f = 0 on the space of piecewise linear functions. Let’s define
a map f : T→ R3, where f = ( f0, f1, f2). f0, f1, and f2 are cor-
responding to three dimensions, and each of them is a real valued
function defined over the vertices of the UTC mesh. The piecewise
Laplacian of f is:

4PL f = (4PL f0,4PL f1,4PL f2), (3)

where4PL fm = ∑ei j∈E ki j( fm(v j)− fm(vi)) for m = 0,1,2.
Our goal is to find f such that 4PL f = 0, i.e., the volumetric

harmonic function. It is equivalent to minimize the following volu-
metric harmonic energy.

Definition 12. The volumetric harmonic energy of f is:

E( f ) =
2

∑
m=0

E( fm), (4)

where E( fm) = ∑ei j∈E ki j|| fm(v j)− fm(vi)||2.

If f minimizes the volumetric harmonic energy, then it satisfies
the condition4PL f = 0, i.e., f is harmonic.

4.1.3 Spherical Harmonic Function
Similar to that in a smooth setting, we can impose Dirichlet

boundary conditions on the discrete volumetric harmonic function,
by fixing the value of f on certain vertices vi ∈Vc, where Vc is the
set of constraint vertices. It is important to control boundary con-
ditions in this work. Particularly, spherical boundaries are desired
to support greedy routing.

The spherical harmonic function maps a closed topologically
spherical surface (i.e., a surface with no holes) to a sphere. It is
similar to the volumetric harmonic function. They share the same
harmonic energy as defined in Eqn. (4) but differ in how to assign
weight ki j. For a topologically spherical surface, an edge is shared
by two faces only. For example, given Edge ei j shared by triangle
faces fi jk and f jil , its weight is defined as

ki j =
1
2
(cotθl + cotθk), (5)

where θl = ∠vivlv j and θk = ∠vivkv j .



4.2 Distributed Mapping Algorithm
Based on the theory introduced above, we now propose a prac-

tical distributed algorithm to realize volumetric harmonic mapping
under spherical boundary condition.

Let’s first consider a solid sensor network with a possibly com-
plex and concave external boundary but no internal holes (see Figs. 6(a)-
6(c) for examples). A UTC mesh is established as discussed in
Sec. 2 (as shown in Figs. 6(f)-6(h)). We construct a volumetric
harmonic map with the heat flow method such that the entire UTC
mesh is homeomorphically (one-to-one) mapped to a solid tetra-
hedra ball in R3 (as illustrated in Figs. 6(k)-6(m)). The proposed
algorithm follows two steps, as outlined below sequentially.

4.2.1 Distributed Spherical Harmonic Map
First we map the boundary of the 3D volume homeomorphically

(one-to-one) to a sphere by using spherical harmonic map. The
boundary nodes of a 3D sensor network are identified as the nodes
on boundary faces. Each boundary node is associated with a 3-
vector metric, i.e., ui = (u0

i ,u
1
i ,u

2
i ) for Node i, representing its 3D

virtual coordinates. It is initialized by random coordinates on a unit
sphere or by the normalized normal of Node i in order to accelerate
convergence of the algorithm. Then, the algorithm goes through an
iterative procedure. During the n-th iteration, Node i computes its
current spherical harmonic energy:

En
i =

Ni

∑
j=1

ki j(un−1
i −un−1

j )2, (6)

where Ni is the degree of Node i and ki j is defined earlier in Eqn.
(5). Node i then updates its ui along the negative of the gradient
direction of its energy:

un
i = un−1

i − γ∇En
i , (7)

where γ is a small constant (which is set to 0.1 in our simulations).
Next, ui is normalized such that it is always on the unit sphere. The
above process repeats, until the difference between En

i and En−1
i

is less than a small constant δ (e.g., δ = 10−6) for all nodes in the
network. The final ui serves as the virtual coordinates of Node i.
The algorithm is distributed, where a node only needs to commu-
nicate with its one-hop neighbors in each iteration. Moreover, its
convergence is guaranteed [35].

4.2.2 Distributed Volumetric Harmonic Map
By now, we have arrived at a spherical harmonic mapping, which

maps the network boundary one-to-one to a sphere. Next we ap-
ply volumetric harmonic map by minimizing the volumetric har-
monic energy under the computed spherical boundary condition.
More specifically, if a node is on the boundary, it simply keeps
it current virtual coordinates obtained above. On the other hand,
a non-boundary node, e.g, Node i, determines its 3D virtual co-
ordinates via volumetric harmonic map. Similar to the spherical
harmonic mapping discussed above, Node i is associated with a
3-vector metric, i.e., ui, which represents its volumetric virtual co-
ordinates. Node i iteratively calculates Ei and ui according to Eqn.
(6) and (7). But note that, the edge weight (i.e., ki j) is now com-
puted according to Definition 10, instead of Eqn. (5). When Ei
differs by less than a small constant δ between two iterations for all
nodes in the network, the volumetric harmonic mapping algorithm
terminates, yielding the virtual coordinates for every internal node.
Example of the result after volumetric harmonic mapping are given
in Figs. 6(k)-6(m). Again the algorithm is distributed, where a node
only needs to communicate with its one-hop neighbors in each it-
eration. The proof of its convergence can be found in Appendix.

4.2.3 Further Discussions
The above discussions are for a solid 3D sensor network with-

out inner holes. If there is a hole inside (see Figs. 1(a), 6(d) and
6(e) for examples), the boundary condition has been changed. Two
boundary surfaces will be detected, one outside and the other in-
side. The same spherical harmonic mapping algorithm is applied
to map them to two unit spheres, respectively. Then, the boundary
nodes perform simple local calculations to align the inner sphere
to the outer sphere. Specifically, the nodes on the inner boundary
scale their coordinates to reduce the radius of the inner sphere to r′,
which is constant less than one. Next, a node on the outer bound-
ary with its virtual coordinates most close to (0,0,1) finds its clos-
est node on the inner boundary based on the UTC mesh. The two
nodes and the center of the spheres (i.e., (0,0,0)) form an angle, de-
noted as θ0 (which is calculated according to virtual coordinates).
θ0 is broadcasted to all nodes on the inner boundary, which subse-
quently apply a rotation matrix with Angle θ0 on their virtual coor-
dinates. Therefore the inner sphere is aligned with the outer sphere
with respect to this pair of nodes. Then, another node on the outer
boundary with its virtual coordinates most close to (0,1,0) repeats
the above process to initiate the second round of rotation. After two
rotations, the inner sphere and the outer sphere are approximately
aligned, setting the spherical boundary conditions. Finally the vol-
umetric harmonic map introduced above is applied to produce 3D
virtual coordinates for each internal node in the network. Examples
of such mapping results are illustrated in Figs. 1(d), 6(n) and 6(o).

For a network with more than one inner holes, a trivial clustering
algorithm is employed to segment the network into clusters, each
centering at an inner hole. The algorithm discussed above is applied
in each cluster to create virtual coordinates. Greedy routing is thus
supported inside a cluster. However, routing across clusters must
rely on gateways or global coordinates alignment, which remains
challenging under the constraints of constant-bounded storage and
computation at individual node. We will address it in our future
work.

Note that the harmonic mapping of a shape in 2D is guaranteed
a diffeomorphism, if the boundary of the 2D shape is mapped to
a convex planar curve and the mapping is homeomorphism. How-
ever, for 3D cases, even if the image of the boundary is convex,
diffeomorphism is not theoretically guaranteed for harmonic map-
ping, although we have not found a single non-diffeomorphism
case for networks without or with one hole in our extensive ex-
perimental tests.

Finally, the proposed algorithm based on volumetric mapping
may become less efficient under extreme conditions. For example,
a higher stretch factor is expected if the original network is ex-
tremely narrow or thin. Nevertheless, the proposed algorithm still
ensures successful greedy routing.

4.2.4 Summary of the Routing Algorithm
The above mapping algorithm is executed during network initial-

ization. After mapping, each node has its own virtual coordinates
in a 3D space. Since a boundary has been mapped to a sphere,
node-based greedy routing is always successful thereon. At the
same time, the UTC mesh remains valid under the virtual coordi-
nates. Thus successful greedy routing at internal nodes is achieved
by face-based greedy routing. To route a data packet to its desti-
nation, face-based and node-based greedy routing algorithms are
employed alternately at internal and boundary UTCs, respectively.

An example is given in Fig. 1(f), where a data packet is delivered
from S to D. Node S first identifies a sequence of faces Φ that in-
tersects with the line segment between S and D. If the next face is
reachable according to local information, the packet is forwarded



(a) Network model 2. (b) Network model 3. (c) Network model 4. (d) Network model 5. (e) Network model 6.

(f) UTC mesh of Model 2. (g) UTC mesh of Model 3. (h) UTC mesh of Model 4. (i) UTC mesh of Model 5. (j) UTC mesh of Model 6.

(k) VHM of Model 2. (l) VHM of Model 3. (m) VHM of Model 4. (n) VHM of Model 5. (o) VHM of Model 6.

Figure 6: 3D network models and mapping results, where the first row shows original networks, the second row illustrates the
established UTC mesh structures with only boundary UTCs for conciseness, and the third row depicts the results after VHM. The
inner boundary is highlighted in the magenta.

accordingly by face-based greedy routing. When the packet fails
to find the next face toward Node D, it must arrive at a bound-
ary, which has been mapped to a sphere. Thus node-based greedy
routing is applied to move the packet across the void. Whenever
D becomes reachable reachable, face-based greedy routing is ap-
plied again. The above process continues until the packet reaches
its destination.

5. APPLICATIONS AND SIMULATIONS
We have implemented the face-based greedy routing algorithm

and the volumetric harmonic mapping (VHM) algorithm introduced
above, in order to achieve highly efficient peer-to-peer greedy rout-
ing in 3D sensor networks. Moreover, we further apply the pro-
posed routing algorithm in in-network data centric storage and re-
trieval. The simulation results are presented below sequentially.

5.1 Peer-to-Peer Greedy Routing
Various 3D sensor networks in different sizes (ranging from 1,000

to 2,500) and shapes are simulated in this work. In addition to the
network model shown in Fig. 1, Fig. 6 illustrates several other ex-
amples, where the first row shows original networks, the second
row illustrates the established UTC mesh structures, and the third
row depicts the results after volumetric harmonic mapping. Sensor
nodes are randomly distributed. The radio transmission range is
around 0.11, resulting in an average nodal degree between 16 to 30.

Note that such nodal degree is moderate in 3D although it appears
high for 2D networks. The boundaries are detected as discussed in
previous section. For example, the inner boundary is highlighted in
magenta in Figs. 6(i) and 6(j).

5.1.1 Stretch Factor
As proven in previous sections, the proposed scheme guarantees

successful data delivery between any pair of nodes. Therefore we
focus on stretch factor in performance evaluation. The stretch fac-
tor of a route is the ratio of the actual path length to the shortest
path length. We randomly select 10,000 pairs of nodes to calculate
the average stretch factor for each network model.

While many greedy routing algorithms have been proposed for
wireless sensor networks, few of them can be applied in a 3D set-
ting. Moreover, we only focus on truly greedy routing algorithms
with constant-bounded storage and computation complexity in 3D
sensor networks in this research. Therefore, Random-Walk [6]
is the sole comparable scheme, as discussed in Sec. 1. Under
Random-Walk, a packet is greedily advanced to its destination. If
a local minimum is reached, it escapes from the local minimum
by random walk on a local spherical structure. Note that Random-
Walk does not ensure deterministic routing results.

The average stretch factors of Random-Walk and our proposed
algorithm in different networks are summarized in Table 1. As can
be seen, the proposed scheme exhibits stable stretch factor and out-



Table 1: Comparison of stretch factors.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Overall Average
Proposed Algorithm 1.63 1.63 1.66 1.61 1.62 1.44 1.59
Random-Walk [6] 1.83 1.70 1.73 1.84 1.89 2.12 1.85
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Figure 7: (a) More routes under the proposed scheme have low stretch factors than Random-Walk does. (b) With the increase of the
actual path length between source and destination, the stretch factor decreases under our proposed scheme, while the stretch factor
of Random-Walk grows noticeably.

performs Random-Walk in all network models. In a contrast, the
performance of Random Walk heavily depends on the size of the
hole, experiencing a higher stretch factor under the network with a
bigger hole.

Fig. 7 illustrates the distribution of stretch factor based on Net-
work model 6. We observe that most routing paths under our pro-
posed scheme have low stretch factor. For example, 70% of routes
have their stretch factor lower than 1.4. On the other hand, the dis-
tribution under Random-Walk has a considerable shift to the right
side. Particularly, there are about 20% routes experiencing a stretch
factor of 2.0 or higher (which means a routing path at least as twice
long as the shortest path).

It is also an interesting observation from Fig. 7(b) that, with the
increase of the actual path length between source and destination,
the stretch factor decreases under our proposed scheme. This is in
a sharp contrast to Random-Walk, where two far-separated nodes
are likely located on the opposite side of the hole and accordingly
conventional node-based greedy routing between them may fail,
leading to a long random walk path.

5.1.2 Load Distribution
We have also calculated the traffic load distribution among the

sensor nodes, as illustrated in Fig. 8. The traffic load under our pro-
posed scheme is well balanced, with more than 40% of the nodes
involved in less than 30 routes and around 60% in less than 50
routes. Random-Walk performs greedy routing first, and then ran-
domly searches along the boundaries when a dead-end is reached.
Thus, the nodes near boundaries (especially inner boundaries) usu-
ally experience heavy load.

5.2 Data Storage and Retrieval
Our scheme guarantees greedy and stateless peer-to-peer rout-

ing in a 3D sensor network. Another possible application of the
proposed scheme is for data centric networking which supports
in-network data storage and query. Traditionally, the underlying
network used for data storage and retrieval needs to store a great
amount of routing informations. With the proposed techniques, the
whole network consists of tetrahedrons and is mapped into a unit
sphere in a 3-D space, which supports greedy peer-to-peer routing.
Therefore we propose to uniformly map a datum to a point inside
of the unit sphere and let the tetrahedron which contains the point
to store the datum. Both data insertion and retrieval are naturally
supported by greedy routing.

5.2.1 Where to store the data
Given a datum, finding the location to store it is the key issue in

data centric networking. To this end, we exploit the result of vol-
umetric harmonic mapping, which maps the original network with
an irregular shape to a ball. We adopt the polar coordinate system,
where a point in a unit sphere can be represented by (ρ,α,β), where
ρ is the distance from this point to the origin, α is the angle formed
by the line connecting this point and the origin with X-axis, and β

is the angle between the line and Y -axis. ρ is bounded to 0≤ ρ≤ 1
for a network without hole, or r′ ≤ ρ≤ 1 for a network with a hole,
where r′ is the radius of the inner sphere in volumetric harmonic
mapping.

First, we map a datum (possibly with multiple attributes) to a se-
ries of bits by using the method introduced in [36–38]. We select
the (3k+1)-th bits (where k ranges from 0 to the largest value that
depends on the length of the bit series), and concatenate them to
a binary string, which is further normalized to yield ρ. Similarly,
(3k+ 2)-th and (3k+ 3)-th bits are used to determine α and β, re-
spectively. Since the unit ball (or hollow ball) is the volumetric
harmonic mapping of the tetrahedron mesh of the original network,
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a point (ρ,α,β) must be within a tetrahedron. Thus, we simply
select one of the four vertex of this tetrahedron to store the datum.

5.2.2 Route data and query
Once a datum is mapped to a point location (ρ,α,β), it is routed

toward the location by following our proposed greedy routing al-
gorithm. In each hop of routing, it checks if (ρ,α,β) is inside the
current tetrahedron. If it is true, the routing terminates and the da-
tum is stored by one of the tetrahedron’s vertices that has the lowest
load. Query and retrieval of data can be realized similarly. The data
being queried is mapped to a point location, and the query is routed
to the corresponding tetrahedron that contains the requested data.

5.2.3 Performance
We have carried out simulations to insert 10,000 data generated

by a set of randomly chosen nodes. Each data has a value ranging
from 0 to 100. Fig. 9 shows the distribution of loading factor, i.e.,
the ratio of the actual load to the ideal load, where the ideal load is
achieved when the data are evenly distributed over all nodes in the
network. As can be seen, the loading factor is nicely distributed,
where more than 40% nodes enjoy a perfect loading factor of one,
signifying a well-balanced traffic among sensor nodes.

6. CONCLUSION
Viewing significant challenges encountered in extending greedy

routing from 2D to 3D space, we have investigated decentralized
solutions to achieve greedy routing in 3D sensor networks. Our
proposed approach is based on a unit tetrahedron cell (UTC) mesh
structure. We have proposed a distributed algorithm to realize volu-
metric harmonic mapping of the UTC mesh under spherical bound-
ary condition. It is a one-to-one map that yields virtual coordinates
for each node in the network. Since a boundary has been mapped to
a sphere, node-based greedy routing is always successful thereon.
At the same time, we have exploited the UTC mesh to develop a
face-based greedy routing algorithm, and proved its success at in-
ternal nodes. To route a data packet to its destination, face-based
and node-based greedy routing algorithms are employed alternately
at internal and boundary UTCs, respectively. To our best knowl-
edge, this is the first work that realizes deterministic greedy routing
with constant-bounded storage and computation in 3D sensor net-
works.

7. ACKNOWLEDGEMENTS
S. Xia, H. Wu and M. Jin are partially supported by NSF CNS-

1018306. X. Yin and X. Gu are partially supported by NSF CNS-
1016829. We are grateful to the anonymous reviewers and our
shepherd lakshminarayanan subramanian for their constructive feed-
back.

8. REFERENCES
[1] X. Bai, C. Zhang, D. Xuan, J. Teng, and W. Jia,

“Low-Connectivity and Full-Coverage Three Dimensional
Networks,” in Proc. of MobiHOC, pp. 145–154, 2009.

[2] X. Bai, C. Zhang, D. Xuan, and W. Jia, “Full-Coverage and
K-Connectivity (K=14, 6) Three Dimensional Networks,” in
Proc. of INFOCOM, pp. 388–396, 2009.

[3] C. Liu and J. Wu, “Efficient Geometric Routing in Three
Dimensional Ad Hoc Networks,” in Proc. of INFOCOM,
pp. 2751–2755, 2009.

[4] T. F. G. Kao and J. Opatmy, “Position-Based Routing on 3D
Geometric Graphs in Mobile Ad Hoc Networks,” in Proc. of
The 17th Canadian Conference on Computational Geometry,
pp. 88–91, 2005.

[5] J. Opatrny, A. Abdallah, and T. Fevens, “Randomized 3D
Position-based Routing Algorithms for Ad-hoc Networks,”
in Proc. of Third Annual International Conference on Mobile
and Ubiquitous Systems: Networking & Services, pp. 1–8,
2006.

[6] R. Flury and R. Wattenhofer, “Randomized 3D Geographic
Routing,” in Proc. of INFOCOM, pp. 834–842, 2008.

[7] F. Li, S. Chen, Y. Wang, and J. Chen, “Load Balancing
Routing in Three Dimensional Wireless Networks,” in Proc.
of ICC, pp. 3073–3077, 2008.

[8] J. Zhou, Y. Chen, B. Leong, and P. Sundar, “Practical 3D
Geographic Routing for Wireless Sensor Networks,” in Proc.
of SenSys, pp. 337–350, 2010.

[9] D. Pompili, T. Melodia, and I. F. Akyildiz, “Routing
Algorithms for Delay-insensitive and Delay-sensitive
Applications in Underwater Sensor Networks,” in Proc. of
MobiCom, pp. 298–309, 2006.

[10] W. Cheng, A. Y. Teymorian, L. Ma, X. Cheng, X. Lu, and
Z. Lu, “Underwater localization in sparse 3d acoustic sensor
networks,” in Proc. of INFOCOM, pp. 798–806, 2008.



[11] J. Allred, A. B. Hasan, S. Panichsakul, W. Pisano, P. Gray,
J. Huang, R. Han, D. Lawrence, and K. Mohseni,
“SensorFlock: An Airborne Wireless Sensor Network of
Micro-Air Vehicles,” in Proc. of SenSys, pp. 117–129, 2007.

[12] J.-H. Cui, J. Kong, M. Gerla, and S. Zhou, “Challenges:
Building Scalable Mobile Underwater Wireless Sensor
Networks for Aquatic Applications,” IEEE Network, vol. 20,
no. 3, pp. 12–18, 2006.

[13] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing
with Guaranteed Delivery in Ad Hoc Wireless Networks,” in
Proc. of Third Workshop Discrete Algorithms and Methods
for Mobile Computing and Communications, pp. 48–55,
1999.

[14] B. Karp and H. Kung, “GPSR: Greedy Perimeter Stateless
Routing for Wireless Networks,” in Proc. of MobiCom,
pp. 1–12, 2001.

[15] E. Kranakis, H. Singh, and J. Urrutia, “Compass Routing on
Geometric Networks,” in Proc. of Canadian Conference on
Computational Geometry (CCCG), pp. 51–54, 1999.

[16] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger,
“Geometric Ad-hoc Routing: Theory and Practice,” in Proc.
of The 22nd ACM Symposium on the Principles of
Distributed Computing, pp. 63–72, 2003.

[17] F. Kuhn, R. Wattenhofer, and A. Zollinger, “Worst-case
Optimal and Average-case Efficient Geometric Ad-hoc
Routing,” in Proc. of MobiHOC, pp. 267–278, 2003.

[18] B. L. S. Mitra and B. Liskov, “Path Vector Face Routing:
Geographic Routing with Local Face Information,” in Proc.
of ICNP, pp. 147–158, 2005.

[19] H. Frey and I. Stojmenovic, “On Delivery Guarantees of
Face and Combined Greedy-face Routing in Ad Hoc and
Sensor Networks,” in Proc. of MobiCom, pp. 390–401, 2006.

[20] G. Tan, M. Bertier, and A.-M. Kermarrec,
“Visibility-Graph-based Shortest-Path Geographic Routing
in Sensor Networks,” in Proc. of INFOCOM, pp. 1719–1727,
2009.

[21] C. Papadimitriou and D. Ratajczak, “On A Conjecture
Related to Geometric Routing,” Theoretical Computer
Science, vol. 344, no. 1, pp. 3–14, 2005.

[22] P. Angelini, F. Frati, and L. Grilli, “An Algorithm to
Construct Greedy Drawings of Triangulations,” in Proc. of
The 16th International Symposium on Graph Drawing,
pp. 26–37, 2008.

[23] T. Leighton and A. Moitra, “Some Results on Greedy
Embeddings in Metric Spaces,” in Proc. of The 49th IEEE
Annual Symposium on Foundations of Computer Science,
pp. 337–346, 2008.

[24] R. Kleinberg, “Geographic Routing Using Hyperbolic
Space,” in Proc. of INFOCOM, pp. 1902–1909, 2007.

[25] A. Cvetkovski and M. Crovella, “Hyperbolic Embedding and
Routing for Dynamic Graphs,” in Proc. of INFOCOM,
pp. 1647–1655, 2009.

[26] R. Sarkar, X. Yin, J. Gao, F. Luo, and X. D. Gu, “Greedy
routing with guaranteed delivery using ricci flows,” in Proc.
of IPSN, pp. 121–132, April 2009.

[27] R. Flury, S. Pemmaraju, and R. Wattenhofer, “Greedy
Routing with Bounded Stretch,” in Proc. of INFOCOM,
pp. 1737–1745, 2009.

[28] S. Durocher, D. Kirkpatrick, and L. Narayanan, “On Routing
with Guaranteed Delivery in Three-Dimensional Ad Hoc
Wireless Networks,” in Proc. of International Conference on

Distributed Computing and Networking, pp. 546–557, 2008.
[29] H. Zhou and et. al., “Localized Algorithm for Precise

Boundary Detection in 3D Wireless Networks,” in Proc. of
ICDCS, pp. 744–753, 2010.

[30] Z. Zhong and T. He, “MSP: Multi-Sequence Positioning of
Wireless Sensor Nodes,” in Proc. of SenSys, pp. 15–28, 2007.

[31] G. Giorgetti, S. Gupta, and G. Manes, “Wireless Localization
Using Self-Organizing Maps,” in Proc. of IPSN, pp. 293 –
302, 2007.

[32] L. Li and T. Kunz, “Localization Applying An Efficient
Neural Network Mapping,” in Proc. of The Int’l Conference
on Autonomic Computing and Communication Systems,
pp. 1–9, 2007.

[33] Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz,
“Localization from Mere Connectivity,” in Proc. of
MobiHOC, pp. 201–212, 2003.

[34] Y. Shang and W. Ruml, “Improved MDS-based
Localization,” in Proc. of INFOCOM, pp. 2640–2651, 2004.

[35] X. Gu, Y. Wang, T. F. Chan, P. M. Thompson, and S.-T. Yau,
“Genus Zero Surface Conformal Mapping and Its
Application to Brain Surface Mapping,” IEEE Transaction
on Medical Imaging, vol. 23, no. 8, pp. 949–958, 2004.

[36] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, and
R. Morris, “A Scalable Location Service for Geographic Ad
Hoc Routing,” in Proc. of MobiCom, pp. 120–130, 2000.

[37] X. Li, Y. J. Kim, R. Govindan, and W. Hong,
“Multi-dimensional Range Queries in Sensor Networks,” in
Proc. of SenSys, pp. 63–75, 2003.

[38] C. Yu-Chi, S. I-Fang, and L. Chiang, “Supporting
Multi-Dimensional Range Query for Sensor Networks,” in
Proc. of ICDCS, pp. 35–35, 2007.

[39] L. C. Evans, Partial Differential Equations. American
Mathematical Society, 2010.

Appendix
Lemma 2. The convergence of the proposed discrete volumet-

ric harmonic mapping algorithm is guaranteed.

PROOF. The proposed algorithm is to compute the harmonic
map f of a giving volumetric ball M, which is a simply connected
3-manifold with a single boundary. The boundary surface of the
volume is a topological sphere.

The algorithm is equivalent to use heat diffusion to solve a Laplace
equation with Dirichlet boundary condition on a volume:{

∆ f = 0 in M
f = g on ∂M,

where g map ∂M to S2 in our algorithm.
According to elliptic PDE theory [39], the solution is the mini-

mizer of the harmonic energy,

E( f ) =
∫

M
< ∇ f ,∇ f > .

Its definition in discrete case is given by Eqn. (4).
If the boundary is smooth, the energy is convex [39]. Since we

have mapped the boundary surface continuously to a unit sphere,
the solution exists and unique. The proposed algorithm uses gra-
dient descent method to minimize the energy, which is exactly the
heat flow. Therefore, the iteration process is guaranteed to con-
verge. If M has a hole inside, it is still solving the Laplace equation
with smooth Dirichlet boundary conditions. Its convergence is still
guaranteed.


