
1

Localization of Networks on 3D Terrain Surfaces
Xuan Li, Buri Ban, Yang Yang, and Miao Jin

Abstract—The majority of current research on sensor network localization focuses on wireless sensor networks deployed on two
dimensional (2D) plane or in three dimensional (3D) space, very few on the 3D terrain surface. However, many real-world applications
require large-scale sensor networks deployed on the surface of a complex 3D terrain. Compared with planar and 3D network
localization, terrain surface network localization generates unique and fundamental hardness.
We explore 3D surface network localization with terrain models. A digital terrain model (DTM), available to the public with a variable
resolution of up to one meter, is a 3D representation of a terrain’s surface. It is commonly built using remote sensing technology or from
land surveying and can be easily converted to a triangular mesh. Given a sensor network deployed on the surface of a 3D terrain with
one-hop distance information available, we can extract a triangular mesh from the connectivity graph of the network. The constraint that
the sensors must be on the known 3D terrain’s surface ensures that the triangular meshes of the network and the terrain’s surface
overlap and approximate the same geometric shape.
The basic idea of the localization algorithms is to map the two triangular meshes extracted from the connectivity graph of a sensor
network and the DTM of its deployed terrain surface to the plane. The two meshes mapped to the plane can be easily aligned if the
location information of anchor nodes is available. We introduce a fully distributed algorithm to construct a well-aligned mapping
between the two triangular meshes in the plane based on anchor nodes information. However, accidents may happen on anchor
nodes. We then introduce an anchor-free algorithm to extract feature points with geometric properties intrinsic to surface distances and
independent of the embedding of the two meshes in 3D. The matched feature points induce transformations to align the two meshes in
the plane. With the aligned triangular meshes of a network and its deployed terrain surface, each sensor node of the network can easily
locate reference grid points from the DTM of the terrain to calculate its own geographic location. We carry out extensive simulations
under various scenarios to evaluate the overall performance of the proposed algorithms with different factors such as the one-hop
distance measurement error, the resolution of a DTM, and the performance of the algorithm in the situation of connectivity only.

Index Terms—Localization, Sensor network, 3D Terrain surface, Digital Terrain Model
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1 INTRODUCTION

A variety of applications in wireless sensor networks require
geographic locations of sensor nodes. Instead of equipping each
sensor node with high-cost localization hardware such as a GPS
receiver, different localization algorithms and protocols have been
proposed that allow the sensor nodes to derive their own locations.

In real-world applications, many large-scale sensor networks
are deployed over complex terrains, such as the volcano monitor-
ing project [1] and ZebraNet [2]. Localization of a network de-
ployed over a 3D surface, called surface network localization [3],
is much more challenging than the well-studied localization of a
network deployed in a 2D plane or 3D volume space. The reason
is that distance between two remote sensors deployed over a 3D
surface can only be approximated by the length of the shortest
path along the surface due to limited radio range. Such distance
is called surface distance, different from 3D Euclidean distance
of the two nodes. Zhao et al. in [3] proved that a localization
algorithm doesn’t exist for a network deployed over a 3D surface
with surface distance information only, even if we assume accurate
range distance measurement available. An intuitive example given
in [3] is that a piece of paper can be rolled to different shapes,
but the distance between any pair of points on the paper is well
preserved. With pure surface distance information, we can never
figure out the current shape of a paper. We can also learn the
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hardness of localization of a network deployed over a 3D surface
from differential geometry. There exists no unique embedding
in 3D within rigid motions for a general surface with metric
(equivalent to surface distance) only [4]. The only exception is
proved by Alexandrov that any simplicial complex homeomorphic
to a sphere with strictly non-negative Gaussian curvature at each
vertex can be isometrically embedded uniquely in 3D as a convex
polyhedron [5]. It is rare to find a terrain surface with a perfect
convex shape, so the Alexandrov theorem couldn’t help the design
of algorithms for surface network localization.

Zhao et al. in [3] assume a sensor node can measure not only
distances between its neighboring nodes but also its own height
information. They require that a sensor network is deployed on a
surface with single-value property - any two points on the surface
have different projections on the plane. Such property ensures that
a network deployed over a 3D surface can be projected to 2D plane
by removing the z coordinate without ambiguity. Any existing 2D
network localization method can then be applied to the projected
one in the plane. The localized x and y coordinates in the plane,
and the height information form a complete set of geographic
coordinates of each sensor node in 3D.

Later, a cut-and-sew algorithm is proposed in [6] to generalize
the localization algorithm introduced in [3] from single-value
surfaces to general ones. Authors in [6] take a divide-and-conquer
approach to partition a general 3D surface network into a minimal
set of single-value patches. The algorithm localizes each single-
value patch individually, and then merges all of them into a unified
coordinates system.

However, integrating height measurement into every sensor of
a network is not always practical and affordable, especially for
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Fig. 1. Anchor-based localization: (a) A triangular mesh of a terrain surface in 3D. (b) The triangular mesh of the terrain surface is conformally
mapped to the plane. (c) A triangular mesh is extracted from the connectivity graph of a network deployed over the terrain surface with three
randomly deployed anchor nodes marked with red. (d) The triangular mesh of the network is conformally mapped to the plane. (e) The mapped
triangular mesh of the network is well-aligned with the one of terrain surface in the plane based on the location information of anchor nodes.

a large-scale sensor network. The motivation of this work is to
explore the possibility of localization of a network deployed over
surfaces with one-hop distance information only or even just mere
connectivity, if we have the information of the deployed terrain
surface.

1.1 Our Approaches
A 3D representation of the bare earth (topographic) model of a
terrain’s surface is called a digital terrain model (DTM). DTMs
are commonly built using remote sensing technology or from
land surveying. They are available to the public with a variable
resolution of up to one meter. For example, the Shuttle Radar
Topography Mission (SRTM) [7] is a high-resolution digital to-
pographic database that provides DTM data for North and South
America with high accuracy and dense coverage. Note that a DTM
does not capture the natural features such as trees or forests and
built ones such as buildings on the Earths surface.

A DTM is represented as a grid of squares, where the lon-
gitude, latitude, and altitude (i.e., 3D coordinates) of all grid
points are known. It is straightforward to convert a grid into a
triangulation, e.g., by simply connecting a diagonal of each square.
Therefore a triangular mesh of the DTM of a terrain surface can
be available before we deploy a sensor network on it.

On the other hand, to provide sufficient sensing coverage
and cope with nodes’ failure, most sensor networks designed for
real applications require sufficient sensor density, especially for
those deployed on terrain regions. Such sensor density allows a
simple distributed algorithm to extract a fine triangular mesh based
on the network connectivity graph and range distance. Vertices
of the triangular mesh are the set of sensor nodes. An edge
between two neighboring vertices indicates the communication
link between the two sensors. The constraint that sensors must be
on a known 3D terrain surface ensures that the triangular mesh
of the terrain surface overlaps with the one extracted from the
network connectivity graph. The question is how the latter can be
localized in reference to the former.

The proposed approach is based on surface conformal struc-
ture. The Conformal structure is an intrinsic geometric structure
of surfaces, determined by surface distance. The Conformal struc-
ture can tolerate a small local deformation of a surface, so the
conformal structure of a surface is consistent even if the surface
is approximated by different triangulations with various densities.
Surfaces sharing the same conformal structure exist conformal
mapping between them. A conformal mapping is a one-to-one and
continuous mapping which preserves angles and local shape.

The triangular mesh of a terrain surface and the one extracted
from the connectivity graph of a network deployed over the terrain

approximate the same geometric shape. Theoretically, the two
triangular meshes share the same conformal structure. With a well-
aligned conformal mapping constructed between them based on
the positions of anchor nodes, a sensor node of the network can
easily locate reference grid points of the DTM to calculate its own
location.

Fig. 1 illustrates the basic idea of the anchor-based localization
algorithm. Fig. 1 (a) shows a triangular mesh converted from the
DTM of a terrain surface. Fig. 1 (c) shows a triangular mesh
extracted from the connectivity graph of a network deployed over
the terrain surface. We first compute two conformal mappings,
denoted as f1 and f2 respectively, to map the two triangular meshes
to plane as shown in Figs. 1 (b) and (d), respectively. Such one-to-
one and continuous mapping exists based on the Riemann theorem
that a topological disk surface can be mapped to plane through
a conformal mapping [8]. However, the two mapped triangular
meshes are not aligned on the plane. We deploy three anchor
nodes equipped with GPS devices with the network. Figs. 1 (c)
and (d) show the three anchor nodes marked with red. Based on
their positions, We construct another conformal mapping denoted
as f3, to align the mapped network triangular mesh with the
terrain one on the plane as shown in Fig. 1 (e). Combining the
three mappings, f−1

1 ◦ f3 ◦ f2, induces a well-aligned conformal
mapping between the two triangular meshes in 3D. Then a sensor
node of the network, i.e., a vertex of the network triangular mesh,
simply locates its nearest grid points, i.e., vertices of the network
triangular mesh, to calculate its own geographic location.

However, a localization algorithm fully depending on anchor
nodes is not reliable. Accidents happen. For example, anchor
nodes are dropped to water regions by airplane. The battery of
anchor nodes run out. The GPS devices of anchor nodes are
broken. Furthermore, the distribution of anchor nodes in a network
affects the localization accuracy as we will discuss in Sec. 5.1.1.
In an extreme case, all anchor nodes are dropped to the same spot.
The anchor-based localization algorithm fails since the alignment
of the triangular meshes of network and terrain surface on the
plane up to rotation. Considering all the factors, we propose an
anchor-free localization algorithm for networks deployed on a 3D
terrain surface with DTM available.

Without the location information of anchor nodes, we explore
geometric properties to guide the alignment of the two mapped
triangular meshes in the plane, i.e., the triangular mesh of a terrain
surface and the one extracted from the connectivity graph of a
network deployed over the terrain. These geometric properties
should be intrinsic to surface distances and independent of the
embedding of a surface in 3D. Specifically, conformal factor
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Fig. 2. Anchor-free localization: (a) Feature points marked with red extracted from a triangular mesh of a terrain surface. (b) The triangular mesh of
the terrain surface is conformally mapped to the plane. (c) Feature points marked with red extracted from a triangular mesh of a network deployed
over the terrain surface. (d) The triangular mesh of the network is conformally mapped to the plane. (e) The mapped triangular mesh of the network
is well-aligned with the one of terrain surface in the plane based on the positions of matched feature points. Note that we only show the matched
feature points.

and Gaussian curvature are two such geometric properties. The
conformal structure is an intrinsic structure of surfaces. Its induced
conformal map preserving local shapes and introducing locally
only a scaling, i.e., area distortion. The area distortion of a
conformal map is measured by the conformal factor. Gaussian
curvature, determining the local shape of a surface, depends only
on the local surface distance instead of the embedding according
to Gauss’s Theorema Egregium.

With surface local distance information, we can compute both
the conformal factor and Gaussian curvature at every vertex of
the two meshes. The combination of the two properties reveals
surface intrinsic geometry information both globally and locally.
We then extract feature points of the two meshes corresponding
to the ridge, peak, or saddle of mountains based on conformal
factors and Gaussian curvatures. With the matched feature points,
we compute a set of transformations to align the two meshes in
the plane. Each sensor node of the network can then easily locate
reference grid points of the DTM to calculate its own location at
3D.

Fig. 2 illustrates the basic idea of the anchor-free localization
algorithm. Fig. 2 (a) shows a set of feature points marked with
red extracted from a triangular mesh of a terrain surface. Fig. 2
(c) shows a set of feature points marked with red extracted from
a triangular mesh of a network deployed over the terrain surface.
Similarly, we compute two conformal mappings to map the two
triangular meshes to plane as shown in Figs. 2 (b) and (d), respec-
tively. Based on the mapped positions of matched feature points,
we construct mappings to align the mapped network triangular
mesh with the terrain one in the plane as shown in Fig. 2 (e). Note
that we only show the matched feature points in Fig. 2.

The rest of this paper is organized as follows: Sec. 2 introduces
briefly the background knowledge necessary to the proposed
surface network localization algorithms. Sec. 3 provides each step
of both the anchor-based and anchor-free algorithms in detail
with discussions in Sec. 4. Sec. 5 gives simulation results. Sec. 6
concludes the paper.

2 THEORETICAL BACKGROUND

Before giving the details of the proposed localization algorithms in
Sec. 3, we introduce briefly the background knowledge necessary
to the algorithms. Specifically, we introduce the concepts of
Gaussian curvature in Sec. 2.1, conformal map and conformal
factor in Sec. 2. In Sec. 2.3, we introduce Möbius transformation,
a special conformal map from a complex plane to itself. We then
introduce Barycentric coordinates, a coordinate system we need
later for sensor nodes to interpolate locations in Sec. 2.4.

2.1 Gaussian Curvature
The curvature of a curve measures how much the curve is bent.
To define the curvature of a surface at a point p, we can slice
the surface by a plane normal to the surface at p. By rotating the
plane, the curvature of the slice-curve at p gives the curvature
of the surface at p in every direction. The largest and smallest
curvatures are called principal curvatures. They occur in orthog-
onal directions. The product of principal curvatures is called the
Gaussian curvature. For a unit sphere, both principal curvatures
at every point are 1 and hence the Gaussian curvatures are 1
everywhere. For a unit cylinder, the principal curvatures are 1
and 0 and hence the Gaussian curvatures are 0 everywhere. While
for a hyperbolic paraboloid, the principal curvatures are 1 and −1,
and the Gaussian curvatures are−1 everywhere. Gausss Theorema
Egregium says that Gaussian curvature is intrinsic; independent of
the embedding of the surface. For example, we can roll up a piece
of paper into a cylinder, the principal curvatures change from (0,0)
to (0,1) at every point of the paper, but the Gaussian curvatures
remains 0 everywhere [9].

There is an intuitive way to measure the Gaussian curvature
of a surface. We can estimate the Gaussian curvature of a point p
on the surface by looking at a geodesic circle with an infinitesimal
radius r centered at p. If the Gaussian curvature is 0, the circumfer-
ence of the circle is 2πr. If the Gaussian curvature is positive as on
the sphere, the circumference is smaller. If the Gaussian curvature
is negative as on the hyperbolic paraboloid, the circumference is
greater.

In discrete setting, we denote M = (V,E,F) a connected
triangular mesh embedded in R3, consisting of vertices (V ), edges
(E), and triangle faces (F). Specifically, we denote vi ∈V a vertex
with ID i; ei j ∈ E an edge with two ending vertices vi and v j;
fi jk ∈ F a triangle face with vertices vi, v j, and vk. We can estimate
the Gaussian curvature Ki at Vertex vi ∈ M in a similar way to
continuous setting:

Ki =

{
2π−∑ fi jk∈F θ

jk
i , vi 6∈ ∂M

π−∑ fi jk∈F θ
jk
i , vi ∈ ∂M

(1)

where θ
jk
i represents the corner angle attached to vertex vi in the

face fi jk, and ∂M represents the boundary of the mesh. The discrete
Gaussian curvatures are determined by the discrete metrics only.

2.2 Conformal Map and Conformal Factor
A conformal map is a one-to-one and continuous map. It preserves
angles and local shapes of a surface and is complex differentiable
in a neighborhood of every point in its domain.
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Denote S a continuous surface embedded in R3. g is a Rie-
mannian metric induced from the Euclidean metric of S. Suppose
u : S→ R is a scalar function defined on S. Then g = e2ug is also
a Riemannian metric on S and is conformal to the original one.
It can be easily proved that the new metric preserves angles and
locally only differs a scaling with the original one.

For a discrete surface mesh M, its edge lengths are sufficient
to define its Riemannian metric:

l : E→ R+,

as long as, for each face fi jk, the edge lengths satisfy the triangle
inequality: li j + l jk > lki.

We apply discrete surface Ricci flow introduced in [10] to
compute a flat metric, a new set of edge lengths conformal to the
original one and isometrically embedding M to plane. Discrete
surface Ricci flow continuously deforms the edge lengths of
M according to the difference between the current and target
Gaussian curvatures in a heat-like diffusion process, and converges
when the difference is less than a threshold. The convergence of
discrete surface Ricci flow is proved in [11]. The new set of edge
lengths satisfies the target Gaussian curvatures and is conformal
to the original one.

Conformal map preserves the local shape of a surface up to
a scaling factor. Conformal factor measures the scaling factor of
area distortion. We can estimate the conformal factor at vertex vi

by the ratio of the triangle areas in 3D and mapped in 2D plane of
all fi jk incident to vi. Denote Area3D| fi jk| the area of triangle fi jk

in 3D, and Area2D| fi jk| the area of triangle fi jk in plane.

λ(vi) =
∑ fi jk∈F Area3D| fi jk|
∑ fi jk∈F Area2D| fi jk|

. (2)

In practice, we compute 1
λ

. Then at the extreme points, the inverse
of conformal factor is very close to zero.

The following Lemma shows that the conformal factor in-
creases exponentially with the height of a long and narrow region
of a surface, such as the ridge of a terrain surface. We provide the
proof in the Appendix.

Lemma 1. The conformal factor of a long tube shape increases
exponentially with the height of the tube, independent of the
individual conformal map.

2.3 Möbius Transformation
A complex number z = a+bi defined on a complex plane can be
simply considered as a point p(a,b) on plane, where a and b are x
and y coordinates of Point p respectively.

Definition 1 (Möbius Transformation). A Möbius transformation
is a conformal map between complex plane to itself, represented
as:

f (z) =
az+b
cz+d

, (3)

where a,b,c,d are complex numbers, satisfying ad−bc = 1.

If a Möbius transformation maps four distinct complex num-
bers z1, z2, z3, z4 to four distinct complex numbers w1, w2, w3, w4

respectively, i.e., four distinct planar points are mapped to another
four distinct planar points, the Möbius transformation keeps their
cross-ratio invariant, represented as:

(z1− z3)(z2− z4)

(z2− z3)(z1− z4)
=

(w1−w3)(w2−w4)

(w2−w3)(w1−w4)
. (4)

Note that all operations in Eqn. 3 and 4 including addition,
subtraction, multiplication, and division are all defined on complex
numbers.

2.4 Barycentric coordinates
Barycentric coordinates provide a coordinate system in which the
location of a point inside a simplex (a triangle, tetrahedron, etc.)
can be specified as a barycenter of masses placed at its vertices.
The location of the point can also extend outside the simplex,
where one or more coordinates become negative [12].

Barycentric coordinates provide a convenient way to interpo-
late a function on triangles as long as the function’s value is known
at vertices. Let’s consider a function f defined on a triangle fi jk

with f (vi), f (v j), and f (vk) known. Denote Area| fi jk| the area of
triangle fi jk. The function value of any point p located inside this
triangle can be written as a weighted sum of the function value at
the three vertices:

f (p) = ti f (vi)+ t j f (v j)+ tk f (vk), (5)

where

ti =
Area| fp jk|
Area| fi jk|

, t j =
Area| fpki|
Area| fi jk|

, tk =
Area| fpi j|
Area| fi jk|

.

It is obvious that ti, t j, and tk are subject to the constraint ti + t j +
tk = 1. ti, t j, and tk are called Barycentric Coordinates of Point p
in fi jk.

Note that the function value at each point is defined to be the
location information in our localization algorithms.

3 SURFACE NETWORK LOCALIZATION

Given a wireless sensor network deployed on a terrain surface,
we apply the algorithm proposed in [13] to extract a refined
triangular mesh from the connectivity graph of the network based
on locally measured distances between nodes within one-hop
communication range. Vertices of the triangular mesh are the set of
sensor nodes. An edge between two neighboring vertices indicates
the communication link between the two sensors. Denote M1 the
triangular mesh converted from the DTM of a terrain surface and
M2 the triangular mesh extracted from the connectivity graph of a
network deployed on the terrain surface. We propose three-step lo-
calization algorithms. We explain each step in detail, specifically,
conformal mapping of M1 and M2 to plane in Sec. 3.1, anchor-
based alignment of M1 and M2 on plane in Sec. 3.2, anchor-free
alignment of M1 and M2 on plane in Sec. 3.3, and localization
of M2 in Sec. 3.4. The algorithms are fully distributed and have
no constraint on communication models. Time complexity and
communication cost are analyzed in Sec. 3.5.

3.1 Conformal Map to Plane
Given a triangular mesh M = (V,E,F) embedded in R3, we apply
discrete surface Ricci flow [10] to compute the conformal mapping
of M to plane.

Considering that the boundary shape of a large-scale sensor
network or a terrain surface can be complicated and concave,
the mapping result should be independent of the boundary shape.
Therefore we apply discrete surface Ricci flow with the following
free-boundary condition: we assign the target Gaussian curvatures
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of all non-boundary vertices to zero, and discrete surface Ricci
flow deforms only the circle radii of non-boundary vertices.
Discrete surface Ricci flow converges when the target Gaussian
curvatures of non-boundary vertices equal zero. i.e., flat. Note
that boundary vertices are ending vertices of boundary edges.
Boundary edges of M can be easily detected since they are shared
by only one triangle face. Denote the mapping f : M→ D ∈ R2.
The mapping result is stored at each vi as a complex number (i.e.,
z = x+ yi), and (x,y) serves as the planar coordinates of vi.

Algorithm 1 provides the detailed steps of computing confor-
mal map using discrete surface Ricci flow under a free-boundary
condition. Algorithm 1 is fully distributed. Each node only needs
to exchange information with its one-range neighbors. Note that
we can pre-compute the conformal mapping of M1 under a free-
boundary condition to plane and then pre-load the mapping result
to sensor nodes before their deployment.

3.2 Anchor-based Alignment

Denote f1 and f2 the mappings that conformally map M1 and M2

to planar regions D1 and D2, respectively. We need to construct
another mapping that aligns D2 with D1 on plane.

Eqn. 4 provides a natural alignment of two planar regions
based on three pairs of anchor points. Denote f a Möbius
transformation that maps the planar region D1 with three distinct
points z1,z2,z3 to the planar region D2 with three distinct points
w1,w2,w3. Particularly, z1,z2,z3 are mapped to w1,w2,w3, respec-
tively. We use complex numbers to represent points on plane.
Assume we use zi j to denote zi− z j, and wi j to denote wi−w j,
f can be represented in a closed form from Eqn. 4,

f (z) =
w2(z− z1)z23w12− (z− z2)z13w23w1

(z− z1)z23w12− (z− z2)z13w23
. (6)

Note that all the operations in Eqn. 6 are defined on complex
numbers.

Assume three anchor nodes - sensor nodes equipped with GPS
- are randomly deployed with other sensors. Each anchor node is
assigned a set of planar coordinates, e.g., mapped to plane by f2.
Denote the planar point of an anchor node mapped by f2 with a
complex numbers zi(1≤ i≤ 3).

Each anchor node then checks its stored M1 or simply sends
a request with its known geographic position to a server to locate
three nearest grid points of the DTM, denoted as vi,v j, and vk.
Since M1 and M2 are not perfectly overlap in general, the anchor
node does not necessarily locate inside fi jk ∈ M1. We compute
the projection point of the anchor node to fi jk. The projection
point is the closest point of M1 to the anchor node. Since f1 is a
continuous and one-to-one mapping, we can compute the planar
coordinates of the projection point mapped by f1 based on the
planar coordinates of vi,v j, and vk. Specifically, denote (t1, t2, t3)
the Barycentric Coordinates of the projection point on fi jk, f1(vi),
f1(v j), and f1(vk) the planar coordinates of vi, v j, and vk mapped
by f1, specifically, the planar coordinates of the projection point
mapped by f1 is: t1 f1(vi)+ t2 f1(v j)+ t3 f1(vk). Denote the planar
coordinates of the projection point mapped by f1 with a complex
number wi( 1≤ i≤ 3).

Each anchor node conducts flooding to send out its zi and wi

to the whole network. When receiving the three pairs of planar
coordinates, a non-anchor node vi ∈ M2 simply plugs them and
its planar coordinates by f2 into Eqn. 6. The computed one is the
aligned planar coordinates of the sensor node.

Algorithm 1 Algorithm of Conformal Map under Free-boundary
Condition
Input: Triangular mesh M
Output: Planar coordinates of vi ∈V

1: for all vi ∈V do
2: ui = 0. {initialize a scale function defined at vi}
3: end for
4: non-stop = true
5: while non-stop do
6: for all ei j ∈ E do
7: Calculate edge length li j

li j = eui ∗ eu j ∗di j

{di j is the measured distance between vi and v j}
8: end for
9: for all vi ∈V do

10: for all θ
jk
i | fi jk ∈ F do

11: Compute corner angle θ
jk
i

θ
jk
i = cos−1 l2

ki + l2
i j− l2

jk

2l2
kil

2
i j

.

{Inverse cos law}
12: end for
13: Compute Gaussian curvature Ki at vi (Eqn. 1)
14: if vi 6∈ ∂M then
15: Update ui: ui = ui−δKi

{vi non-boundary vertex}
{ δ is the step length set to 0.05 in our simulations}

16: end if
17: end for
18: Kmax = 0
19: for all vi 6∈ ∂M do
20: if |Ki|> Kmax then
21: Kmax = Ki

22: end if
23: end for
24: if Kmax < ε then
25: non-stop = false
26: end if
27: end while
28: v0 marks itself and sets its planar coordinates p2D

0 = (0,0)
{v0 can be a random vertex or one with the smallest node ID}

29: v0 marks one of its direct neighbors e.g., v1, and
sets p2D

1 = (0, l01)
30: for all vi ∈V do
31: if vi not marked then
32: for all θ

jk
i | fi jk ∈ F do

33: if both v j and vk marked then
34: Compute the intersection points of two circles cen-

tered at p2D
j and p2D

k with radii li j and lik, respec-
tively

35: p2D
i is set as one intersection point s.t. p2D

i , p2D
j , and

p2D
k follow the right-hand rule

36: end if
37: end for
38: end if
39: end for
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3.3 Anchor-Free Alignment
The anchor-free alignment algorithm extracts feature points of
the triangular meshes of the network and the terrain surface in
Sec. 3.3.1, matching the two sets of feature points in Sec. 3.3.2,
aligning the mapped network mesh to the terrain one in the plane
based on the matched feature points in Sec. 3.3.3.

3.3.1 Feature Points Extraction
For both the network and terrain meshes, we compute the con-
formal factor and Gaussian curvature at each vertex based on
Eqns. 1 and 2, respectively. Considering that a triangular mesh
with noise may affect the approximation accuracy of discrete
Gaussian curvature, we modify Eqn. 1 to compute Ki at each vi by
averaging Gaussian curvatures within one-hop region of vi:

K̄i =
Ki +∑

m
j=1 K j

1+m
(7)

where m is the number of one-hop neighbors of Vertex vi.
We then select feature points based on the conformal factor and

discrete Gaussian curvature at each vertex and classify them into
three groups. Specifically, Group I are the feature points with high
conformal factors and the highest positive Gaussian curvatures.
Vertices belonging to group I lie on the ridge or peak of a terrain.
Group II are the feature points with high conformal factors and
zero Gaussian curvatures. Vertices in group II distribute along
the ridge of a mountain. Group III are feature points with high
conformal factors and the lowest negative Gaussian curvatures.
Vertices in group III are saddle points between two neighboring
mountains. Vertexes with the same group ID and connecting with
each other form a cluster. To reduce the computational complexity
of later feature points match, our algorithm samples vertices within
a cluster. Algorithm 2 introduces the details to extract feature
points from the network and terrain meshes.

3.3.2 Feature Points Matching
We modify the point pattern matching method with fuzzy re-
laxation in [14] to match feature points in the same group. We
represent feature points extracted from the network and terrain
meshes as AK = {a1, ...,an} and BK = {b1, ...,bm}, respectively
where K = {I, II, III}. Note that ai in group K may correspond to
several b j with the same group ID, or not any b j.

A probability function pi j is defined to represent the probabil-
ity that ai matches b j.

A compatibility function c(ai,b j,ah,bk) is defined to measure
how much the position of ah relative to ai differs from the
position of bk relative to b j. Specifically, the compatibility function
c(ai,b j,ah,bk) is defined as:

c(ai,b j,ah,bk) =
1

1+δ2 , (8)

where
δ =

d jk−α∗dih

d jk
.

The distance function d is measured by the shortest surface
distance, i.e., the sum of edge lengths, between two feature points
on a triangular surface. Notice that α is a scaling factor defined
as the ratio of the average distances of feature points in DTM and
feature points in a network model. We require that i 6= h and j 6= k.

The relaxation formula at the rth iteration is defined as:

p(r+1)
i j =

1
n

n

∑
h=1

[
m

max
k=1

c(ai,b j,ah,bk)p(r)hk

]
. (9)

Algorithm 2 Algorithm to Extract Feature Points

Input: Triangular mesh M, vi ∈V with p3D
i and p2D

i
Output: Feature points and their group and cluster IDs

1: for all vi ∈V do
2: Calculate the conformal factor (Eqn. 2)
3: Calculate the Gaussian curvature (Eqn. 7)
4: end for
5: Sort vertices by conformal factors in descending order
6: Denote λ+ the set of vertices ranked in top 5% of the list
7: Sort vertices by Gaussian curvatures in descending order
8: Denote K+ the set of vertices with positive Gaussian curva-

tures and ranked in top 5% of the list
9: Denote K0 the set of vertices with Gaussian curvatures less

than ε

10: Denote K− the set of vertices with negative Gaussian curva-
tures and ranked in bottom 5% of the list

11: λ+∩K+: vertices in group I
12: λ+∩K0: vertices in group II
13: λ+∩K−: vertices in group III
14: Vertexes with same group ID and connecting with each other

form a cluster
15: for Each cluster do
16: if Size ≥ 5 then
17: Sort vertexes by conformal factors in descending order
18: Insert vertices ranked in top 20% into the list of feature

points.
19: Update λmin

{λmin stores the smallest conformal factor in the list of
feature points}

20: end if
21: end for
22: for Each cluster do
23: if Size < 5 then
24: Pick vi with the highest conformal factor
25: if λ(vi)> λmin then
26: Insert vi into the list of feature points.
27: end if
28: end if
29: end for
30: return A list of feature points with each feature point

associated with group and cluster IDs.

The initial value of p(0)i j is set to 1. When pi j convergences, the
algorithm returns the probability of Ai matches B j.

Algorithm 3 gives the steps to find the matched feature points.
When the algorithm convergences, for feature points in each
cluster of the network mesh, we choose one with the largest
probability matched to the terrain one. If two feature points
in different clusters of the network mesh are matched to the
same cluster in the terrain one, we select the one with a larger
probability. We then sort the matched pairs of feature points based
on the probability and choose the top pairs for later alignment.

3.3.3 Alignment

With the matched feature points denoted as A = {a1, ...,an} and
B= {b1, ...,bn} of the network and terrain meshes, respectively, we
need to find a translation vector denoted as T and a rotation matrix
denoted as R to well align them in plane. Formally speaking, we
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Algorithm 3 Algorithm to Match Feature Points
Input: α, Ak,Bk,k = I, II, III
Output: pi j

1: for all ai do
2: for all b j do
3: if ai and b j in the same group then
4: pi j = 1.
5: end if
6: end for
7: end for
8: while pi j convergence do
9: for all ai do

10: for all b j do
11: if ai and b j in the same group then
12: for all ah & h 6= i do
13: for all bk & k 6= j do
14: c(i, j,h,k) = 0
15: if ah and bk in the same group then
16: Calculate the c(i, j,h,k) by (8).
17: end if
18: end for
19: end for
20: end if
21: end for
22: Calculate the p(r+1)

i j by (9).
23: end for
24: end while
25: For each ai, find b j with the highest pi j.
26: return pi j

need to find a 2-vector T and a 2x2 matrix R such that:
n

∑
i=1
||(Rai +T )−bi||2

is minimized.
Denote ā and b̄ the centroids of A and B, respectively, where

ā =
1
n

n

∑
i=1

ai, b̄ =
1
n

n

∑
i=1

bi.

T is computed as T = ā− b̄. Denote X = x1, ...,xn and Y = y1, ...,yn

where xi = ai− ā and yi = bi− b̄, respectively. Denote S = XY T .
We have the singular value decomposition (SVD) of S: S =UσV T .
R is computed as R =VUT . The proof is provided in Appendix.

The computed optimal T and R are then broadcasted by feature
points to the whole network. Each sensor node simply plugs its
planar coordinates p2D

i computed in Sec. 3.1 into the following
equation:

Rp2D
i +T.

3.4 Localization
With the aligned planar coordinates to the terrain one, each sensor
node locates three nearest grid points of the terrain DTM on plane.
Denote vi, v j, and vk the three nearest grid points to a sensor node.
To compute the 3D geographic location, the node computes the
Barycentric Coordinates using its own planar coordinates with
respect to vi, v j, and vk mapped on plane (Eqn. 5). Denote
(ti, t j, tk) the Barycentric Coordinates. The sensor node finds its
3D geographic coordinates as

ti p3D
i + t j p3D

j + tk p3D
k ,

where p3D
i , p3D

j , and p3D
k are the 3D geographic coordinates of v j,

vk, and vl respectively.

3.5 Time Complexity and Communication Cost

Assume we measure the communication cost by the number of
exchanged messages. Both the time complexity and communica-
tion cost of the proposed localization algorithms are dominated by
the step to compute conformal mapping of M1 and M2 to plane.
The time complexity of discrete surface Ricci flow is measured by
the number of iterations, given by −C logε

λ
, where C is a constant,

ε is a threshold of curvature error, and λ is the step length of
each iteration (we set to 0.05 in our experiments) [11]. Since each
vertex only needs to exchange u values with its direct neighbors,
the communication cost is given by O(−C logε

λ
ng), where g is the

average vertex degree of M, and n is the size of M. Note that g is
six for a triangular mesh. The time complexity and communication
cost of planar embedding based on computed edge lengths by
discrete surface Ricci flow are linear to n.

A special note is that we don’t need to compute the conformal
mapping of M1 each time. We only need to compute it once before
we start to deploy a network, and then pre-load only the mapping
data related to the FoI (Field of Interest) to sensor nodes if they
have sufficient storage. Otherwise, a server may be designated to
keep the DTM database.

4 DISCUSSIONS

4.1 The Size of Anchor Nodes

Theoretically speaking, the proposed localization algorithm re-
quires only three anchor nodes to align two triangular meshes on
a plane. If there are more than three anchor nodes deployed with
the network, we can apply the least-square conformal mapping
method in [15] instead of Möbius transformation to incorporate
more anchor nodes into the alignment to improve the localization
accuracy.

Fig. 3 shows one example. For a network with size 2.6k
deployed on a 3D surface as shown in Fig. 4(a), the localiza-
tion error of the network decreases with the increased number
of anchor nodes. Compared with Möbius transformation based
alignment introduced in Sec. 3.2, least-square conformal mapping
based alignment is more flexible to take anchor nodes into align-
ment. But from the other side, theleast-square conformal mapping
method introduced in [15] is centralized with high computational
complexity.

4.2 Connectivity Only

When range distance measurement is not available, we can still
extract a sparse triangular mesh from a network connectivity
graph. A simple landmark-based algorithm discussed in [16],
[17] uniformly selects a subset of nodes in a distributed way
and denotes them as landmarks, such that any two neighboring
landmarks are approximately a fixed K hops away (K ≥ 6). The
dual of a discrete Voronoi diagram with generators the set of
landmarks forms a triangulation. Vertices of the triangulation are
the set of landmarks. The edge between two neighboring vertices
is the shortest path between the two landmarks. We simply assume
the edge length of the triangulation a unit one, and then apply the
same anchor-based localization algorithm as discussed in Sec. 3
to localize landmark nodes.
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Fig. 3. Localization error decreases with the increased number of anchor
nodes. Note that localization error is computed as a ratio of the average
node distance error (all sensor nodes of a network) and the average
node transmission range.

A non-landmark node, denoted as ni, finds its three nearest
landmarks, denoted as v1, v2, v3 with computed 3D coordinates
p(v1),p(v2), and p(v3) respectively. Denote d1, d2, and d3 the
shortest distances (hop counts) of node ni to the three landmarks
v1, v2, v3 respectively. Then node ni computes its 3D coordinates
p(ni) simply by minimizing the mean square error among the
distances:

3

∑
j=1

(|p(ni)− p(v j)|−d j)
2. (10)

4.3 Network Density

The algorithm in [13] to extract a triangular mesh from the
connectivity graph of a network assumes that a triangular graph
is a sub-graph of the connectivity graph of the network. Such an
assumption is true only when the node density of the network is
not too low. In our simulations, the average node degree of the
connectivity graph of a network is around or above 8.

4.4 DTM Resolution and Availability

For a large-sized field of interest covered with a sensor network
and a corresponding DTM with high resolution, e.g., a grid of
size less than 1m2, it is unnecessary to apply such a high-density
DTM to locate sensor nodes with both the transmission range and
average pair of sensor node distance much higher than the grid
size. A realistic solution to speed up the total computing time
without reducing the localization accuracy is to downsample the
DTM such that its resolution is aligned with the density of a sensor
network

In case DTM is not available, a sensor network deployed on a
3D terrain surface can be localized with a high cost by deploying
a set of anchor nodes in a structured way on the terrain, simulating
a sparse version of DTM.

5 SIMULATIONS

We pick a set of representative terrain surfaces with their digital
terrain models (DTMs) available on the web shown in the first
column of Fig. 4. Wireless sensor nodes are randomly deployed
on the surfaces, as shown in the second column of Fig. 4. The sizes
of sensor networks deployed on terrain surfaces I, II, III. VI, and V
are 2.6k, 3.6k, 5.1k, 8.2k, and 9k, respectively. For both the terrain
surfaces and the networks, a convex shape is not a necessary

TABLE 1
The distribution of Anchor-based Localization Errors under Different

Sets of Anchor Nodes

Terrain I II III IV V

Error
µ 0.1356 0.2098 0.0951 0.6680 0.3613
x̃ 0.1343 0.1512 0.0956 0.3399 0.1785
σ 0.1717 0.0352 0.0158 0.6268 0.3106

condition. The third column of Fig. 4 shows the localized sensor
networks based on the proposed localization algorithms.

We carry out extensive simulations under various scenarios to
evaluate the overall performance of the proposed algorithms with
different factors such as the one-hop distance measurement error,
the resolution of a DTM, and the performance of the algorithm
in the situation of connectivity only. Note that there is no simple
alternative to localize a surface network as we discussed in Sec. 1,
so there is no comparison with the existing method.

5.1 Localization Error

We compute localization error as a ratio of the average node
distance error (all sensor nodes of a network) and the average
node transmission range. We assume the accuracy of distance
measurement between nodes within the communication range in
this subsection.

5.1.1 Anchor-based Localization
We assume sensor nodes with accurate one-hop distance mea-
surement and DTMs with high resolutions. For each network, we
randomly deploy three anchor nodes and calculate the localization
errors of the network based on the anchor-based algorithm in
Sec. 3. We repeat eight times for each network. Denote xi the ith

localization error. We compute the arithmetic mean µ = 1
8 ∑

8
i=1 xi

and the standard deviation σ =
√

1
7 ∑

8
i=1(xi−µ)2. Table 1 shows

the mean (µ), the median (x̃), and the standard deviation (σ) of
localization errors under different sets of anchor nodes. The posi-
tions of anchor nodes affect the performance of the anchor-based
localization algorithm. In general, the more scattered we deploy
the three anchor nodes in a network, the lower the localization
error is. In an extreme case, all anchor nodes are dropped to
the same spot. Since the aligned triangular meshes of a network
and terrain surface on a plane differ a rotation, the anchor-based
localization algorithm fails.

5.1.2 Anchor-Free Localization
Table 2 gives the localization error of the anchor-free algorithm.
The proposed anchor-free algorithm achieves a reasonably good
localization accuracy except for a sensor network deployed on
terrain surface V. We will discuss and analyze the failure case in
Sec. 5.6.

TABLE 2
Anchor-free Localization Error

Terrain I II III VI V

Error 0.1543 0.4851 0.3304 0.4828 6.6471
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(a) WSN deployed on terrain surface I

(b) WSN deployed on terrain surface II

(c) WSN deployed on terrain surface III

(d) WSN deployed on terrain surface IV

(e) WSN deployed on terrain surface V

Fig. 4. The first column shows the triangular meshes converted from the DTMs of a set of terrain surfaces. The second column shows large-scale
wireless sensor nodes randomly deployed on the terrain surfaces. The third column shows the localized sensor networks.

5.1.3 Comparison of Anchor-based and Anchor-free Local-
izations

Fig. 5 compares the performances of the anchor-based and anchor-
free localization algorithms. It is obvious that the performance
of the anchor-based algorithm is better than the anchor-free one,
although the two algorithms both achieve a reasonably good
localization accuracy except for the anchor-free one on terrain
surface V. Note that for each network, we choose the set of anchor
nodes that gives a median localization error based on the repeated
tests in Sec. 5.1.1.

5.2 Distance Measurement Error
We test the performances of our algorithms with distance mea-
surement error.

5.2.1 Anchor-based Localization
For each network, we choose the set of anchor nodes that gives the
median localization error based on the repeated tests in Sec. 5.1.1.
The third column of Table 3 gives the localization errors of the
anchor-based algorithm with distance measurement error. The
results show that the anchor-based algorithm tolerates a small
measurement error, but the performance drops with a relatively
large one. A feasible solution for a network with potentially
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Fig. 5. Comparison of Anchor-based and Anchor-free Localization Algo-
rithms. Note that localization error is computed as a ratio of the average
node distance error (all sensor nodes of a network) and the average
node transmission range.

TABLE 3
Localization Error with Distance Measurement Error

Distance Anchor-based Anchor-free
Terrain measurement localization localization

error (%) algorithm algorithm
0 0.1343 0.1543
5 0.1886 0.3121

I 10 0.3816 0.4333
15 0.5658 −−
20 0.7250 −−
0 0.1512 0.4851
5 0.1495 0.7778

II 10 0.1519 1.0486
15 0.2400 −−
20 0.3400 −−
0 0.0956 0.3304
5 0.1433 0.4479

III 10 0.1971 0.6702
15 0.2540 −−
20 0.3076 −−
0 0.3399 0.4828
5 0.3738 0.2027

IV 10 0.4037 0.9164
15 0.4472 −−
20 0.4690 −−
0 0.1785 6.6471
5 0.2072 −−

V 10 0.2210 −−
15 0.2380 −−
20 0.2642 −−

large measurement errors is to select uniformly a set of landmark
nodes such that each landmark node has a one-hop distance to
its landmark neighbors, i.e., a Voronoi diagram with small and
constant cell size. A triangular mesh can be constructed from
the chosen landmark nodes with edge length approximately the
averaged transmission range. Similar to connectivity-based surface
localization discussed in Sec. 4.2, we localize the landmark nodes
first and then other non-landmark nodes.

5.2.2 Anchor-Free Localization
The fourth column of Table 3 gives the localization errors of
the anchor-free algorithm with distance measurement error. The
results show that the anchor-free algorithm is sensitive to mea-
surement error. The reason is that the error of edge lengths
decrease the accuracy of the computed conformal factors and
Gaussian curvatures of a network mesh. Therefore, the algorithm
may extract wrong feature points from a network mesh to match

(a) Terrain I (b) Terrain II

Fig. 6. Low resolution terrain surfaces with only 5% of their original
resolutions shown in Fig. 4(a) and (b).

TABLE 4
Localization Error with Different Resolutions of DTM

Terrain
Percentage of

its original
resolution

Anchor-based
Localization
Algorithm

Anchor-free
Localization
Algorithm

1 0.1343 0.1543
I 20% 0.1347 0.3597

10% 0.1650 0.6929
5% 0.3400 0.5840
1 0.1512 0.4851

II 20% 0.2150 0.5213
10% 0.2200 0.5765
5% 0.2700 0.5994

those extracted from the terrain one, generating a misalignment of
the network and the terrain meshes in a plane. A sensor node
thus picks wrong grid points for the reference to compute its
coordinates in 3D.

5.3 Terrain Models with Different Resolutions
To evaluate the impact of the resolution of a DTM, we compute
the localization errors of a network deployed on a terrain surface
with different resolutions of its DTM. We pick the terrain models
shown in Fig. 4(a) and (b) as the testing ones. The original DTM
shown in Fig. 4(a) and (b) has the highest resolution. We lower the
density of the original one to 20%, 10%, and 5%, respectively such
that the highest density of a DTM is twenty times the lowest one.
Fig. 6(a) and (b) show the two DTMs with only 5% resolutions of
their original ones.

5.3.1 Anchor-based Localization
The third column of Table 4 gives the localization errors of the
anchor-based algorithm. The results show that the resolution of a
DTM has a small impact on the performance of the anchor-based
algorithm unless it is extremely low. Note that for each network,
we choose the set of anchor nodes that gives a median localization
error based on the repeated tests in Sec. 5.1.1.

5.3.2 Anchor-Free Localization
The fourth column of Table 4 gives the localization errors of the
anchor-free algorithm. The results show that the resolution of a
DTM has some impact on the performance of the anchor-free
algorithm. It is difficult to extract feature points from a triangular
mesh with very low density.

5.4 Networks with Connectivity Information Only
As we discussed in Sec. 4.2, we uniformly select a subset of nodes
marked as landmark nodes for a network with mere connectivity.
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(a) Terrain II (b) Terrain III

Fig. 7. Sparse Triangulations Extracted from Networks with Connectivity
Information Only.
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Fig. 8. Anchor-based Localization with or without Distance Measure-
ment. Note that localization error is computed as a ratio of the average
node distance error (all sensor nodes of a network) and the average
node transmission range.

We then build a sparse triangulation with each vertex a landmark
node and each edge approximated by a constant length, i.e.,
a fixed hop count. Fig. 7 shows the sparse triangular meshes
extracted from two networks with size 2k and 3k deployed on
terrain surfaces II and III, respectively. The localization errors
for landmark nodes of the two networks are 0.2610 and 0.2037
respectively.

Fig. 8 compares the performances of the anchor-based local-
ization algorithms with and without distance measurement within
a one-hop communication range. It is obvious that the algorithm
performs better with distance measurement. However, the local-
ization accuracy of the algorithm without distance measurement is
still reasonably good.

5.5 The Convergence Time

We carry out experiments to test the number of iterations of
discrete surface Ricci flow required for convergence. Fig. 9 shows
the convergence rates of discrete surface Ricci flow on two
networks with size 2k and 3k deployed on terrain surfaces II and
III, respectively. For all network models in simulations, discrete
surface Ricci flow converges in less than hundreds of iterations.
For a large-size terrain surface mesh, we can pre-compute its free-
boundary conformal map and then load the result to an individual
sensor node before deployment. We can also apply Newton’s
numerical method to compute the solution of discrete surface Ricci
flow. The computation of the centralized method is efficient with
less than ten iterations in a few seconds for a triangular mesh with
10k size.
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Fig. 9. The convergence rate of the discrete surface Ricci flow algorithm.

5.6 Limitation of Anchor-free Localization
The anchor-free algorithm fails to localize the network deployed
on terrain surface V since the localization error is much larger
than the transmission range as given in Table. 2. One factor is
that terrain surface V is quite flat with fewer features such as
ridge or valley. The proposed algorithm can extract only a limited
number of feature points from the triangular mesh of the terrain
surface. The other one is that the sensor network deployed on
terrain surface V is sparse. The extracted triangular mesh from the
connectivity graph of the network contains fewer features.

The difference of conformal factors: maxλ−minλ indicates
how sharp the features of a mesh are. Therefore, it is an effective
indicator to pre-determine whether we can apply the anchor-free
localization algorithm for a given surface network. Denote the
differences of conformal factors as ∆λa and ∆λb for the triangular
meshes of a network and a terrain surface, respectively. We then
compute a relative value defined as the following:

E =
∆λb−∆λa

∆λb
. (11)

The relative value indicates the percentage of sharp features of a
network mesh has lost compared with its deployed terrain one.

Table 5 gives the three values of networks deployed on terrain
surfaces shown in Fig. 4. It is obvious that the shape of terrain
surface V is the flattest one with the smallest value of ∆λb among
all the terrain meshes. Meantime, the relative value of the network
deployed on terrain surface V is the largest one, more than 50%.
It shows that the sensor network deployed on terrain surface V is
sparse with a flat triangular mesh extracted from its connectivity
graph and many features have been smoothed out.

TABLE 5
The relative value of different terrain model

Terrain I II III IV V

Network ∆λa 5.0832 1.5471 0.7202 0.8538 0.3684
DTM ∆λb 5.6327 1.7468 1.3361 1.5278 0.9220

E 9.76% 11.43% 46.10% 44.12% 60.04%

6 CONCLUSION

We have introduced two localization algorithms with and without
anchor nodes for sensor networks deployed on the surfaces of
3D terrains. The basic idea of the two algorithms is to construct
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a well-aligned mapping between two triangular meshes. One is
converted from the DTM of a terrain surface and the other is
extracted from the connectivity graph of a network deployed on
the terrain surface. Based on the mapping, each sensor node of the
network can easily locate reference grid points from the DTM to
calculate its own geographic location. It is much more challeng-
ing to construct an alignment between the two meshes without
the location information of an anchor node. We extract feature
points with geometric properties intrinsic to surface distances and
independent of the embedding of a surface in 3D from the two
meshes. The matched feature points guide the alignment of the
two meshes.

We have carried out extensive simulations under various
scenarios to evaluate the overall performance of the proposed
algorithms with different factors. We have discussed the impact
of distance measurement error on the localization accuracy and
the limitation of the proposed anchor-free localization algorithm.
We have also discussed the possibility of 3D surface network
localization with mere connectivity only.
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[15] B. Lévy, S. Petitjean, N. Ray, and J. Maillot, “Least squares conformal
maps for automatic texture atlas generation,” ACM Trans. Graph., vol. 21,
no. 3, pp. 362–371, 2002.

[16] S. Funke and N. Milosavljevic, “Guaranteed-delivery geographic routing
under uncertain node locations,” in Proc. of INFOCOM, pp. 1244–1252,
2007.

[17] R. Sarkar, X. Yin, J. Gao, F. Luo, and X. D. Gu, “Greedy routing with
guaranteed delivery using ricci flows,” in Proc. of IPSN, pp. 121–132,
2009.

Xuan Li Xuan Li is currently working toward
the Ph.D. degree in computer science at the
Center for Advanced Computer Studies (CACS),
University of Louisiana at Lafayette. She earned
her bachelor’s degree and master’s degree from
Beijing Jiaotong University in 2012 and 2015,
respectively. Her research focuses on geometric
algorithm design and localization in large scale
wireless sensor networks.

Buri Ban is a software engineer in WePay inc.
He received the B.S. and M.S. degrees from
the School of Electronic and Information En-
gineering, Beijing Jiaotong University in 2009
and 2012, respectively, and a Ph.D. degree
in computer science from the Center for Ad-
vanced Computer Studies (CACS) at University
of Louisiana, Lafayette in 2018. His Ph.D. dis-
sertation title is Network Resilience Against Dy-
namic Changes.

Yang Yang received the B.S. degree in com-
puter science from Northwestern Polytechnical
University, Xian, China in 2009, and the M.S. and
Ph.D. degrees in computer sciences from the
University of Louisiana at Lafayette, Lafayette,
LA, USA, in 2011 and 2014, respectively. His
research focuses on designing geometric algo-
rithms for wireless sensor networks in both areas
of in-network information processing and local-
ization.

Miao Jin is an associate professor in the Center
for Advanced Computer Studies (CACS), Univer-
sity of Louisiana at Lafayette (UL Lafayette). She
received the B.S. degree in computer science
from Beijing University of Posts and Telecom-
munications, Beijing, China, in 2000, and the
M.S. and Ph.D. degrees in computer science
from the State University of New York at Stony
Brook, Stony Brook, NY, USA, in 2006 and 2008,
respectively. Her research interests lie at the
boundary of geometry and broad engineering

fields including Mobile and Wireless Networks, Computer Vision, Com-
puter Graphics, and Machine Learning. Her research results have been
used as cover images of mathematics books and licensed by Siemens
Healthcare Sector of Germany for virtual colonoscopy. She received
NSF CAREER Award in 2011, Jack & Gladys Theall/BoRSF Professor-
ship in 2013, Lockheed Martin Corporation/BoRSF Professor in 2016,
and UL Lafayette College of Science Research Award in 2020.



13

APPENDIX

Lemma 2. The conformal factor of a long tube shape increases
exponentially with the height of the tube, independent of individual
conformal map.

Proof. Suppose we have a long thin cylinder and we plan to
conformally parameterize it. If we use polar coordinates (ρ,θ)
with The center of the top mapped to the origin, the conformal
factor is a function dependent only on ρ because of symmetry.
The Gaussian curvature of the cylinder is zero, and

k(ρ,θ) =
1
λ2 ∆ logλ = 0. (12)

We can deduce λ(ρ) = eaρ+b, where a,b are constants. No matter
what kind of conformal map we choose, the stretching is exponen-
tial.

Lemma 3. Given two sets of matched points denoted as A =
{a1, ...,an} and B = {b1, ...,bn}. A translation vector T and
rotation matrix R that minimize:

n

∑
i=1
||(Rai +T )−bi||2,

satisfy:
Denote ā and b̄ the centroids of A and B, respectively. T

satisfies T = ā− b̄.
Denote X = {x1, ...,xn} and Y = {y1, ...,yn} where xi = ai−

ā and yi = bi − b̄, respectively. Denote S = XY T . We have the
singular value decomposition (SVD) of S: S = UσV T . R satisfies
R =VUT .

Proof. Assume R is fixed and denote

F(T ) =
n

∑
i=1
||(Rai +T )−bi||2.

By taking the derivative of F w.r.t. T , we have:

∂F(T )
T

=
n

∑
i=1

2(Rai +T −bi)

= 2R
n

∑
i=1

ai +2T n−2
n

∑
i=1

bi.

Denote:

ā =
1
n

n

∑
i=1

ai,

b̄ =
1
n

n

∑
i=1

bi.

∂F(T )
T

= 2Rnā+2T n−2nb̄

= 0.

We have:
T = ā−Rb̄,

where T transforms the centroid of A to the centroid of B.

Plug T = ā−Rb̄ into the objective function:
n

∑
i=1
||(Rai +T )−bi||2 =

n

∑
i=1
||(Rai + b̄−Rā)−bi||2

=
n

∑
i=1
||R(ai− ā)− (bi− b̄)||2

Denote:

xi = ai− ā,

yi = bi− b̄.

n

∑
i=1
||(Rai +T )−bi||2 =

n

∑
i=1
||Rxi− yi||2

=
n

∑
i=1

(Rxi− yi)
T (Rxi− yi)

=
n

∑
i=1

(xT
i xi− yT

i Rxi− xT
i RT yi + yT

i yi)

Considering

min
n

∑
i=1

(−yT
i Rxi− xT

i RT yi) = max
n

∑
i=1

(yT
i Rxi + xT

i RT yi)

and
xT

i RT yi == yT
i Rxi

We need to find R such that

max
n

∑
i=1

(yT
i Rxi)

Denote:

Y =
n

∑
i=1

yi,

X =
n

∑
i=1

xi.

n

∑
i=1

(yT
i Rxi) = tr(Y T RX)

= tr(RXY T ).

Compute singular value decomposition of XY T =UσV T

n

∑
i=1

(yT
i Rxi) = tr(RUσV T )

= tr(σ(V T RU)).

Since V , R, and U are all orthogonal matrices, M = V T RU is
also an orthogonal matrix with all entries mi j are smaller than 1 in
magnitude

tr(σ(V T RU)) =
2

∑
i=1

σimii

≤
2

∑
i=1

σi.

When R =VUT , we have V T RU = I.


