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ABSTRACT

Location awareness is imperative for a variety of sensing applica-
tions and network operations. Although a diversity of GPS-less and
GPS-free solutions have been developed recently for autonomous
localization in wireless sensor networks, they primarily target at 2D
planar or 3D volumetric settings. There exists unique and funda-
mental hardness to extend them to 3D surface. The contributions
of this work are twofold. First, it proposes a theoretically-proven
algorithm for the 3D surface localization problem. Seeing the chal-
lenges to localize general 3D surface networks and the solvability
of the localization problem on single-value (SV) surface, this work
proposes the cut-and-sew algorithm that takes a divide-and-conquer
approach by partitioning a general 3D surface network into SV
patches, which are localized individually and then merged into a
unified coordinates system. The algorithm is optimized by discov-
ering the minimum SV partition, an optimal partition that creates a
minimum set of SV patches. Second, it develops practically-viable
solutions for real-world sensor network settings where the inputs
are often noisy. The proposed algorithm is implemented and evalu-
ated via simulations and experiments in an indoor testbed. The re-
sults demonstrate that the proposed cut-and-sew algorithm achieves
perfect 100% localization rate and the desired robustness against
measurement errors.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless communica-
tion
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3D surface, autonomous localization, wireless sensor networks

1. INTRODUCTION

Location awareness is of significant importance to wireless sen-
sor networks. It is imperative for a variety of sensing applications
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and network operations, ranging from position-aware sensing to
sensor deployment and geometric routing. While location service
can be readily provided by the global navigation system (GPS), it
is often unaffordable to integrate a GPS receiver in every single
sensor for large-scale deployment, due to its high cost and lavish
energy consumption. Moreover, part or all of the sensors (e.g., de-
ployed underground or underwater) may be prohibited from receiv-
ing line-of-sight satellite signals, rendering it infeasible to solely
rely on GPS for sensor localization. To this end, a diversity of
GPS-less and GPS-free solutions have been developed recently for
autonomous localization in wireless sensor networks [1-26].

1.1 Challenges in 3D Surface Localization

A wireless sensor network may be deployed on a 2D plane (e.g.,
for crop sensing in fields or wildlife tracking on plains), or in a
3D volume (for underwater or space reconnaissance), or on a 3D
surface (such as for seismic monitoring on ocean floors or in moun-
tainous regions). Most autonomous localization algorithms are based
on 2D sensor networks [1-24]. They take Euclidean distance infor-
mation as input, and search the solution space to discover optimal
sensor coordinates that minimize the average distance error (which
is defined as the average difference between the real distance and
the distance under the established coordinates system). The real
Euclidean distance between two adjacent sensors can be approx-
imately measured by received signal strength (RSS) or time dif-
ference of arrival (TDOA) or simply assumed as a constant radio
range, while the real distance between two remote nodes is often
estimated by their shortest path. A diversity of approaches have
been proposed for distance error minimization in order to determine
the coordinates of sensors, with different localization accuracy and
time complexity [15-21]. Generally, distance information is suffi-
cient to localize sensor nodes on a 2D plane (except for non-rigid
shapes [27]). For example, Fig. 1(b) illustrates the localization re-
sult of the network shown in Fig. 1(a) by using multi-dimensional
scaling (MDS) [15, 16].

It is straightforward to extend the 2D localization algorithms to
3D volume. Introducing the third dimension does not substantially
increase the hardness of the problem. For instance, based on the es-
timated pair-wise Euclidean distances in a 3D volumetric network
(shown in Fig. 1(c)), the MDS algorithm can be readily applied to
establish the coordinates of the sensors (see Fig. 1(d)).

However, similar extension is not applicable to 3D surface net-
works as reported in [28]. While a 3D surface appears to be a spe-
cial case of 3D volume or a generalization of 2D plane, surprising
challenges exist in efforts to apply 2D planar or 3D volumetric lo-



(a) A 3D surface. (b) Deformation of the surface.

(c) A 3D surface network. (d) MDS result of (c).

Figure 2: A general 3D surface network is not localizable based on surface distances only, since it can be deformed to another
surface without changing the surface distance between any pair of points as shown in (a) and (b). When a distance-based localization
algorithm (e.g., MDS) is applied on 3D surface, it simply fails as illustrated in (c) and (d).

(a) Layer slicing [28].

(b) Localization result [28].

(c) Result of cut-and-sew.

Figure 3: The layer slicing approach proposed in [28] divides the surface into layers (see (a)). But it often fails in localizing some
layers because they are NSV, thus resulting in large distortions in its localization result illustrated in (b). The proposed cut-and-sew
algorithm produces much more accurate localization results as shown in (c).

(b) 2D MDS result.

(a) A 2D network.

(c) A 3D volume network. (d) 3D MDS result.

Figure 1: Localization is feasible based on distance information
in 2D plane and 3D volume sensor networks.

calization techniques to a 3D surface network. The hardness of
the problem stems from the lack of Euclidean distance as input.
More specifically, with short radio range, the measurable distance
between two remote sensors on a 3D surface is their surface dis-
tance, which is essentially the length of geodesic, i.e., the (locally)
shortest path between them on the surface. Such surface distance is
often dramatically different from the corresponding 3D Euclidean
distance. As revealed by Theorem 1 of [28], a general 3D surface

network is not localizable, given surface distance constraints only.
An intuitive explanation is depicted in Fig. 2, where the surface in
Fig. 2(a) can be deformed to another surface (see Fig. 2(b) for ex-
ample) without changing any surface distance. Thus, it is obviously
impossible to determine a unique 3D embedding merely based on
surface distances. When a distance-based localization algorithm
(e.g., MDS) is applied to a 3D surface network, it simply fails as
illustrated in Fig. 2(c)-2(d).

1.2 Contribution of This Work

Seeing the fundamental challenges in 3D surface localization
based on surface distances only, a practical setting with augmented
input information has been considered in [28], where not only sur-
face distances but also nodal height measurements are assumed to
formulate the localization problem. The height (or altitude) of a
sensor is measurable via atmospheric pressure. Such measurement
is of extremely low cost. As a matter of fact, many sensors have
integrated barometer for gauging their altitude. For example, the
Crossbow MTS400/MTS420 sensor board is equipped with Inter-
sema MS55ER pressure sensor with an error margin of about 1.5%
and thus able to determine its height with high accuracy. Similarly,
the underwater height (or depth) may be measured via water pres-
sure. Therefore, the height information can be taken along with
surface distances as inputs to formulate the 3D surface localization
problem.

At the first glimpse, the problem seems to become trivially easy
with the given height (i.e., Z-coordinates) of sensors. For example,
a naive approach is to project the sensors to X-Y plane and then
apply 2D localization algorithms [15-17,19-21] to determine their
X-Y coordinates. The sensors are thus localized by putting X, Y
and Z coordinates together. However this naive approach often fails
because the projection of a general 3D surface on the X-Y plane is



non-planar. For instance, when the 3D surface network shown in
Figs. 3 or 4 is projected to X-Y plane, the upper and lower parts of
the surface will overlap, yielding a folded (i.e., non-planar) graph.
The 2D localization algorithms either fail or result in extraordinar-
ily large errors when they are applied to a significantly non-planar
graph.

DEFINITION 1. A 3D surface network is localizable if a unique
embedding can be determined according to surface distance and
height information.

In general, a sensor network deployed on a single-value (SV) 3D
surface is localizable. The formal definition of SV is to be given in
Sec. 2.1. Briefly, a SV surface is a surface on which any two points
have different projections on the X-Y plane. The definition is in
reference to X-Y plane since sensors’ heights are given as input. A
more general definition of SV surface can be made according to any
arbitrary plane, but is not considered in this research. Obviously,
a network on a SV surface has a planar projection on X-Y plane,
converting the problem to a 2D setting. Once the nodes are local-
ized on 2D (i.e., X-Y coordinates are determined), they are mapped
back to 3D by adding the height as Z-coordinate.

Seeing the challenges to localize general 3D surface networks
and the solvability of the localization problem on SV surface, this
paper proposes a divide-and-conquer approach, dubbed cut-and-
sew, by partitioning a general 3D surface network into SV patches,
which are localized individually and then merged into a unified co-
ordinates system. The contributions of this work are twofold, in-
cluding the design of theoretically-proven algorithm and the devel-
opment of practically-viable solution.

(1) Theoretically-Proven Algorithm: There are obviously many op-
tions to partition a network. As a matter of fact, there is a the-
oretically infinite solution space to be explored. For example, a
simple heuristic has been discussed in [28]. Given Z-coordinates
of sensors, it is natural to divide a 3D surface network into short
(e.g., one-hop high) horizontal layers, which are more likely to be
SV and thus localizable. This approach does not guarantee all lay-
ers are SV. The non-single-value (NSV) layers are simply marked
non-localizable. The localized layers are then combined together
by least square alignment. Its localizable rate and location error
highly depend on the percentage of NSV layers. Given a NSV sur-
face, it is generally unavoidable to have NSV layers. Hence the
localization result often exhibits significant distortion (as shown in
Fig. 3(b)). Moreover, the algorithm may fail completely in a 3D
surface network if most of its layers are NSV. This is just an exam-
ple that an arbitrary partition does not yield the desired localization
result.

This research aims to discover the minimum SV partition, an
optimal partition that creates a set of patches satisfying two con-
ditions. First, all patches must be SV to ensure their localizabil-
ity. Second, the number of patches should be minimized to avoid
unnecessary partitioning and merging, which are subject to linear
transformation errors. This is obviously different from the trivially
arbitrary partition adopted in several early works (such as [16,28]).
The proposed approach is to identify NSV edges (as to be elabo-
rated in Sec. 2.1) to guide the division of a 3D surface network into
SV patches. Once the network is partitioned, the individual patches
can be readily projected to 2D plane, where various algorithms are
available for localization. Finally, the damped least-square algo-
rithm [29] is employed to combine the localized patches by mini-
mizing average distance error.

(2) Practically-Viable Solutions: Under practical sensor network set-
tings, the inputs are often noisy. For example, both surface dis-
tances and sensors heights are subject to measurement errors. Al-

though the basic ideas still apply, the noisy inputs obviously lead
to inaccurate localization results or even a total failure of the local-
ization algorithm. Practically-viable solutions must be developed
to filter out input noise, aiming to improve the robustness and reli-
ability and minimize localization errors. More specifically, the in-
accurate distance and height measurement directly affects the iden-
tification of NSV edges, which are often deviated from the ground
truth and become isolated. It is apparently impossible to partition
the network according to such noisy NSV edges. The proposed
idea is to fuse nearby NSV edges to form a band and then cut the
network along the medial axis of the band. This approach effec-
tively minimizes the impact of input errors on network partition
and localization.

The propose algorithm is implemented and evaluated via simu-
lations and experiments in an indoor testbed. The results demon-
strate that the proposed cut-and-sew algorithm achieves nearly per-
fect 100% localization rate and the desired robustness against mea-
surement errors. The rest of this paper is organized as follows:
Sec. 2 introduces the proposed localization algorithm. Secs. 3 and
4 present testbed experiments and simulation results, respectively.
Finally, Sec. 5 concludes the paper.

2. THE CUT-AND-SEW ALGORITHM

The inputs of the 3D surface localization problem include the
height of the sensor and the connectivity and distance between
neighboring nodes. The proposed distributed localization algo-
rithm, named cut-and-sew, consists of three components as out-
lined below. First, it identifies NSV edges. Then, according to
the NSV edges, the network is partitioned into a minimum set of
SV patches that can be readily localized. Finally, the patches are
merged together to produce a unified coordinates system. For a
lucid exposition of the proposed scheme, the distance and height
are first assumed free of errors. The problem due to measurement
inaccuracy will be discussed in Sec. 2.4.

2.1 Identification of NSV Edges

To facilitate network partitioning and localization, a distributed
algorithm [30] is employed to establish a triangular mesh structure
(or triangulation) based on local connectivity and distance infor-
mation (see Fig. 4(a) and Fig. 4(b) for the original sensor network
graph and the corresponding triangular mesh, respectively). If an
edge in the triangular mesh is not on the boundary, it must be shared
by two and only two triangles. For example, Fig. 5(a) illustrates
two neighboring triangles, AABC and ABCD, which share a com-
mon edge, i.e., BC. Without loss of generality, the 3D surface net-
work is oriented such that Edge BC is on the Y-Z plane. Let Aabc
and Abcd denote the projected triangles. Obviously, the projection
of Edge BC, i.e., bc, is on the Y-axis. The length of each edge on the
projected plane is determined according to the following equation:

Lij =L} —(Z1— 7)), (1)

where Z; is the height of Node /, L;; is the length of Edge 1/, and
L;j is the length of Edge IJ’s projection.

DEFINITION 2. The local distance information of a node in-
cludes the Euclidean distances of the node to its one-hop and two-
hop neighbors.

The absolutely accurate distance measurement is generally unattain-

able in practice. However the Euclidean distance between two
neighboring nodes can be estimated by RSS or TDOA. It often con-
sumes higher power to measure the distance to a two-hop neighbor.
But such measurement is required only once for a static network.



(a) A 3D surface network.

(c) Identified NSV edges.

(d) Partitioned SV pieces.

(e) Localization of individual pieces.

(f) Final localization result.

Figure 4: An overview of the proposed cut-and-sew algorithm for 3D surface localization.

This is very different from using long links for communication,
which results in significant power consumption.

DEFINITION 3. In the triangulation of a 3D surface network,
an edge is locally NSV (or NSV for short) if the projection of its
two associated triangles overlap on the X-Y plane.

It has been assumed in the above definition that neither triangles
are vertical (i.e., the projection of a triangle is not colinear). The
exception of vertical triangle will be discussed in Sec. 2.3. It can be
checked by a simple, local test and in fact leads to a trivial problem
that is readily solvable.

DEFINITION 4. A 3D surface sensor network is called a NSV
network if it contains NSV edges.

DEFINITION 5. A 3D surface sensor network is called a SV net-
work if it does not contain NSV edges.

As discussed earlier, the NSV network, particularly the NSV
edges, introduce problem in localization. The proposed algorithm,
however, exploits them to partition the network into SV patches
that can be readily localized. The rest of this subsection shows that
NSV edges can be identified by using local information.

LEMMA 1. Given an edge in the triangular mesh of a 3D sur-
face sensor network, its associated local distance information is
sufficient to determine whether it is a NSV edge.

PROOF. Consider Edge BC shared by AABC and ABCD, which
are projected to Aabc and Abcd on the 2D plane. Obviously, to
check if Aabc and Abcd overlap is equivalent to examine whether
Nodes a and d are on the same side of Edge bc. If Nodes a and d are
on the same side of Edge bc, Aabc and Abcd overlap; otherwise,
they do not.

Without loss of generality, Node a is assumed on an arbitrary
side of Edge bc. Now, the problem is reduced to check if Node d
is on the same side. Assume the coordinates of Nodes b and c are
(Xp,Yp) and (X,Y;). Given the edge length information, i.e., Lpg
and L4, the basic triangulation can be applied to derive the coor-
dinates of Node d. Clearly, there are two possible solutions sym-
metric about Y-axis, denoted as @’ and d” with coordinates (X, Y,)
and (—Xy,Y;), respectively, as illustrated in Fig. 5(b).

So far it still unknown on which side Node d is located. How-
ever, it can be shown by contradiction that the distances between

(b)

Figure 5: (a) Projections of neighboring triangles. (b) Hy-
pothetic nodal positions become deterministic with 2-hop dis-
tance.

Node a and the two hypothetic positions of Node d (i.e., d’ and d")
are always different. If L, = L4, then

(Xa—X0)? + (Yo —Ya0)? = [Xa— (~X2))* + (Y —Ya)2.

The solution of the equation is X, = 0 or X; =0, i.e., either Node
a or Node d must be collinear with Nodes b and c. This contradicts
the fact that Nodes a, b, ¢ and d form two triangles. Therefore, if
L, is known, one can readily determine whether Node a and Node
d are on the same side of Edge bc. More specifically, one can first
embed Aabc on the 2D plane according to the local distances Ly,
Ly, and Lye. Then, based Lp; and L4, two hypothetic positions
of Node d are computed. Finally, one of them is chosen according
to L,y. If Nodes a and d are on the same side, Edge BC is NSV;
otherwise, it is not. Thus the lemma is proven. [

The proof of Lemma 1 clearly suggests a simple and localized
scheme to examine if an edge is NSV. Every node in the network
can perform such local calculation for its associated edges and
mark the ones that are NSV. Fig. 4(c) illustrates the identified NSV
edges.

2.2 Network Partition

This subsection shows that the minimum SV partition is achieved
by dividing the network along NSV edges.

DEFINITION 6. Given a triangular mesh, a boundary edge is
an edge contained in one and only one triangle.

A boundary edge is obviously not NSV because it is contained
in one triangle only.



(a) Node e on right side of ad.  (b) Node e on left side of ad.

Figure 6: Illustration of Lemma 2, where Edge ac is NSV.

LEMMA 2. A NSV edge must connect to other NSV edges or
boundary edges.

PROOF. Consider a NSV edge, denoted as Edge AC. Its projec-
tion on the 2D plane is ac. First, Edge AC must be shared by two
triangles according to Definition 3. Therefore it is not a boundary
edge. If either Node A or Node C is on boundary, Edge AC must
connect to a boundary edge, and thus the lemma is proven.

Now assume Nodes A and C are non-boundary nodes. A non-
boundary node must be surrounded by a set of triangles on the
3D surface. Fig. 6 illustrates the projection of the set of triangles
around Node A on the 2D plane. Since Edge AC is NSV, the projec-
tion of its associated triangles must overlap. In other words, Nodes
b and d must be on the same side of ac on the projected plane. Thus
either ad is located within Zbac or ab is in Zdac. Since the two
cases are symmetric, only the first one is discussed here. Given ad
is within Zbac, Nodes b and ¢ are obviously on the two sides of
Line ad (see the dashed line in Fig. 6). To facilitate the discussion,
a directions is defined as follows. Assume one stand at Node a and
face Node d. Node c is on the right hand side, thus it is said on the
right side of ad. Similarly, Node b is on the left side of ad. Besides
left and right, the following discussion also uses the clockwise or-
der around Node a.

Next the proof shows by contradiction that besides Edge AC,
there must exists another NSV edge associated with Node A. To
construct the contradiction, all edges that connect to Node A, ex-
cept AC, are assumed SV. Consequently, the neighboring nodes of
Node A (excluding C) must be in a clockwise order on the pro-
jected plane. More specifically, let’s begin with Node d as shown
in Fig. 6(a). Without loss of generality, assume d is on the left side
of ae. Since ae is SV, Node f must be on its right side. Thus Nodes
d, e and f must be in a clockwise order around Node a. Similarly,
since af is SV, Nodes e, f, and g must follow the clockwise order.
Thus Nodes d to g are all ordered. By deduction, all nodes around
Node a, except ¢, must be clockwise ordered (see Nodes d, e, ..., b
in the figure).

Now the proof shows that either Edge AD or Edge AE must be
NSV. First, examine Adae, which shares ad with Acad. As dis-
cussed earlier, Node c is on the right side of ad. If Node e is also
on the right side of ad (as illustrated in Fig. 6(a)), then Edge AD
must be NSV. If Node e is on the left side of ad (as illustrated in
Fig. 6(b)), let the dashed line ad rotate clockwise around Node a.
Since Nodes d, e, ..., b are clockwise ordered, the dashed line must
meet Node e first. Obviously, both d and f are on the same side
of ae. Accordingly, Edge AE is NSV. The above results contradict
the earlier assumption that all edges that connect to Node A, except
AC, are SV. Thus besides Edge AC, there must exists another NSV
edge associated with Node A.

The above discussions focuses on Node A and its surrounding
triangles. Similar results can be obtained by analyzing Node C and
its neighboring edges. Therefore, the proof concludes that the two

ends of an NSV edge must connect to other NSV edges or boundary
edges. The lemma is proven. []

In fact, the above lemma is intuitively understandable, because
the NSV edge is where the surface is folded when it is projected
to the X-Y plane. Given a 3D surface, the folding line must be
continuous until it extends to the boundary of the surface or meets
other folding lines.

THEOREM 1. The minimum SV partition is achieved by divid-
ing the network along NSV edges.

PROOF. Let the partition process start from any node on an ar-
bitrary NSV edge and cut the network along all of its connected
NSV edges. Since the NSV edges must connected to each other
or to boundary edges as shown by Lemma 2, the cutting process
will either form a loop or stop at the boundaries of the network. In
either case, the network is partitioned into two or more separated
patches. The NSV edges used in such partition become boundary
edges of the newly created patches. As a result, they are no longer
NSV edges, because a boundary edge is contained in one triangle
only. The process repeats until no NSV edges exist in the entire
network. It is clear that none of the patches contains an NSV edge.
Therefore they are all SV.

On the other hand, it is straightforward to show the partition is
minimum, because all NSV edges must be cut open, otherwise a
patch that contains NSV edges must be an NSV patch. The theorem
is thus proven. [

Fig. 4(d) illustrates the SV patches by partitioning the 3D surface
sensor network along NSV edges.

2.3 Localization and Combination

As discussed above, each edge decides if it is NSV by using lo-
cal information only. A set of NSV edges form the boundary of an
SV patch. At least one randomly elected node in each patch initi-
ates projection and 2D localization by constructing a local flood-
ing packet that contains a patch ID (which, e.g., can be simply its
own node ID). The packet is dropped when it reaches the NSV
edges. Obviously the local flooding packet is limited within the
given patch. If multiple nodes flood at the same time, the one with
the highest ID wins. All nodes in the patch thus begin projection
and 2D localization.

The projection of a SV patch is planar. It remains a triangula-
tion on the X-Y plane, with only changes in edge length that can be
determined by surface edge length and height information (i.e., by
using Eq. (1)). Given the height information, Z-coordinates are al-
ready known. Thus only X-Y-coordinates are yet to be determined.
To this end, several distributed 2D localization algorithms can be
applied [15-17,31]. The localization result is then mapped back to
3D by including the known Z-coordinates (see Fig. 4(e)).

There is a rare exceptions of Definition 3 that may occur when a
triangle is vertical. A vertical triangle can be checked by a simple,
local test since it is colinear on the X-Y plane. If one and only one
triangle associated with an edge is vertical, the edge is considered
a NSV edge. However, if both triangles are vertical, the edge is not
treated as NSV.

Similarly, an entire patch may be vertical. Its projection becomes
a line, which is not localizable by 2D algorithms. However, the
patch is in fact already planar (without a projection), and thus can
be readily localized on the X-Y plane and mapped to 3D as dis-
cussed above.

Finally, since neighboring patches share common vertexes and
edges, they can be readily “sewed” together by using a distributed
least square algorithm [28,32], yielding a unified coordinate system
for the entire 3D surface sensor network as illustrated in Fig. 4(f).



(a) True NSV edges.

(b) Detected NSV edges.

(c) Coalescence of isolated NSV edges.

(d) Formation of NSV band.

(e) Partition along medial axis.

(f) Final localization result.

Figure 7: Network partition under noisy measurements.

2.4 Practical Solution with Noisy Inputs

So far accurate distance and height measurements are assumed
as inputs of the 3D surface localization problem. Both of them
can be noisy under practical sensor network settings. The proposed
algorithm still applies but needs further treatment on network par-
titioning.

The inaccurate inputs directly affect the identification of NSV
edges. Fig. 7(b) illustrates an example of the detected NSV edges
with 10% measurement errors. As can be seen, they become iso-
lated and many of them are deviated from the true NSV edges
shown in Fig. 7(a). It is obviously impossible to partition the net-
work according to such noisy NSV edges directly. The proposed
idea is to fuse the nearby NSV edges to form a band and then cut
the network along the medial axis of the band. More specifically,
the algorithm consists of the following three steps.

(1) Coalescence of Isolated NSV Edges. The algorithm fuses the
detected NSV edges by expanding and connecting them. First, if
a triangle contains an NSV edge, the entire triangle, i.e., all of its
edges, are marked NSV. Second, If two NSV triangles are one-
hop away from each other, the edges between them are marked as
NSV too. The NSV edges are now better connected, forming a
number of clusters. The NSV edges in each cluster are connected,
but different clusters are still isolated. The two closest clusters are
connected by marking all the edges on their shortest path as NSV
edges. They are thus merged into one cluster. The process repeats
until all clusters are connected. Fig. 7(c) shows the result after
coalescence of isolated NSV edges.

(2) Formation of NSV Band. The above step has created an ex-
panded set of NSV edges. The algorithm further marks the edges
within 1-hop of existing NSV edges as NSV, forming a NSV band.
To smoothen the band, an edge is marked NSV if it is included in
a triangle with two NSV edges. An example of the resulting NSV
band is depicted in Fig. 7(d).

(3) Partition along Medial Axises of NSV Band. Finally, the me-
dial axis of the NSV band is identified for partitioning. A NSV
band may have two or more boundaries. The basic idea is to shrink
the boundaries of the NSV band until they meet, forming the ap-
proximate medial axis. This is achieved by a distributed process
initiated by boundary edges of the NSV band. Each boundary edge
is involved in a triangle inside the band. It is replaced by two other
edges of the triangle, which become new boundary edges. Thus the

boundaries grow inward into the band. The process repeats until
convergence (which is obviously guaranteed because the band has
a finite size), yielding the medial axis.

Once the network is partitioned, the patches are localized and
combined as discussed earlier. Note that the partition along medial
axis is an approximation. It does not guarantee every patch is SV.
Thus, the 2D projection of a patch may have minor overlap between
its edges (especially at the boarder of the patch), resulting in local-
ization errors. This is evident from the minor distortion shown in
Fig 7(f). Such errors will be quantitatively studied and discussed in
Sec. 4.

2.5 Complexity and Overhead

The NSV edge identification, network partitioning and projec-
tion are all done locally by the individual nodes, thus resulting in
a constant computation complexity and communication overhead.
However, to initiate projection, a local flooding is required in all in-
dividual patches, which together yield a communication overhead
of O(n) in the entire network, where 7 is the total number of nodes
in the network.

When inputs are noisy, the NSV edges are further processed to
identify the medial axis of the NSV band. This process consumes a
total time of O(n) and the corresponding communication overhead
is also O(n).

The computation time and communication overhead for local-
izing individual patches depend on the 2D localization algorithm
employed. For example, MDS results in a linear communication
overhead and a computation complexity of 0(m3) where m is the
number of nodes in a patch. The computation is carried out in all
patches simultaneously.

The combination of two patches can be completed in O(p) time
and results in O(p) communication overhead, where p is the set
of nodes involved in alignment (usually the common nodes shared
by the two patches). To merge all patches, the total computational
complexity and communication overhead are both O(n).

In summary, the proposed cut-and-sew algorithm results in an
overall communication overhead of O(n) and time complexity of
O(Max{m?3 n}).

3. PROTOTYPING AND EXPERIMENTS

Several indoor testbed models have been built in this research for
prototyping 3D surface sensor networks. An example is shown in
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Figure 8: Experimental setup and result. (a) Indoor 3D sur-
face network testbed. (b) Input triangulation. (c) Localization
result (with an average location error of 14%).

Table 1: Localizable Rate

Stadium | Sea Cave | Mine Pit
Slice-Based [28] 98.8% 90.8% 81.3%
Cut-and-Sew 100% 100% 100%

Fig. 8(a), which is 51/4 feet high, 3 feet long and 3 feet wide. Forty
eight Crossbow MICAz motes are attached to its surface. The algo-
rithmic codes are implemented in Tiny OS and run on the Crossbow
sensor nodes. The sensors are configured to use close to minimum
radio transmission power (Level 2), with a communication range
between 25 to 55 cm. The short radio range avoids undesired con-
nections through volume.

Every sensor periodically broadcasts a beacon message that con-
tains its node ID to its neighbors. Based on received beacon mes-
sages, a node builds a neighbor list with the RSSI of corresponding
links. RSSI is used to estimate the length of links by looking up a
RSSI-distance table established by experimental training data. The
preliminary test shows that, under low transmission power, such es-
timation has an error rate about 20%. At the same time, the ground
truth of surface distances and sensor coordinates are manually mea-
sured. A triangular mesh structure is constructed by using the dis-
tributed algorithm [30]. Fig. 8(b) illustrates the triangulation based
on ground truth inputs.

The localization result is depicted in Fig. 8(c). As can be seen,
the NSV edges are identified correctly (as highlighted in the figure).
The network is thus partitioned into two SV patches. Then MDS
is applied to localize each of them. The combined patches largely
restore the original 3D surface network, with an average location
error of about 14%. The largest errors are observed at the middle
of the network (around the NSV edges), while the top and bottom
are localized more accurately. This is because the triangles right
below the NSV edges are almost vertical, resulting in extremely
skinny projections on the X-Y plane (where some edges of the pro-
jected triangles are extremely short). Note that localization errors
are inevitable in MDS, due to inaccurate distance inputs. Given
the same amount of errors, they apparently have larger impact on
short edges, which lead to significant distortion on 3D surface, thus
producing the aforementioned localization errors.

The layer slicing approach proposed in [28] largely fails in the
above experimental setting, because it cannot locate about 50% of
sensor nodes (around the NSV edges at the middle of the network).

4. SIMULATION RESULTS

Besides the indoor testbed experiments, the proposed cut-and-
sew algorithm is implemented and evaluated via simulations under
a variety of practical 3D surface sensor networks. For example,

the results under three representative network models (for monitor-
ing stadium, sea cave, and mine pit) are presented in this section.
Note that the localization results obviously depend on individual
network settings. It would mix up the performance trend or even
become misleading if data from different networks are combined
and averaged.

The simulation adopts a general communication model with merely
a constraint on the maximum radio transmission range, which is
normalized to one. Two nodes are connected with a probability
if their distance is less than one. Each node is assumed to mea-
sure its own height and local distances. A range of measurement
errors are considered in simulations. The proposed algorithm has
been proven to work perfectly when the measurements are accurate.
Therefore, the simulations focus on studying its tolerance against
measurement errors and the impact of sensor densities. There is
almost no competing schemes to compare with. The only related
work is [28]. However, it is difficult to compare their localization
errors, because the approach in [28] does no even localize all nodes
in the network. Therefore, the comparison is based on localizable
rate only.

4.1 NSV Edge Detection Error

The proposed algorithm heavily depends on NSV edges, which
guide the partition of the network. Let S denote the set of perfect
NSV edges (identified under precise distance and height measure-
ments). While the measurements are often noisy in practice, the
proposed algorithm still yields a set of NSV edges, T. Obviously,
the accuracy of network partition and final localization depend on

how close T is to S. Hence, the NSV edge detection error is defined

Zr ETN([IHS)
as ENSV = kT

Edge #; and its closest edge in S, and |T| is the total number of
identified NSV edges.

Fig. 9 illustrates the impact of measurement errors and nodal
densities on Eygy. Under the same nodal density, Eygy increases
sharply with larger measurement errors. While the results show un-
desired vulnerability of NSV edge detection under measurement er-
rors, the simulation data to be discussed next demonstrates that the
proposed algorithm effectively minimizes the impact of the NSV
edge errors on network partition and final localization. On the other
hand, the nodal density (varying from 1k to 4k in each network
model) does not noticeably affect NSV edge detection.

, where N(t,S) is the hop distance between

4.2 Network Partition Error

The network partition is guided by the NSV edges. Therefore,
NSV edge errors obviously have a negative impact on partition-
ing. However, the proposed algorithm employs several techniques
to minify the effect. More specifically, it fuses the nearby NSV
edges to form a band and then identifies the medial axis of the
band for network partitioning. The medial axis is expected to ap-
proximate the set of true NSV edges. Let U denote the set of
edges that constitutes the identified medial axis. The network par-
tition error Epsp is defined as the maximum deviation between U
and S (i.e., the set of true NSV edges for ideal partitioning), i.e.,
Epagr = %’SW‘EU}, where N(u;,S) is the shortest hop dis-
tance between u; and S, and M is a normalizer defined as the maxi-
mum shortest hop distance between any two nodes in the network.
Higher Epsp indicates that, after the network is partitioned, more
NSV areas still exist in the patches, leading to potentially worse
localization result.

As shown in Fig. 10, Epap is not sensitive to measurement errors.
With the increase of measurement inaccuracy, the network partition
error largely remains a constant. Nodal density has a diverse effect
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Figure 11: Average localization error is not significantly affected by measurement errors.

on network partition error depending on individual network mod-
els. For example, the impact of nodal density is negligible under
the sea cave and mine pit models. However, the stadium model no-
ticeably benefits from higher nodal density, owing to the shape of
the area surrounding NSV edges.

4.3 Average Location Error

The final output of the algorithm is the coordinates of sensor
nodes. Such coordinates can be aligned to any desired coordi-
nates system (e.g., the global positioning system) by using the least
square algorithm [32]. However, the alignment to a particular coor-
dinates system is out of the interests of this research. Therefore, the
localization error is computed by comparing the edge length under

the established coordinates system with the real edge length. More
specifically, let {I, 1, ...,I, } denote the edge lengths calculated ac-
cording to the established coordinates and {/{,1}, ..., } the real edge

Y =4
nxmax{l[[1<i<n}"

It is not a surprise that the localization error shows similar trend
as the network partition error. As a matter of fact, the performance
of localization is predominated by the errors in network partition-
ing. With an average localization error less than 25%, the localiza-
tion algorithm is not significantly affected by inaccurate distance
and height measurements (see Fig. 11). A higher sensor density
helps reduce the localization errors in the stadium model. How-
ever, the same effect is not observed in the sea cave and mine pit
models, in line with the tread in Fig. 10.

lengths. Location error Er ¢ is defined as Eroc =



Finally, the proposed algorithm achieves 100% localizable rate,
which is in a sharp contrast to the earlier heuristic [28]. Table 1
shows a comparison of the localizable rate (averaged over different
sensor densities).

S. CONCLUSION

This paper has proposed a divide-and-conquer approach, named
cut-and-sew, for autonomous localization of 3D surface wireless
sensor networks. Seeing the challenges to localize general 3D sur-
face networks and the solvability of the localization problem on
single-value (SV) surface, the proposed cut-and-sew algorithm par-
titions a general 3D surface network into SV patches, which are
localized individually and then merged into a unified coordinates
system. The algorithm has been optimized by discovering the min-
imum SV partition, an optimal partition that creates a minimum set
of SV patches. Moreover, the paper has introduced a practically-
viable solution for real-world sensor network settings where the
inputs are noisy. The proposed algorithm has been implemented
and evaluated via simulations and indoor testbed experiments. The
results have demonstrated perfect 100% localization rate and the
desired robustness against measurement errors.
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