IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 3, JUNE 2014

233

GPS-Free Greedy Routing With Delivery Guarantee
and Low Stretch Factor on 2-D and 3-D Surfaces

Su Xia, Hongyi Wu, and Miao Jin

Abstract—This paper focuses on greedy routing in wireless net-
works deployed on 2-D and 3-D surfaces. It introduces a distributed
embedding scheme based on the conformal map theory. The pro-
posed scheme identifies the convex hull of each boundary and
employs Yamabe flow to compute flat metric under convex hull
boundary condition to establish virtual coordinates. Such virtual
coordinates are then used for greedy routing. Since the proposed
embedding algorithm maps the outer boundary to a convex shape
and an interior concave void to a circle-like convex polygon, it
effectively eliminates local minimum and attains guaranteed deliv-
ery. At the same time, it introduces a small distortion only and
consequently achieves a low stretch factor. Our simulations show
that its stretch factor is lower than any existing greedy embedding
algorithms. Moreover, the proposed scheme is merely based on local
connectivity and consumes a small constant storage, thus scaling to
arbitrarily large networks.

Index Terms—Greedy routing, wireless sensor networks.

1. INTRODUCTION

ITH both storage space and computation complexity

bounded by a small constant, greedy routing is deemed
an appealing approach for resource-constrained networks [1]. In
most cases, a node under greedy routing only needs to store its
coordinates and perform a standard distance calculation for
routing, rendering it particularly suitable for networks where
the nodes have limited memory space or computing capacity.

One of the earliest greedy routing schemes is introduced in [2]
and [3]. It assumes that nodes know their geographic locations.
To route a data packet, the algorithm greedily advances it to the
next-hop node that is the closest to the destination. If a dead-end
is reached, it employs face routing to move the packet around the
perimeter of the void. Followup studies have extended investi-
gations into variances of face routing [4]-[9], location errors
[10], and 3-D space [11].

The geographic location information is not always available
or precise enough to support efficient greedy routing. This
constraint has naturally stimulated the development of virtual
coordinates-based schemes. To this end, a collection of interest-
ing approaches have been explored for establishing virtual

Manuscript received February 10, 2014; revised March 29, 2014; accepted
April 15, 2014. Date of publication April 25, 2014; date of current version May
30,2014. The work of H. Wu was supported in part under Grant NSF CNS-1018306
and Grant CNS-132093 1. The work of M. Jin was supported in part under Grant
NSF CCF-1054996, Grant CNS-1018306, and Grant CNS-1320931.

S. Xia is with Cisco Systems Inc., Milpitas, CA 95035 USA (e-mail: suxia.
ull@gmail.com).

H. Wu and M. Jin are with the Center for Advanced Computer Studies,
University of Louisiana at Lafayette, Lafayette, LA 70503 USA (e-mail:
wu@cacs.louisiana.edu; mjin@cacs.louisiana.edu).

Color versions of one or more of the figures in this paper are available online at
http://ieeexplore.iece.org.

Digital Object Identifier 10.1109/JI0T.2014.2320260

coordinates in the network without physical location informa-
tion. In [12], the rubber band algorithm is adopted to create the
virtual coordinates based on a convex embedding of the network
graph. In [13]-[18], the virtual coordinates are defined as the hop
distances to an array of selected anchor nodes. A tree structure is
proposed in [19] to name the nodes sequentially, creating an
ordered 1-D coordinate for every node in the network. In
addition, [20] and [21] propose to partition the network into
convex regions such that greedy routing can be applied in each
region.

The majority of the aforementioned virtual coordinate-based
greedy routing schemes [12]-[17], [20], [21] do not guarantee
delivery. In other words, dead-end still exists and special routing
schemes (such as face routing or flooding) must be employed to
handle it. References [18] and [19] do ensure successful delivery
between any pair of nodes in the network. However, [18]
potentially requires large storage space per node, which grows
with the network size (in contrast to other greedy routing
schemes that need a small constant storage only); on the other
hand, the 1-D coordinates adopted in [19] may lead to long
routing path between adjacent nodes.

While experimental results have shown the efficiency of
virtual coordinates-based greedy routing [12]-[21], the quest
for theoretical understanding of its delivery guarantee and
routing efficiency leads to a thrust of exploratory research that
has revealed several interesting findings recently.

1) There is a great interest to delve into the conditions that
ensure greedy embedding. A greedy embedding is an
embedding of a graph such that, given any two distinct
nodes s and ¢, there is a neighbor of s that is closer to ¢ than
s is [22]. In other words, greedy embedding ensures the
success of greedy routing. While it is yet an open problem,
studies have shown that greedy embedding does not exist
for all graphs. But a three-connected graph always admits a
greedy embedding in the plane [22]-[24].

2) Subsequently, it is discovered in [25] that any connected
graph has a greedy embedding in the hyperbolic plane. To
enable greedy routing, a spanning tree is constructed and
the nodes on the tree are mapped to a hyperbolic plane.
Then, the hyperbolic distance is used for greedy routing.
This approach is extended for dynamic graphs in [26].

3) Reference [27] introduces a mapping approach that em-
ploys Ricci flow to map holes (that can be local minimum
and lead to dead-end) to perfect circles, and thus ensuring
successful greedy routing.

4) Greedy routing usually leads to a longer path compared
with the shortest path in conventional routing. The effi-
ciency of greedy routing is gauged by its stretch factor,

2327-4662 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

234

vod

Vi,

N
1%
o

KRR
SO
RK
PR,
BEKT

>

<
s
55
o5
s

S
Vo
LK

AVAYY
VaV

A
&

5

2
S

S/ Q
1'4 AN
VAVAN

IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 3, JUNE 2014

Fig. 1. Distortion under different boundary conditions. (a) Original mesh. (b) Mesh conformally embedded into a 2-D plane under a convex boundary condition.
(c) Mesh conformally embedded into a 2-D plane under a rectangle boundary condition. (d) Mesh conformally embedded into a 2-D plane under a hexagon boundary
condition. (e) Mesh conformally embedded into a 2-D plane under a circular boundary condition.

which is the ratio between the average path length in
greedy routing and the average shortest path length.
[28] is the first paper that reports a bounded stretch factor
in greedy routing. It introduces a centralized embedding
algorithm that yields virtual coordinates with O(log®n)
bits. It achieves a constant stretch factor under combinato-
rial unit disk graphs and O(log(n)) stretch for general
graphs.

Our contribution: This work continues the research thrust for
greedy embedding. We aim to develop a practical distributed
embedding scheme that guarantees the success of greedy routing
between any pair of nodes in the network and, at the same time,
achieves a low stretch factor.

Failures in greedy routing are due to local minimum. For
example, when a packet is greedily forwarded to an intermediate
node along the outer boundary of a network or the boundary
of an inner hole with concave shapes [see the concave hole in
Fig. 5(a)], the node finds itself to be the local minimum (i.e., the
one with the shortest distance to the destination in its neighbor-
hood), and thus fails to further advance the packet toward the
destination. To avoid such failures, our proposed embedding
algorithm maps the outer boundary to a convex shape and an
inner concave hole to a circle-like convex polygon [see Fig. 5(¢)].
Therefore, it effectively eliminates local minimum and attains
guaranteed delivery in greedy routing.

A side-effect of such mapping is distortion. For the sake of a
visualization and conceptual understanding of the mapping
process (that will be elaborated in Section III), let us analogize
edges as rubber bands. When the boundary of a void is forced to
deform to a convex shape, a network-wide distortion will be
observed, i.e., the edges will deform and the nodes will move
accordingly. For example, the nodes in the original network
shown in Fig. 5(a) are uniformly distributed. After mapping [see
Fig. 5(e)], the nodal density at the left bottom corner becomes
obviously lower. The amount of distortion can be quantified by
the method discussed in [29]. To minimize distortions, the
original boundary condition should be preserved [29], [30].
However, an embedding based on original boundaries is not
useful in greedy routing, because a void may be concave and thus
results in failures. When the boundaries must be deformed, the
closer to the original boundary condition, the less distortion is

introduced. This is verified by our simulations. For example,
Fig. 1 illustrates a network and its embedding under different
convex boundary conditions. As can be seen, since a convex hull
is by definition the minimal convex set of the original boundary,
mapping the boundary to its convex hull leads to the smallest
distortion. The quantified distortions are given in Fig. 2 (see the
values at the top of the histogram bars).

Meanwhile we note that, when greedy routing succeeds in the
original network, its path length is generally close to the shortest
path length, although greedy routing does not always follow the
shortest path. Due to distortions, however, the greedy routing
path in the embedded space can noticeably deviate from its
counterpart in the original space and consequently the true
shortest path. Any such deviations lead to stretch, i.e., a longer
route than the shortest path. As a result, a greedy routing path in
the embedded space is generally stretched, and its stretch factor is
proportional to the amount of distortions. This is illustrated in
Fig. 2, which shows the distortion and the stretch factor of the
network embedded under different convex boundary conditions.

Therefore, to achieve greedy embedding with low stretch
factor, we must keep distortions as small as possible in mapping.
To this end, we propose an embedding scheme, where we
identify the convex hull of each boundary and employ Yamabe
flow to compute flat metric under convex hull boundary condi-
tion to establish virtual coordinates that are used for greedy
routing. It maps the outer boundary to its convex hull and an
interior void to a circle-like convex polygon, yielding several
appealing features summarized as follows.

1) GPS-Free: The proposed scheme does not require location

information. It is based on local connectivity only.

2) Constant storage: Its storage is a small constant, unlike

[18], [28] whose storage grows with network size.

3) Guaranteed greedy forwarding: The proposed scheme

achieves 100% delivery rate under greedy routing.

4) Low stretch: Our simulations show that its stretch factor is

lower than any existing greedy embedding algorithms.

5) Distributed implementation: Distinct from [28], our

scheme is distributed, based on its local information only.

6) Scalability: Our scheme scales to large networks. This is in

sharp contrast to [25] and [26] whose required computation
precision grows dramatically with network size.

XIA et al.: GPS-FREE GREEDY ROUTING WITH DELIVERY GUARANTEE AND LOW STRETCH FACTOR 235

1.6 T T 50 — T T T 7
Stretching factor s
451 Y= = -
1.5 / N
1 \
)
40} ' \
1.4 \ 1 \B
\ 4 g
35 sy AN ’ i
1
13 1 ’ 1
30 2/ 2 : 1
\
AY
N
1.2 o5]
11 20f
E
15
1 (
Mesh
10
Fig. 2. Higher distortion results in higher stretch factor. The value at the top of
each histogram bar indicates the amount of distortions (calculated according to 5 D 4
[29]) of a embedding scheme illustrated in Fig. 1.
0 n : .)) L L L
0 5 10 15 20 25 30 35 40 45 50

7) 3-D compatibility: While earlier studies mainly concen-
trate on 2-D space, our proposed scheme can establish
virtual coordinates in both 2-D and 3-D surfaces.

This paper is organized as follows. Sections II-IV introduce
our proposed algorithm in three steps, including: 1) preproces-
sing, 2) virtual coordinates calculation, and 3) routing based on
virtual coordinates. Section V presents simulation results. Final-
ly, Section VI concludes this paper.

II. PREPROCESSING

Our proposed routing scheme consists of three steps: 1) pre-
processing, 2) virtual coordinates calculation, and 3) routing
based on virtual coordinates. Preprocessing is a distributed
process that prepares the necessary network information for
the Yamabe flow-based conformal mapping. The outcome of
the mapping algorithm is the virtual coordinates for every node in
the network, which are used for greedy routing. The properties of
Yamabe flow-based conformal mapping ensure the success of
such greedy routing between any pair of nodes in the network and
achieve low stretch factor at the same time.

The preprocessing process aims to identify a subset of the
nodes (dubbed landmarks) and their connections in the network
to construct a triangle mesh structure. Such triangle mesh and the
corresponding boundary information are required as inputs for
running the Yamabe flow-based conformal mapping algorithm.
Furthermore, the triangulation forms a backbone representation
of the network, which can effectively reduce the complexity in
conformal mapping and routing.

With no location information available, we adopt the method
proposed in [31] for triangulation. It first identifies a set of
landmarks such that any two neighboring landmarks are k-hops
apart and a nonlandmark node is associated with the nearest
landmark within k-hops (k > 5). This distributed method creates
a set of approximated Voronoi cells. Then, it connects the
landmarks to yield a combinatorial delaunay map (CDM). The
algorithm guarantees that landmarks are chosen uniformly, but

Fig. 3. Example of triangulation.

not densely from a network and the constructed CDM is a planar
graph [31]. An example of a constructed CDM is shown in Fig. 3.

Vertices of a CDM are landmark nodes. An edge in CDM
connecting two neighboring vertices is a shortest path between
the corresponding two landmarks. To run conformal map algo-
rithms, however, it must be further processed. More specifically,
we must discover the boundaries of the CDM and repair its
degeneracy edges.

A. Boundary Detection

To detect boundaries in CDM, we first identify the edges that
define the boundaries. As can be seen in Fig. 3, a boundary edge
belongs to no more than one triangle. Based on this observation,
we devise a simple approach for discovering boundary edges,
which does not require topology information like [27]. Each
landmark broadcasts a probe packet with its own identification
(ID) number and time-to-live (TTL) equal to three. Its neighboring
nodes (in CDM) rebroadcast the packet with the TTL decreased by
one. The process repeats as long as the TTL of a packet is greater
than zero, whenever a copy of the packet returns to the landmark
that initiates the probe, it must have gone through a triangle. As a
result, a landmark can discover how many triangles a neighboring
edge is attached to by observing the number of its own probe
packets received through that edge. If less than two probe packets
are received from that edge, it must be a boundary edge. By the end
of this process, each landmark can identify all boundary edges it
connects to. For example, Landmark A in Fig. 3 connects to five
edges. Two ofthem are identified as boundary edges (see the thick
lines), because only one probe packet is received from each of
them, while two packets are received from every other edge.

After all the boundary edges are identified, a landmark that
connects to a boundary edge (e.g., A) sends a boundary discov-
ery packet through that edge to its neighboring landmark. If the
neighboring landmark (e.g., B in Fig. 3) connects to more than

236

one boundary edge (other than the one connected with A), it adds
its ID into the boundary discovery packet and forwards it through
a different boundary edge; otherwise it simply drops the packet.
If the boundary discovery packet loops back to the landmark that
initiates the process (i.e., A), a boundary is discovered. This
method works efficiently except a special case illustrated in the
lower left corner of Fig. 3. If landmark node D initiates boundary
discovery, it may end up with finding a loop highlighted by the
thick lines and assume it is a boundary. This problem is due to
degenerated nodes. A node connecting to more than two bound-
ary edges is called a degenerated node (see Nodes D and E for
example). With the presence of degenerated nodes, the subgraph
can flip and lead to misleading results in boundary discovery. To
solve this problem, we add the following rule in forwarding the
boundary discovery packet: if a boundary discovery packet goes
through two adjacent boundary edges that intersect at a degen-
erated node and form one or multiple adjacent triangles, the
packet is dropped. This rule avoids the problem discussed above
and ensures correct boundary discovery.

In addition, a random chosen landmark node can initiate a
process to assign a consistent orientation to the whole triangula-
tion. We let the one with the smallest ID compared with other
landmarks to start the process. There are many different distrib-
uted methods to find the starting node. For example, each
landmark broadcasts a packet with its ID to its neighboring
landmarks. A landmark receives a packet and compares with its
own ID. If the received ID is larger than its own, the landmark
will drop this packet, otherwise, just forward it. Eventually, all
landmarks will know the smallest landmark node ID. The
landmark node with the smallest ID then assigns an orientation
(either clockwise or counterclockwise) to one of its connecting
triangles. The triangle will then propagate its orientation to its
neighboring triangles such that any neighboring triangles share
the same orientation—all clockwise or all counterclockwise.
Eventually the entire triangles of the network share the same
orientation—all clockwise or all counterclockwise.

B. Degenerated Nodes and Edges

A degenerated node is a node connecting to more than two
boundary edges (see Nodes D and E for example). A degener-
ated edge is an edge connecting two degenerated nodes (see Edge
PQ in Fig. 3 for example). The degenerated nodes and edges
must be repaired before computing the virtual coordinates in the
second step of our algorithm.

It is obvious that the degenerated nodes must locate on bound-
aries. Any landmark node on a boundary can initiate the process of
detecting and repairing degenerated nodes and edges. To avoid
multiple nodes along the same boundary loop start the process
simultaneously, we can choose the node with the smallest ID along
a boundary loop to start the process. The initiator node sends a
probe packet that travels along the boundary according to its
orientation. Whenever the probe packet reaches a degenerated
node (e.g., Node P in Fig. 3), it triggers the repairing process.
More specifically, a virtual node is added along the boundary (see
P’) and connected to the degenerated node and its predecessor and
successor (i.e., Nodes O and @, respectively). The boundary edges
are updated accordingly. For example, Edges P'O and P'(QQ are
now the boundary edges. The probe packet is then forwarded to the

IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 3, JUNE 2014

next node (), which is again a degenerated node, with predecessor
and successor of P’ and R, respectively. Similarly, a virtual node
Q' and the corresponding edges are added. The process repeats,
until the probe packet returns to its initiator.

In summary, preprocessing establishes a triangular mesh with
all boundaries detected and degenerated edges repaired.

III. VIRTUAL COORDINATES CALCULATION

Our algorithm in this step aims to find the flat metric of the
triangular mesh, which can be embedded on a 2-D plane with
minimum distortion and ensure successful greedy forwarding.
The flat metric is used to determine virtual coordinates that are to
be employed for greedy routing. It is a distributed procedure. In
the rest of this section, we first introduce the theory of discrete
conformal mapping and Yamabe flow in Section III-A, and then
present the algorithm itself in Section III-B. The readers may
choose to skip Section III-A if s/he is not interested in the
theoretic background.

A. Theory of Discrete Yamabe Flow

In this section, we present the discrete theory that serves as the
basis of our proposed algorithm. We also give a brief introduc-
tion of Yamabe flow, a tool to be used to compute flat metric.

In discrete setting, we let M = (V, E, F) to represent an
abstract surface triangulation mesh (or mesh in short), consisting
of vertices (1), edges (F), and faces (F'). How to create such a
mesh has been discussed in Section II. We do not restrict its
topology or the number of boundaries.

First of all, we introduce several relevant definitions as follows.

Definition 1: A discrete metric on M is a function [on the set of
edges, assigning to each edge e;; € E a positive number /;; so
that the triangle inequalities are satisfied for all triangles ¢, € F":
lLij + L > L.

The edge lengths of M induced from Euclidean space are
sufficient to define a discrete metric on M

l: E— R, (1)

Definition 2: Two discrete metrics [and [on M are con-
formally equivalent if, for some real numbers {u;|v; € V'}
assigned to the vertices V, the two metrics satisfy

E = €u1+ujl7jj. (2)
We call u; the discrete conformal factor of vertex v;.
Definition 3. Let the vertex set be V = (v, vg,...,v,). For

each vertex v;, its conformal factor is u;. A discrete metric of a
mesh can be represented by a vector u = (uq, us, . .. ,u,,,)T.

Definition 4. The discrete Gaussian curvature K; on a vertex
v; € V is defined as the excess angle sum

UZ'%(?M

V; € oM

2m — / iy
Kq' _ { Zf,)k.EF kij (3)

= th_jkEF Zkij’

where /},;; represents the corner angle attached to vertex v; in face
fiji and OM is the boundary of the mesh. The discrete Gaussian
curvatures are determined by the discrete metrics.

XIA et al.: GPS-FREE GREEDY ROUTING WITH DELIVERY GUARANTEE AND LOW STRETCH FACTOR 237

Givenamesh M = (V, E, F), the total Gaussian curvature is
a topological invariant. It holds on the mesh as follows:

Z K = 2mx (M) (4)

v, eV

where x(M) = |V| + |F| — |E| is the Euler characteristic of M.
For a mesh with boundaries embedded in either 2-D plane or 3-D
Euclidean space, we can compute its flat metric by assigning the
total Gaussian curvatures to boundary vertices and keeping the
angle sums of all inner vertices as 27. Therefore, the mesh can be
conformally embedded onto the plane with these flat metrics that
satisfy the prescribed Gaussian curvatures on boundaries (see
Fig. 1 for examples).

The Yamabe problem aims at finding a conformal metric with
constant scalar curvature for compact Riemannian manifolds
[32], [33]. The Yamabe flow on discrete surfaces has been
studied in [30] and [34].

Let e;; be an edge with end vertices v; and v;, and d;; be the
edge length of e;; induced by the Euclidean metric of R3. The
conformally deformed edge length [;; is defined as
li; = euitu d;j. Let K; and K; denote the current and the target
Gaussian curvatures on vertex v;, respectively. The discrete
Yamabe flow is defined as

dul(t) 7)
dt *Ki _Ki, (5)

with initial condition u;(0) = 0. The convergence of Yamabe
flow is proven in [34].

The Yamabe flow is the gradient flow of the following
Yamabe energy, given as an integration of a differential one-
form and proved to be locally convex

/ ’ Z (7 — K.)du, (6)

where u and ug stand for the current and the initial metric vector,
respectively. The convex property of the Yamabe energy ensures
that the discrete Yamabe flow can quickly and stably converge to
the final u, which induces the desired metric that satisfies the
prescribed target Gaussian curvatures.

Given the high cost to perform centralized algorithms in
wireless networks, we employ a distributed implementation of
the discrete Yamabe flow to compute desired conformal metrics.
Each node only exchanges information with its one-hop neigh-
bors. The number of steps required for the convergence of
discrete Yamabe flow depends on both the curvature error
threshold € and the step length ¢. For given € and 6, the algorithm
convergence time is bounded by O(— l"ge) It is worth mention-
ing that the discrete Yamabe flow needs no special initialization,
unlike other methods such as discrete Ricci flow [35], [36] that
must construct a good initial circle packing metric with all acute
edge intersection angles.

B. Algorithm Description

As we have discussed in Section I, mapping a boundary to
its convex hull leads to the smallest distortion, and consequently

the lowest path stretch, among the mappings under different
boundary conditions. To this end, our algorithm first identifies
convex hulls of all boundaries of the network and then deter-
mines the flat metric under convex hull boundary condition. The
Yamabe flow is involved in both of these two steps.

Algorithm 1: Distributed Yamabe Flow (Free Boundary)

2 if v; is an interior node then

3| K;=0;

4 | while |K; — K;| > ¢ do

5 Exchange u; with its neighbors;

6 for each neighboring triangle f;j. do
1 p2uptu;) AZ(u,'Jru')_lQ('u,Jruk).

7 /kij = cos™ L ey T

8 end

9 ;= 21 — Zf " ka,

10 U; Zqu—l—é(Ké—Ki);

11 | end
12 end

Convex hull identification: A node has its local connectivity
information only. To determine convex hulls, boundary geome-
try information must be recovered. This is done by using Yamabe
flow, with edge length initialized to be 1. The algorithm is
summarized in Algorithm 1 and elaborated below.

The discrete conformal factor u; associated with node v; is
assigned its initial value of zero. The target Gaussian curvatures
of interior nodes are set to zero too. In each step of Yamabe flow,
all interior nodes (but not boundary nodes) are involved. Spe-
cifically, an interior node v; collects the discrete conformal factor
values from its adjacent neighbors. For each triangle f;;;. adjacent
with node v;, the corner angle /;,;; can be easily computed based
on inverse cos law on v;

62<Uk+u‘) + 62(“'+“'~7> _ €2<“’J+uk‘)

[1: = -
kij cos 2e2(utu;) o2(ui+u;)

Then, the current discrete Gaussian curvature can be computed
as the excess of the total angle sum at v;: K; = 2w — Zf . Lkij-
The Yamabe flow stops when for every interior node the
difference between the target Gaussian curvature K; (that is set
to zero) and current Gaussian curvature K; is less than a threshold
€, which can be set relatively high to speed up its convergence
since we only need the approximated boundary geometry infor-
mation. Otherwise, the discrete conformal factor associated with
each node needs to be updated as: u; = u; + §(K; — K;), where
¢ is a constant step size. Yamabe flow is proven to converge [34],
with a bounded convergence delay of O(— l“gf) When it stops, a
nonboundary edge (e.g., an edge between nodes v; and v;) has its

238

conformally deformed edge length of /;; = e"**; for a boundary

edge, its edge length remains 1.

Next, the new metric (i.e., the calculated edge length) is
embedded in a 2-D plane via discrete breadth first search. Note
that, to determine convex hulls, we do not need a global
embedding; instead, local embedding at boundaries (that have
been identified in preprocessing) is sufficient. Similar to bound-
ary discovery, anode on a boundary may initiate a probe message
that travels around the boundary. It informs the boundary nodes
that are £ hops apart to start embedding. For each of such selected
nodes, e.g., node v;, its coordinates are set to (0,0). Then, it
arbitrarily selects one of its adjacent neighbors, e.g., v;, and sets
its coordinates to (0,l;;). To determine the coordinates of vy,
which is adjacent to both v; and v, it calculates the intersection
points of the two circles with centers at v; and v;, and radii of /;;,
and l;;, respectively. Then, one of the intersection points that
conforms the orientation of triangle f;j;. (that has been deter-
mined in preprocessing) is chosen as the coordinates of vy. The
procedure continues until all nodes within k£ hops have computed
their coordinates.

Note that the above embedding is not greedy yet. Those
virtual coordinates are not usable for greedy routing. They are
the initial coordinates that reflect the boundary geometric
information. Based on them, the convex hull for each boundary
can be locally determined by well-known algorithms with local
messaging [37].

Flat metric under convex boundary condition: With the
recovered boundary geometry information, the desired flat met-
ric can be computed with Yamabe flow under convex boundary
condition. The procedure is similar to the discussion above for
computing the Yamabe flow under free boundary condition.
There are two minor differences only. 1) We set the target
Gaussian curvatures of all nodes to zero except those on the
corners of the convex boundaries. They are set to be approxi-
mated convex corner angles. 2) Boundary nodes will now be
involved in computation. In each step of the Yamabe flow, the
equation to compute current Gaussian curvature at a boundary
nodeis K; = m — Zfi/k Lyij-

The same method is employed to determine the flat metric, and
embed it to a 2-D plane. But note that the embedding here is
global. It starts from a node and propagates to the entire network,
yielding virtual coordinates for every node. Since this embed-
ding is under convex hull outer boundary and circle-like convex
polygon inner boundary conditions, the established virtual co-
ordinates ensure greedy routing in general. There is only one
exception that rarely exists in practice, but it is discussed below
for completeness of our algorithm. The exception occurs when a
node on an inner convex boundary is local minimum for a given
destination. Our solution is as follows. A message goes around
the inner boundary to collect the virtual coordinates of all nodes
on the boundary and compute the average, which serves as the
estimated convex center. Then, the message goes around the
boundary the second time to disseminate this information. Each
node on the boundary computes its distance to the center. Using
the minimal distance as the radius of a circle, each boundary node
calculates its alternative coordinates by projecting itself onto the
circle. The alternative coordinates are used under such rare
scenarios only.

IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 3, JUNE 2014

Fig. 4. Greedy routing based on virtual coordinates, where the routing path does
not go through the landmarks.

IV. ROUTING BASED ON VIRTUAL COORDINATES

Till now each node on the triangular mesh (i.e., a landmark)
has obtained its virtual coordinates. Routing between any two
such nodes is straightforward by using greedy forwarding. But
note that the triangular mesh is only a sampled backbone
representation of the network. Other nodes that are not on the
mesh must be considered too. To this end, each of them calculates
its virtual coordinates in barycentric form, based on three nearby
landmarks. More specifically, consider a triangle 7" defined by
three landmarks v;, v;, and v;,. Any node x located in this triangle
may then be represented as a weighted sum of the three land-
marks, i.e., * = o v; + aav; + azvy, where o + g + a3 = 1.
«; 1s also called area coordinates. It is determined as follows. Let
us connect x and the three landmarks. The triangle is divided into
three sub-triangles. «; is the ratio between each sub-triangle’s
area and the whole triangle’s area. This method is simple and
introduces little distortion as demonstrated in our simulations. In
addition, each node keeps the virtual coordinates of its neigh-
boring landmarks and the hop distances to them.

To deliver a packet, the source node first checks the destina-
tion’s coordinates via a coordinates lookup service which is
required in all virtual or physical coordinates-based greedy
routing schemes. According to the coordinates of the destination,
it chooses a neighboring landmark that is the closest to the
destination, and sends its packet toward it. The packet will be
forwarded hop by hop, and in each hop, the above procedure
repeats. Note that although the packet is forwarded toward a
neighboring landmark, the actual routing path does not have to
go through the landmark. In general, when a packet becomes
close to and before it actually reaches a landmark, an intermedi-
ate node may discover a new neighboring landmark that is now
the closest to the destination and thus adjust the routing path to
bypass the current landmark. This leads to efficient end-to-end
routing, as illustrated in Fig. 4.

V. SIMULATIONS AND COMPARISON

We implement our proposed Yamabe flow-based scheme and
compare it with the harmonic approach [12], hyperbolic ap-
proach [25], Ricci flow-based approach [27], and the shortest
path routing. We carried out simulations in wireless sensor
networks with quasi-UDG topologies. Among various networks
with different topological shapes being investigated, we note that

XIA et al.: GPS-FREE GREEDY ROUTING WITH DELIVERY GUARANTEE AND LOW STRETCH FACTOR 239

e

%
RERR

s ;
4 o ’

DAL
% @%ggggﬁ,«@ﬁg”
o 5
& AR

e

‘

(b)

(e)

Fig. 5. (a) Original topology with one concave hole. (b) Harmonic embedding with angle and area distortion along the inner boundary. (c) Hyperbolic embedding.
(d) Ricci embedding with severe area distortion above the inner circle. (¢) Yamabe embedding with well preserved geometry and least area distortion. The part on the
right side is a circle embedding for the inner convex hole, which generates alternative coordinates in case two sides of the inner convex boundary are perfectly parallel as

discussed in Section III.

mg"*";i D
e
Ghmm g
e
SEEER T P C
R KROHS % AR
T o

o

,xsgg{”
KARE2ER
REREZRARX

£

S
XX

St

SRR ST, i
e
é&m\ 7’ 5

(b)

oz

&
e

R
AR
ORI

Fig. 7. (a) Original topology with three concave holes. (b) Harmonic embedding. (c) Hyperbolic embedding. (d) Ricci embedding. (e¢) Yamabe embedding.

the harmonic and hyperbolic approaches may fail in some of
them because the algorithms result in edge flips or the required
computational precision is beyond the capacity of the computer
used for simulation.

A. Distortions in Embedding

First, let us examine several representative networks and the
corresponding embedding results under different algorithms.

Fig. 5 is based on a network with one hole at the bottom. There
are about 200 000 nodes in the network, among which 1114
nodes are landmarks. For conciseness, only landmarks in the
mesh structure (or a tree-like structure for hyperbolic embed-
ding) are shown to demonstrate distortions due to embedding.
For the hyperbolic scheme [see Fig. 5(c)], a three-degree tree is
employed to realize embedding. We observe that due to the limit
in computation precision, we cannot embed all nodes in the
network to a Poincaré disk, because with the increase in the depth
of the tree, the Euclidean distance between adjacent nodes
decreases exponentially. The computation precision soon be-
comes insufficient to differentiate them (64 bits for double type in

C++, i.e., 15 decimals, are used in our simulations). So, we
show the nodes that can be embedded only. As can be seen in
Fig. 5(d), Ricci embedding yields a great amount of area dis-
tortions (see the clustered area at the top of the inner circle),
which has severe impact on the routing performance (i.e., stretch
factor). The harmonic embedding preserves the relative position
ofthe hole and has less area distortion. But it generates significant
angle distortion and some edge distortions along the inner
boundary. In addition, it does not avoid local minimums and
thus resulting in critical route failures to be discussed later.
On the other hand, Yamabe well preserves the geometry of the
original network, and has the least area distortion. The separate
part on the right side of Fig. 5(e) is a circle embedding for the
inner convex hole, which generates alternative coordinates in
case a local minimum occurs at a node on the inner convex
boundary as discussed in Section III.

Networks with more holes are shown in Figs. 6 and 7. They
both have about 290 000 nodes and 1700 landmarks. Harmonic
embedding still keeps the relative positions of the holes, but the
distortions along the inner boundaries become higher; on the

240

Fig. 8. Two networks with a hole of increasing size.

Fig. 9. Three networks with a hole at corner, bottom, and center, respectively.

other hand, no significant changes in distortions are observed in
Ricci and Yamabe embedding. In addition, since the hyperbolic
approach employs a tree for embedding, the actual geometry has
no impact on its results.

B. Routing Failures

We study the routing success rate by running greedy routing
between every pair of nodes in a network. Ricci- and Yamabe-
based schemes achieve guaranteed delivery. This has been
verified by our simulations that exhibit 100% success rate under
these two schemes.

Routing failures are observed under the harmonic scheme. The
more the holes, the higher the failure rate. For example, 4.11%
routes fail in the network shown in Fig. 6(a), while the failure rate
increases to 4.38% in the network given in Fig. 7(a). With more
holes introduced into the network, more nodes may become local
minimums for any given destination. Since the harmonic scheme
does not completely eliminate such local minimums, more
greedy routing failures are observed. We have also studied the
impact of the size and the position of holes by using the networks
shown in Figs. 8 and 9, respectively. The harmonic scheme is
very sensitive to the size of the hole. For example, when the hole
enlarges as illustrated in Fig. 8, the routing failure rate increases
from 5.4% to 15.5%. With the increase in the hole’s size, the
perimeter of the boundary increases, which results in more local
minimums and accordingly more route failures.

For the hyperbolic approach, we only test the routes between
those embedded nodes. Theoretically, the hyperbolic embedding
is greedy and thus guarantees greedy delivery. However, around
6.13% routing attempts are failed in our simulations. Investigat-
ing into such anti-intuitive results, we realize that the failures are
again due to the limited computational precision. Adjacent nodes
of the constructed spanning tree have equal hyperbolic distances
in Poincaré disk, but their Euclidean distances are decreasing
almost exponentially. More specifically, the deeper layer a pair of
adjacent nodes is from the root of the tree, the closer their
Euclidean distance is in Poincaré disk. After embedding around
10 layers of the spanning tree in Poincaré disk, our computer used
for simulation fails to distinguish two nodes with different

IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 3, JUNE 2014

TABLE I
AVERAGE ROUTING FAILURES OF DIFFERENT SCHEMES ON VARIOUS NETWORK
ToroLoGIEs SHOWN IN FiGs. 5(a), 6(a), 7(a), 8, AND 9

Schemes | Hyperbolic | Harmonic | Ricci ‘ Yamabe
Average routing failure ’ 6.13% | 5.75% ’ 0 1 0
TABLE II

AVERAGE STRETCH FACTORS OF DIFFERENT SCHEMES

Scenario | Hyperbolic | Harmonic | Ricci Yamabe
Topology 1 [Fig. 5(a)] | 1.65606 1.45715 1.83518 | 1.38846
Topology 2 [Fig. 6(a)] | 1.65501 1.46334 1.54808 | 1.39032
Topology 3 [Fig. 7(a)] | 1.64974 1.48278 1.55544 | 1.38717

embedding positions. Note that since all hyperbolic models are
equivalent, any hyperbolic model equally requires extremely
high computational precision for the hyperbolic approach.

Table I summaries the average routing failures of different
schemes on various network topologies shown in Figs. 5(a), 6(a),
7(a), 8, and 9.

C. Stretch Factor

Stretch factor is a key parameter to evaluate the performance of
greedy routing. It is defined as the ratio between the path length in
greedy routing and the shortest path length. We consider all pairs
of nodes (that are greedily routable) in the network and calculate
the average stretch factors given in Table II.

The hyperbolic scheme relies on the shortest path tree rooted at
one node in the network. As a result, two adjacent nodes may
have a long routing path, leading to poor stretch factor. We
observe that Ricci experiences high and unstable stretch factor.
As discussed above, in the first topology [Fig. 5(a)], Ricci
exhibits severe distortions, resulting in a stretch factor as high
as over 1.8. In the second and third topologies, the distortions are
reduced, and thus yielding moderate stretch. The stretch factor
under harmonic embedding is stable and low. But recall that it
pays the price of many routing failures. Our proposed Yamabe
flow-based scheme achieves not only the lowest but also the
stablest stretch factor, always between 1.3 and 1.4 in all of our
experiments.

The size of the hole does not noticeably affect the stretch factor
under Ricci, harmonic, or Yamabe. As a matter of fact, the stretch
factor actually decreases slightly in both Ricci and Yamabe-
based schemes, when the hole enlarges (see Fig. 8).

As another interesting observation, we find Ricci is sensitive to
the position of the hole. For example, consider three positions at
corner, bottom, and center illustrated in Fig. 9. Ricci performs
better when the hole is at the center (achieving a stretch factor of
1.4), while its stretch factor increases to 1.5 when the hole locates
at border or corner. This phenomenon is because Ricci always
maps the largest hole (in this case only one hole) to the center.
When the original position of the hole is far away from the center,
it results in large compression and stretching of the edges around
the hole. On the other hand, Yamabe and Harmonic are not
affected much by the hole’s position.

XIA et al.: GPS-FREE GREEDY ROUTING WITH DELIVERY GUARANTEE AND LOW STRETCH FACTOR 241

0.45 T T T T T T T T

[__IRicci -
[Yamabe

[Harmonic
0.35+ 1

0.3 B

Percent of routes

0.15F

01} .

1 H 1l

[1.0,1.2) [1.2,1.4) [1.4,1.6) [1.6,1.8) [1.8,2.0) [2.0,2.2) [2.2,2.4) >=2.4
Stretch factor

Fig. 10. Stretch factor distribution of Ricci, Yamabe, and harmonic.

Fig. 11. 3-D surface (UTM zone 15 of North American Datum 1983) in an area of
1 km x 1 km, with a height variation of 40 m and a resolution of 5 m.

The stretch factor distribution is illustrated in Fig. 10. This is
obtained in the network shown in Fig. 5(a). We observe similar
statistics in other networks. As can be seen, Ricci results in many
routes with their stretch factors greater than 1.8, while the stretch
factors of Harmonic and Yamabe are nicely distributed at a lower
range.

D. 3-D Surface

To demonstrate our proposed approach on 3-D surfaces, we
adopt a real 3-D surface data set (UTM zone 15 of North
American Datum 1983). It was distributed by “Atlas: The
Louisiana Statewide GIS,” LSU CADGIS Research Laboratory,
Baton Rouge, LA. We choose an area of 1 km x 1 km, with a
height variation of 40 m and a resolution of 5 m, as shown in
Fig. 11. The area includes hills and water ponds. Since the points
of the data set are on a grid structure, we assume that the sensors
are placed at a grid too, where adjacent nodes are 20 m apart. Itis
straightforward to establish a mesh structure and apply the
Yamabe flow-based embedding. Our results show a stretch factor
of 1.36 and 100% delivery between all pairs of nodes.

VI. CONCLUSION

In this paper, we have proposed a distributed Yamabe flow-
based scheme to enable greedy routing in large scale wireless
networks deployed on 2-D and 3-D surfaces. It identifies the

convex hull of each boundary and employs Yamabe flow to
compute flat metric under convex hull boundary condition to
establish virtual coordinates. Such virtual coordinates are used
for greedy routing. Since the proposed embedding algorithm
maps the outer boundary to a convex shape and an interior
concave void to a circle-like convex polygon, it effectively
eliminates local minimum and attains guaranteed delivery. At
the same time, it introduces a small distortion only and conse-
quently achieves a low stretch factor. Our simulations have
shown that its stretch factor is lower than any existing greedy
embedding algorithms. Moreover, the proposed scheme is merely
based on local connectivity and consumes a small constant
storage, thus scaling to arbitrarily large networks.

REFERENCES

[1] 1. Stojmenovic, “Machine-to-machine communications with in-network
data aggregation, processing and actuation for large scale cyber-physical
systems,” IEEE Internet Things J., vol. 1, no. 2, pp. 122—-128, Apr. 2014.

[2] P.Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with guaranteed
delivery in ad hoc wireless networks,” in Proc. 3rd Int. Workshop Discr.
Algorithms Methods Mobile Comput. Commun., 1999, pp. 48-55.

[3] B. Karp and H. Kung, “GPSR: Greedy perimeter stateless routing for
wireless networks,” in Proc. ACM/IEEE Int. Conf. Mobile Comput. Netw.
(MobiComy), 2001, pp. 1-12.

[4] E. Kranakis, H. Singh, and J. Urrutia, “Compass routing on geometric
networks,” in Proc. 11th Can. Conf. Comput. Geom. (CCCG’99), 1999,
pp. 51-54.

[5] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, “Geometric ad-hoc
routing: Theory and practice,” in Proc. 22nd ACM Int. Symp. Principles
Distrib. Comput. (PODC"03), 2003, pp. 63-72.

[6] F. Kuhn, R. Wattenhofer, and A. Zollinger, “Worst-case optimal and
average-case efficient geometric ad-hoc routing,” in Proc. ACM Int. Symp.
Mobile Ad hoc Netw. Comput. (MobiHOC), 2003, pp. 267-278.

[7] B.L.S. Mitra and B. Liskov, “Path vector face routing: Geographic routing
with local face information,” in Proc. IEEE Int. Conf. Netw. Protocols
(ICNP’05), 2005, pp. 147-158.

[8] H. Frey and I. Stojmenovic, “On delivery guarantees of face and combined
greedy-face routing in ad hoc and sensor networks,” in Proc. ACM/IEEE Int.
Conf. Mobile Comput. Netw. (MobiCom), 2006, pp. 390—401.

[9] G. Tan, M. Bertier, and A.-M. Kermarrec, “Visibility-graph-based shortest-
path geographic routing in sensor networks,” in Proc. IEEE Int. Conf.
Comput. Commun. (INFOCOM), 2009, pp. 1719-1727.

[10] S. Funke and N. Milosavljevic, “Guaranteed-delivery geographic routing
under uncertain node locations,” in Proc. IEEE Int. Conf. Comput. Com-
mun. (INFOCOM), 2007, pp. 1244-1252.

[11] C.LiuandJ. Wu, “Efficient geometric routing in three dimensional ad hoc
networks,” in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM),
pp. 2751-2755, 2009.

[12] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica, “Geo-
graphic routing without location information,” in Proc. ACM/IEEE Int.
Conf. Mobile Comput. Netw. (MobiCom), 2003, pp. 96-108.

[13] R. Fonseca, S. Ratnasamy, J. Zhao, C. T. Ee, D. Culler, S. Shenker, and
1. Stoica, “Beacon vector routing: Scalable point-to-point routing in wireless
sensornets,” in Proc. 2nd USENIX/ACM Symp. Netw. Syst. Des. Implement.
(NSDI’05), 2005, pp. 329-342.

[14] Y. Zhao, B. Li, Q. Zhang, Y. Chen, and W. Zhu, “Efficient hop ID based
routing for sparse ad hoc networks,” in Proc. IEEE Int. Conf. Netw.
Protocols (ICNP’05), 2005, pp. 179-190.

[15] Q. Cao and T. Abdelzaher, “Scalable logical coordinates framework for
routing in wireless sensor networks,” ACM Trans. Sensor Netw., vol. 2,
no. 4, pp. 557-593, 2006.

[16] A. Caruso, S. Chessa, S. De, and A. Urpi, “GPS free coordinate assignment
and routing in wireless sensor networks,” in Proc. IEEE Int. Conf. Comput.
Commun. (INFOCOM), 2005, pp. 150-160.

[17] S.Tao, A. Ananda, and M. C. Chan, “Greedy hop distance routing using tree
recovery on wireless ad hoc and sensor networks,” in Proc. IEEE Int. Conf.
Commun. (ICC’08), 2008, pp. 2712-2716.

[18] M. J. Tsai, H. Y. Yang, and W. Q. Huang, “Axis based virtual coordinate
assignment protocol and delivery guaranteed routing protocol in wireless
sensor networks,” in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM),
2007, pp. 2234-2242.

242

[19] K. Liu and N. Abu-Ghazaleh, “Stateless and guaranteed geometric routing
on virtual coordinate systems,” in Proc. 5th IEEE Int. Conf. Mobile Ad Hoc
Sensor Syst. (MASS’08), 2008, pp. 340-346.

[20] Q. Fang,J. Gao, L. J. Guibas, V. Silva, and L. Zhang, “GLIDER: Gradient
landmark-based distributed routing for sensor networks,” in Proc. IEEE Int.
Conf. Comput. Commun. (INFOCOM), 2005, pp. 339-350.

[21] G. Tan, M. Bertier, and A.-M. Kermarrec, “Convex partition of sensor
networks and its use in virtual coordinate geographic routing,” in Proc.
IEEE Int. Conf. Comput. Commun. (INFOCOM), 2009, pp. 1746-1754.

[22] C. Papadimitriou and D. Ratajczak, “On a conjecture related to geometric
routing,” Theor. Comput. Sci., vol. 344, no. 1, pp. 3—14, 2005.

[23] P. Angelini, F. Frati, and L. Grilli, “An algorithm to construct greedy
drawings of triangulations,” in Proc. 16th Int. Symp. Graph Drawing, 2008,
pp. 26-37.

[24] T. Leighton and A. Moitra, “Some results on greedy embeddings in metric
spaces,” in Proc. 49th IEEE Annu. Symp. Found. Comput. Sci., 2008,
pp. 337-346.

[25] R. Kleinberg, “Geographic routing using hyperbolic space,” in Proc. [EEE
Int. Conf. Comput. Commun. (INFOCOM), 2007, pp. 1902—-1909.

[26] A. Cvetkovski and M. Crovella, “Hyperbolic embedding and routing for
dynamic graphs,” in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM,),
2009, pp. 1647-1655.

[27] R. Sarkar, X. Yin, J. Gao, F. Luo, and X. D. Gu, “Greedy routing with
guaranteed delivery using Ricci flows,” in Proc. 8th Int. Symp. Inf. Process.
Sensor Netw. (IPSN’09), Apr. 2009, pp. 121-132.

[28] R.Flury, S. Pemmaraju, and R. Wattenhofer, “Greedy routing with bounded
stretch,” in Proc. IEEE Int. Conf. Comput. Commun, (INFOCOM), 2009,
pp. 1737-1745.

[29] Y.-L. Yang, J. Kim, F. Luo, S.-M. Hu, and X. Gu, “Optimal surface
parameterization using inverse curvature map,” /EEE Trans. Vis. Comput.
Graph., vol. 14, no. 5, pp. 1054-1066, Sep./Oct. 2008.

[30] B. Springborn, P. Schroder, and U. Pinkall, “Conformal equivalence of
triangle meshes,” in ACM SIGGRAPH, 2008, pp. 1-11.

[31] S.Funke and N. Milosavljevi, “How much geometry hides in connectivity?
—Part II,” in Proc. 18th Annu. ACM-SIAM Symp. Discr. Algorithms
(SODA’07), 2007, pp. 958-967.

[32] H.Yamabe, “The Yamabe problem,” Osaka Math.J.,vol.12,no. 1,pp.21-37,
1960.

[33] J.M. Leeand T. H. Parker, “The Yamabe problem,” Bull. Amer. Math. Soc.,
vol. 17, no. 1, pp. 37-91, 1987.

[34] F. Luo, “Combinatorial Yamabe flow on surfaces,” Commun. Contemp.
Math., vol. 6, no. 5, pp. 765-780, 2004.

[35] B. Chow and F. Luo, “Combinatorial Ricci flows on surfaces,” J. Differ.
Geom., vol. 63, no. 1, pp. 97-129, 2003.

[36] M. Jin, J. Kim, F. Luo, and X. Gu, “Discrete surface Ricci flow,” IEEE
Trans. Vis. Comput. Graph., vol. 14,n0. 5, pp. 1030-1043, Sep./Oct. 2008.

[37] M. Berg, O. Cheong, M. Kreveld, and M. Overmars, Computational
Geometry: Algorithms and Applications, 3rd ed. New York, NY, USA:
Springer-Verlag, 2008.

IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 3, JUNE 2014

Su Xia received the B.S. and M.S. degrees in radio
engineering and computer science from Southeast
University, Nanjing, China, in 1998 and 2001, respec-
tively, and the Ph.D. degree in computer science from
the Center for Advanced Computer Studies (CACS),
University of Louisiana at Lafayette, LA, USA, in 2012.
Currently, he is working with the Internet of Things
(IoT) Group, Cisco System Inc., Milpitas, CA, USA. His
research interest focused on geometric routing in wireless
sensor networks, especially in 3-D sensor networks.

Hongyi Wu received the B.S. degree in scientific
instruments from Zhejiang University, Hangzhou,
China, in 1996, and the M.S. degree in electrical
engineering and Ph.D. degree in computer science
from the State University of New York (SUNY) at
Buffalo, New York, NY, USA, in 2000 and 2002,
respectively.

Since 2002, he has been with the Center for
Advanced Computer Studies (CACS), University of
Louisiana at Lafayette (UL Lafayette), Lafayette, LA,
USA, where he is now a Professor and holds the Alfred
and Helen Lamson Endowed Professorship in Computer Science. His research
includes delay-tolerant networks, radio frequency identification (RFID) systems,
wireless sensor networks, and integrated heterogeneous wireless systems.

Dr. Wu was the recipient of the NSF CAREER Award in 2004 and the UL
Lafayette Distinguished Professor Award in 2011.

Miao Jin received the B.S. degree from the Beijing
University of Posts and Telecommunication, Beijing,
China, in 2000, and the M.S. and Ph.D. degrees in
computer science from the State University of New
York at Stony Brook, New York, NY, USA, in 2008
and 2006, respectively.

She has been an Assistant Professor with the
Center for Advanced Computer Studies, University
of Louisiana, Lafayette, LA, USA, since Fall 2008.
Her research interests include computational geomet-
ric and topological algorithms with applications in
wireless sensor networks, computer graphics, computer vision, geometric model-
ing, and medical imaging. Her research results have been used as cover images of
mathematics books and licensed by Siemens Healthcare Sector of Germany for
virtual colonoscopy.

Dr. Jin was the recipient of the NSF CAREER Award in 2011.

