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Resilient Routing for Wireless Sensor Networks
on High Genus Surfaces

Buri Ban, Hongyi Wu, and Miao Jin

Abstract—This paper considers a fundamental problem of designing routing scheme resilient to node or link failures for wireless
sensor networks deployed on a surface of a complex-connected three-dimensional (3D) setting. Instead of heuristically detouring
around the failed path, we borrow homotopy, an important topological concept, to effectively create and evaluate the diversity of
alternative paths. We propose a tessellation-free and GPS-free method to compute paths with different homotopy types on surface
networks. A source node greedily forwards a packet to its destination based on the computed nodes’ virtual planar coordinates. When
the current path fails, the source node can flexibly choose another greedy path from a different homotopy type to deliver the packet.
The proposed algorithms are distributed and scalable to both the size and genus number of a surface network. We evaluate the
performance of the proposed routing scheme under three different failure models. Simulation results show that our method achieves
the best performance under geographically correlated failure models compared with other resilient routing schemes. We also compare
our routing scheme with existing state-of-the-art ones specifically designed for surface networks when a network is failure free. Our
method achieves the lowest stretch factor.

Index Terms—Surface sensor network, resilient routing, multipath routing, homotopy, scalable, distributed
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1 INTRODUCTION

This paper focuses on a fundamental problem of designing
routing algorithm resilient to node or link failures in a large-scale
wireless sensor network deployed on the surface of a complex-
connected three-dimensional (3D) setting, which generally has
multiple handles forming a high genus surface [1]. Applications
for such wireless sensor networks on high genus surfaces have
been demonstrated for Structural Health Monitoring (SHM), e.g.,
at the Golden Gate Bridge [2] and National Stadium of China [3],
where sensors are deployed on megastructures to gauge changes
in materials or geometric properties that could hinder the systems
performance. Other applications can be found at coal mine tunnels
for disaster prevention and rescue, along the corridors of buildings
for fire detection, and in water, sewer or gas systems for mon-
itoring underground pipelines as introduced in [4]. We consider
densely-deployed sensors that operate on high radio frequency
and extremely low transmission power, which together result in
short communication range. Only nearby sensors along the 3D
surface can communicate with each other, whereas the wireless
links connecting remote sensors across the space are negligible
and can be removed via a simple preprocessing. As a result, the
dense sensors form a 3D surface network.

1.1 An Overview of Resilient Routing
Routing is essential to sensor networks. In particular, node and link
failures are unavoidable in a large-scale distributed sensor system.
For example, nodes may die out of battery and communication
links can be temporarily or permanently disabled due to attacks or
interference. The routing scheme should be not only efficient and
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scalable but also resilient to sudden node or link failures, in order
to adapt to network dynamics.

A few routing protocols have been proposed for 3D volume
sensor networks [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14]. They are largely based on projection, mapping, or greedy
embedding, which cannot be directly or efficiently applied for
network routing on high genus surfaces. To this end, several
greedy routing methods [1], [4], [15] have been developed recently
to address the routing problem on high genus surfaces. [1], [4]
propose to cut the original surface network open and then embed
it to two-dimensional (2D) spaces. Each sensor node stores the
embedded coordinates and use them to enable greedy routing.
Both methods are scalable and can achieve guaranteed delivery.
[15] proposes a two-level routing scheme by first decomposing the
network and then realizing the route with greedy steps. However,
none of them support resilience to node or link failures.

On the other hand, resilient routing has been discussed in
conventional 2D sensor networks. For example, Directed Diffu-
sion [16] is a well known routing algorithm that establishes gradi-
ents and uses gradual reinforcement of better paths to allow path
recovery, enabling these systems to be robust to certain levels of
network and sink dynamics. Multipath routing is also an efficient
strategy to increase network resilience to node failures. Algorithms
have been proposed for Internet multipath routing [17], [18],
[19], [20], [21] and sensor network multipath routing [22], [23].
In [22], the authors consider two different approaches to construct
multipaths between two nodes. One is node-disjoint multipath,
where the alternate paths do not intersect with each other. The
other approach builds many braided paths - partially disjoint
alternate paths. In [23], a branch-aware flooding scheme is utilizes
to construct a spanning tree and discover a set of node-disjoint
paths for each sensor node back to the base station. Later, tree
structure is applied for multipath routing [24], [25]. The general
idea of these methods is to detour around the path with node and
link failures. They can be extended to 3D surface sensor networks
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to improve resilience. However, they are generally best-effort
heuristics, without a solid metric to evaluate the path diversity
and to judge the level of resilience they can support.

1.2 Resilient Routing Based on Homotopy Types

Instead of heuristically detouring around the failed path, we
borrow homotopy, an important topological concept and tool, to
effectively create and evaluate the diversity of alternative paths.
Informally speaking, two paths are said to be homotopic to each
other if one can continuously deform to the other. The simplest
case to illustrate the concept is a network deployed on a planar
region with a lake inside. Two paths connecting a pair of source
and destination are homotopic to each other if they are on the same
side of the lake; otherwise they belong to different homotopy types
because one path cannot continuously deform to the other without
crossing the lake.

Fig. 1. (a) A wireless sensor network is deployed on a one-layer coal
mine tunnel to monitor and prevent disaster. Note that we consider
densely-deployed sensors that operate on high radio frequency and ex-
tremely low transmission power, which together result in short commu-
nication range. (b) Since only nearby sensors along the 3D surface can
communicate with each other, whereas the wireless links connecting
remote sensors across the space are negligible and can be removed via
a simple preprocessing. We show a triangulation along the surface of
the coal mine tunnel extracted from the connectivity graph of the sensor
network.

Fig. 1(a) shows a wireless sensor network deployed on the
surface of a one-layer coal mine tunnel to monitor and prevent
disaster. The conventional underground mines communication
often relies on Through-the-Earth (TTE) signaling [26] that uses
ultra-low frequency (300− 3000Hz) waves with long communi-
cation range to penetrate dirt and rock. However, its low data
transmission rate limits the system performance, especially for
modern bandwidth-hungry and time-sensitive applications. In this
research, we consider densely-deployed sensors that operate on
higher radio frequency (e.g., around 2.4GHz with 5MHz chan-
nel bandwidth) and extremely low transmission power, which
together result in short communication range. The size of tunnel
is much larger than the sensors communication range, therefore
only nearby sensors along the 3D surface can communicate with
each other, whereas the wireless links connecting remote sensors
across the space are negligible and can be removed via a simple
preprocessing. As a result, the dense sensors form a 3D surface
network. Fig. 1(b) shows a triangulation along the surface of the
coal mine tunnel extracted from the connectivity graph of the
sensor network. We use colors to mark different routes from the
central mine area to the entrance as shown in Fig. 2(a). Paths P2
and P4 are homotopic to each other, while paths P1, P2, and P3
all have different homotopy types. Similarly, Fig. 2(b) shows a
wireless sensor network deployed on the surface of a two-layer

coal mine tunnel. All routes from the central mine area of the
second layer to the entrance have different homotopy types.

Fig. 2. (a) Among the four routes of the sensor network from the central
mine area to the entrance, P1, P2, and P3 have different homotopy types.
(b) A wireless sensor network is deployed on a two-layer coal mine
tunnel. The three routes from the central mine area of the second layer
to the entrance have different homotopy types.

As we can see, paths with different homotopy types between
a given pair of source and destination are strongly disjoint.
Since wireless sensor networks are generally deployed over harsh
environments, regional uncontrollable disasters such as fires, or
natural disasters such as floods, or collateral (non-targeted) dam-
age in an attack cause geographically correlated node and link
failures. The property that one path cannot continuously deform
to another one ensures that geographically correlated node and
link failures affecting one path cannot propagate easily to another
one with different homotopy type. The chance that these paths fail
simultaneously is extremely low under geographically correlated
failures. Therefore, we propose to apply these paths for routing to
achieve the desired resilience of surface sensor networks. As to be
shown later, although they are not necessarily the shortest routes,
the proposed approach results in negligible cost in terms of stretch
ratio.

1.3 Tessellations in Hybrid Spaces

A recent work [27] applies the concept of homotopy to classify
paths of a network deployed on 2D plane with uncovered holes.
The authors propose to periodically embed such planar network
into hyperbolic space. Paths connecting a source and tessellated
target nodes in hyperbolic space correspond to paths with the same
pair of source and target but different homotopy types on the plane.

It is obvious that the homotopy types of a network deployed on
high genus surfaces are more complicated than on a planar region.
The method in [27] cannot be directly applied on surface networks.
However, we can extend our previous work in [28] to design a
complicated tessellation-based routing algorithm to compute paths
with the same pair of source and target but different homotopy
types on surface networks.

Figure 3 illustrates the basic idea. Specifically, each sensor
node needs to install two sets of different algorithms. One is
Euclidean and the other is hyperbolic based according to Uni-
formization Theorem [29]. After deployment, a sensor network
needs an algorithm to detect the topology, i.e., the genus number.
For a network shown in Fig. 1(a), the algorithm identifies that
it is topologically equivalent to a genus one surface shown in
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Fig. 3. Tessellations in hybrid spaces: (a) Top: A wireless sensor network deployed on a one-layer coal mine tunnel shown in Fig. 2 (a) is topologically
equivalent to a genus 1 surface. The surface is marked with two closed loops a1 and b1. Bottom: the surface is cut open to a topological rectangle
and conformally mapped to plane. Note that the source S and target T on the original surface are mapped to plane too. (b) Copies of the topological
rectangle can be tessellated on the plane. Shortest paths connect S in the center domain to the other Ts. (c) Shortest paths shown in (b) correspond
to homotopy different routes from S to T on the original surface. (d) Top: A wireless sensor network deployed on a two-layer coal mine tunnel shown
in Fig. 2 (b) is topologically equivalent to a genus 2 surface. Bottom: The surface is cut open to a topological 8-polygon and conformally mapped
to hyperbolic space. (e) Copies of the 8-polygon can be infinitely tessellated on hyperbolic space. Shortest paths connecting the S in the central
domain to other Ts induce homotopy different routes from S to T on the original surface.

the top of Fig. 3(a). Intuitively, both surfaces have exactly one
handle. Sensor nodes pick the set of Euclidean-based algorithms.
The surface is cut open to a topological rectangle and conformally
mapped to Euclidean plane as shown in the bottom of Fig. 3(a).
The mapped rectangle is tessellated on plane as shown in Fig. 3(b).
Since conformal mapping is one-to-one and continuous, the source
and target nodes S and T on the original surface are also mapped to
plane with planar coordinates, respectively. Each copy has a pair
of S and T . Straight lines connecting S in the central rectangle and
other T s correspond to paths with different homotopy types on the
original surface shown in Fig. 3(c).

However, for a network shown in Fig. 2(b), it is topologically
equivalent to a genus two surface shown in the top of Fig. 3(d),
i.e., surface with two handles. Sensor nodes need to pick the
set of hyperbolic-based algorithms. The surface is cut open to
a topological 8-polygon and conformally mapped to hyperbolic
space as shown in the bottom of Fig. 3(d). The 8-polygon is
tessellated on hyperbolic space as shown in Fig. 3(e). Each copy
has a pair of S and T . Arcs connecting S in the central polygon
and other T s correspond to paths with different homotopy types
on the original surface.

A more serious problem is that such tessellation-based algo-
rithms including the one in [27] are not scalable as the stored
information at each sensor node is proportional to the genus
number of a surface network. Denote g the genus number of a
surface. Each sensor node needs to store either 16g2−8g number
of the positions of different copies of the destination node, or 4g
translations for later computation of the position of each copy of
the destination node in hyperbolic space.

1.4 Our Approach in Euclidean Plane
We propose a totally different method to compute paths with
different homotopy types on surfaces with tessellation free. What’s
more, the computation is fully based on Euclidean plane.

Here we use two examples to briefly illustrate the basic idea of
how we compute paths with different homotopy types in Euclidean
plane. Later, we will explain the necessary concepts of topology
in a more formal way in Sec. 2.

For a network shown in Fig. 1(a), we first extract a triangula-
tion from the network connectivity graph. The computed triangular
surface is topologically equivalent to a genus one surface shown
in Fig. 4(a). Intuitively, both surfaces have exactly one handle.
Since topologically equivalent surfaces share the same number
of homotopy types of paths, we use the genus one surface in
Fig. 4(a) to show how our algorithm computes paths with different
homotopy types on surface.

Considering homotopy is an equivalence relation for paths
with fixed endpoints on surface, and paths with different homotopy
types form a group. We first compute a complete set of generators
of the homotopy group of surface. They are two closed loops
denoted by a1 and b1 for genus one surface shown in the top of
Fig. 4(a). We cut the surface open along a1 and b1 to a topological
disk and then map it one-to-one and continuously to a unit one
centered at the origin (0,0) in Euclidean plane shown in the
bottom of Fig. 4(a). The circumference of disk is a1, b1, a−1

1 ,
and b−1

1 sequentially, as each node along a loop is virtually split
to two and each one is along one side of the cut loop. Each sensor
node then takes the computed planar coordinates as its virtual
coordinates.

Given a pair of source and target nodes in the network, denoted
as S and T, a straight line connecting S and T in the unit disk
induces the primary path P1 shown in the first column of Fig. 4(b).
If the primary path fails, S will send a packet along a path with
different homotopy type. The first row of Fig. 4(b) shows paths
with different homotopy types. The second row of Fig. 4(b) shows
how S uses greedy forwarding to forward the packet to T based
on virtual coordinates. Different greedy forwarding paths in the
second row of Fig. 4(b) induce paths with various homotopy types
in the first row of Fig. 4(b). Note that paths with different homo-
topy types correspond to various combinations of the generators of
homotopy group. Here we use P2 as an example to explain. Path
P2 crosses the homotopy group generator b1. S forwards a packet
along the shortest path to the arc of unit circle where b1 is mapped,
until the packet reaches a node in b1. Since the node stores two
sets of virtual planar coordinates corresponding to sides b1 and
b−1

1 respectively, we pick the planar coordinates corresponding to
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Fig. 4. Our approach: (a) Top: a genus 1 surface is marked with two closed loops a1 and b1. Bottom: the surface is cut open along the two loops and
mapped to a unit disk centered at the origin (0,0) in Euclidean plane. The map is continuous and one-to-one. The source and target nodes S and T
on the original surface are mapped to plane too. Each node takes the computed planar coordinates as its virtual coordinates. (b) Different greedy
forwarding paths in unit disk from S to T induce routes with different homotopy types from S to T on the original surface. Here we show five paths
with various homotopy types. (c) Top: a genus 2 surface is marked with four closed loops a1, b1, a2, and b2. Bottom: The surface is cut open along
the four loops and mapped to a unit disk centered at the origin (0,0) in Euclidean plane.

side b−1
1 and start from the coordinates to forward the packet to T .

Similarly, Paths P3 and P4 cross the homotopy group generator
a1 from two directions. Path P5 crosses the homotopy group
generator b1 first, and then a1.

A network shown in Fig. 2(b) is topologically equivalent to
a genus two surface shown in Fig. 4(c). Both surfaces have two
handle. We cut a genus two surface open along four loops to a
topological disk. We then map it one-to-one and continuously to a
unit one centered at the origin (0,0) in Euclidean plane shown in
the bottom of Fig. 4(c). Paths from source to target with different
homotopy types can be computed in a similar way as Fig. 4(b).

Our Contributions: Based on this idea, we propose the first
routing scheme that achieves resilience to node or link failures in
a large-scale wireless sensor network deployed on a surface of a
complex-connected 3D setting. Specifically, our contributions are
summarized as follows:

• We design a greedy routing scheme specifically for wire-
less sensor networks deployed on surfaces of complex-
connected 3D settings. The routing algorithm does not re-
quire GPS information for individual sensor node. Greedy
forwarding between a pair of nodes is always guaranteed
based on computed nodes’ virtual planar coordinates.

• The proposed routing scheme is the first one to achieve
resilient routing for networks on surfaces of complex-
connected 3D settings. Paths are classified by their ho-
motopy types. A source can flexibly choose one greedy
path from one homotopy type to deliver packet to its
destination.

• The routing scheme is distributed and scalable to both the
size and the genus of a network. Each sensor node only
requires a limited and constant storage.

The rest of this paper is organized as follows: Sec. 2 introduces
some closely related concepts in topology. Sec. 3 provides in
detail the proposed resilient routing algorithm for wireless sensor
networks deployed on high genus surfaces. Sec. ?? presents
simulation results. Sec. 5 concludes the paper and discusses the
future works.

2 TOPOLOGY BACKGROUND

Before giving the details of the proposed resilient routing algo-
rithm on surface networks in Sec. 3, we introduce in an intuitive
and informal way of the concepts in topology that are necessary to
the algorithm. For rigid and formal definitions of these concepts,
please refer classical textbooks in algebraic topology [30].

2.1 Orientable Surface and Its Genus
A surface is orientable if it has two distinct sides. General surfaces
in real world are orientable surfaces. Denote M a connected and
orientable surface embedded in 3D, and L a loop on M. L is surface
separating if it can be expressed as the symmetric difference of
boundaries of topological disks embedded in surface as shown in
Figure 5 with L1 and L2; otherwise it is non-separating as shown
in Figure 5 with L3.

Fig. 5. Loops on a genus two surface: L1 and L2 are surface separating
loops; L3 is non-separating loop.

The genus of M, denoted as g, is the maximum number of
disjoint non-separating loops L1,L2, · · · ,Lg in M; that is, any Li

and L j have no topological intersection if i 6= j, and M\(L1 ∪
·· ·Lg) is connected. The genus number is the most basic topology
information of a surface and equals to the number of handles. For
example, a torus is a genus one surface, and a double torus shown
in Figure 5 is a genus two surface.

2.2 Homotopy Group and Its Generators
Definition 1 (Paths and Homotopy). Let I = [0,1]. A path in a

space X is a continuous map

f : I→ X .
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We say that f is a path between x0 and x1 if f (0) = x0 and
f (1) = x1. A homotopy of paths in X is a continuous map

F : I× I→ X

such that ft(s) = F(s, t) is a path between x0 and x1 for each
t ∈ I. Two paths γ0 and γ1 are said to be homotopic if there
exists a homotopy F such that

f0 = γ0, f1 = γ1.

They are denoted by γ0 ∼= γ1.

Fig. 6 shows four paths between points x0 and x1 on a genus
two surface. Only γ0 and γ1 are homotopic. Intuitively, only γ0 and
γ1 can continuously deform to each other on the surface.

Fig. 6. Paths between points x0 and x1 on a genus two surface: only γ0
and γ1 are homotopic to each other.

Proposition 1. The relation of being homotopic is an equivalence
relation on paths with fixed endpoints.

We denote the equivalence class of a path γ by [γ]. We define
the product of equivalence classes of paths as

[ f ][g] = [ f ·g].

It can be verified that the product of path classes is well defined,
namely, it is independent of the representative path among the
equivalence class. It can also be verified that the multiplication of
equivalence classes of paths is associative

([ f ][g])[h] = [ f ]([g][h]).

We say f is a closed path (or a loop) based at p, if f (0) =
f (1) = p ∈M. We define εp : I→M as the constant path - a point,
that is εp(t) = p. Then it is obvious that

[ f ][εp] = [ f ] = [ε][ f ].

We further define the inverse of a path f−1(t) = f (1− t), then
it is obvious

[ f ][ f−1] = [εp] = [ f−1][ f ].

We denote the set of equivalence classes of closed paths based
at p ∈M by π(M, p).

From the above discussion, we see that π(M, p) form a group,
which is called the fundamental group or the homotopy group of
M.

Let p,q ∈ M, if there is a path γ from p to q, then groups
π(M, p) and π(N,q) are isomorphic, uγ : π(M, p)→ π(M,q),

uγ[g] = [γ−1 ·gγ].

Therefore, we can omit the base point.
A canonical set of generators of the homotopy group of M

consists of a set of 2g non-separating loops on M:

a1,b1,a2,b2, · · · ,ag,bg

such that any one of them intersects and only intersects with all the
other generators at a single base point. These loops are generators
of the homology group of the surface M.

Given a canonical set of the homotopy group generators
{a1,b1,
a2,b2, · · · ,ag,bg}, we can slice M along the loops and get a topo-
logical 4g-polygon with boundary a1b1a−1

1 b−1
1 a2b2a−1

2 b−1
2 · · ·agbg

a−1
g b−1

g , where a−1
i or b−1

i simply indicates the inverse of the loop
ai or bi. The 4g-polygon is called a canonical fundamental domain
of M.

Fig. 7. (a) A canonical set of homotopy group generators marked on
a genus two surface. (b) The surface is cut open to a 4g-polygon, the
canonical fundamental domain of the surface, along the set of loops.

Fig. 7 shows a canonical set of homotopy group generators
marked on a genus two surface. The surface is cut open to a 4g-
polygon, the canonical fundamental domain as shown in Fig. 7(b),
along the set of loops.

3 ALGORITHM OF RESILIENT ROUTING

This section describes the proposed algorithm in three steps:
preprocessing, mapping to unit disk, and routing.

Sec. 3.1 introduces the first step, preprocessing. Fig. 8 (a)
shows a network model with extracted triangular structure after
preprocessing, where vertices of the triangular mesh are the set
of sensor nodes, and an edge between two neighboring vertices
indicates the communication link between the two sensors.

Sec. 3.2 introduces the second step, computing virtual planar
coordinates for each sensor node of the network. Fig. 8 (b)
visualizes a planar embedding of the triangular mesh of the
network given in Fig. 8 (a) onto a unit disk. Each sensor node
stores the computed planar coordinates as its virtual coordinates.

Sec. 3.3 explains the third step, a resilient routing strategy. A
greedy forwarding path is computed and visualized based on the
virtual planar coordinates stored at each sensor node as shown in
Fig. 8 (c). Fig. 8 (d) shows the greedy path on the original network
model. If the greedy forwarding path fails, the source node can
flexibly choose an alternative path with different homotopy type
based on the computed homotopy group generators. The source
node then greedily forwards packets along the new path to the
destination node. The first and second rows in Fig. 9 show
paths with the same pair of source and target nodes but different
homotopy types on the original network model and mapped planar
disk, respectively. Note that the actual computation of all paths
with different homotopy types is based on the mapped virtual
planar coordinated visualized in the second row.

Later, we discuss some implementation issues in Sec. 3.4.
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(a) (b) (c) (d)

Fig. 8. (a) A network model with extracted triangular structure. (b) The embedding of the triangular mesh of the network onto plane. (c) A greedy
forwarding path is computed and visualized based on the virtual planar coordinates stored at each sensor node. (d) The greedy path computed in
(c) is shown on the original network model.

(a) Path I (b) Path II (c) Path III (d) Path IV

Fig. 9. The first and second rows show paths with the same pair of source and target nodes but different homotopy types on the original network
model and mapped planar disk, respectively. Note that the actual computation of paths with different homotopy types is based on the mapped virtual
planar coordinated visualized in the second row. We change the rendering method of the network model to better visualize the portion of a greedy
path at the backside of the surface network model.

3.1 Preprocessing

Given a wireless sensor network deployed on a high genus surface,
we apply the algorithm proposed in [31] to extract a triangular
mesh. The algorithm takes the connectivity graph of the network
as input. Each node constructs a local coordinates system based
on the measured distances between nodes within one-hop com-
munication range. Each edge computes a weight that measures
the number of triangles shared by the edge and various local
neighbor sets including neighboring nodes and connecting edges
in the initial graph. Then an iterative algorithm keeps removing
edges based on their weights until each edge in the final graph has
weight exactly two shared by two triangles only. Note that the
algorithm has no constraint on the communication model.

With the constructed triangular mesh M, we apply the algo-
rithm introduced in [32] to find a set of canonical homotopy
group generators. The algorithm starts from a randomly chosen
triangle and grows triangles with a width first way. At each step

of the growing, all the marked triangles always form a topological
disk, and the marked edges form the boundary of the disk. When
all the triangles have been traversed, the marked edges, i.e., the
boundary, form a graph. The shortest loop on the graph is detected,
corresponding to one generator of the surface homotopy group.
Pick one node on the loop and then cut M open along the loop. The
node is split to two boundary nodes. The shortest path connecting
the two boundary nodes forms another generator of the surface
homotopy group. The two loops actually correspond to one handle
of the surface. Continuously, the algorithm detects all handles of
the surface and their corresponding generators. It returns a set of
marked 2g closed loops, where g is the genus number of M. The
2g loops are disjoint on the surface except for their common end-
point. These loops are generators of the surface homotopy group.
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3.2 Mapping to Unit Disk
We virtually cut M open to a topological 4g-polygon along the
computed 2g closed loops. Practically, each node along the 2g
loops is virtually split to two, and each one is along one side of
the cut open loop (so 2g loops correspond to 4g sides and two
sides of one loop form a pair). The exception is the base node
where the 2g loops intersect. The base node is split to 4g ones -
each corner node of the 4g-polygon.

We then apply discrete harmonic map to map the 4g-polygon
to a unit disk centered at the origin (0,0) in Euclidean plane. An
intuitive way to understand discrete harmonic map is to model
the cut open M as a spring system. Each edge is a spring with
stretching energy. We fix the boundary of M to a unit circle
centered at the origin (0,0) and then let the non-boundary vertices
settle in equilibrium. When the spring system is stable - none
of the inner vertices is moving, the whole system achieves the
minimum stretching energy and the position of each node is its
mapped position in unit disk. Discrete harmonic map is proved
a guaranteed diffeomorphism with planar convex shape boundary
condition [33], [34].

Specifically, a randomly chosen corner node or the one with
the lowest ID, initiates a message with an ID and one counter
(ID,count) that records the side ID of the 4g-polygon and the
size of boundary vertices along the current side. The corner
node initiates the message as (1,0) and forwards it to one of its
neighbors along the boundary. Once a boundary node receives the
message, it increases count by 1 and records the information in the
message. If the boundary node is also a corner node, it forwards
the count information back to boundary nodes along the same
side of the 4g-polygon, namely, nodes sharing the same ID as the
corner node. The corner node then resets count to 0 and increases
ID by 1, and then forwards the message to the next neighboring
boundary node. The message keeps being forwarded until it comes
back to the initial corner node. Assume the initial corner node is
mapped to (1,0), and the remaining boundary nodes are mapped
uniformly and sequentially to the unit circle in a counter-clockwise
direction. Each boundary node can easily compute its position
along the unit circle based on its side ID, its count value and the
size of boundary vertices along the side.

With boundary vertices uniformly and sequentially mapped
to a unit circle, we initiate the positions of all inner vertices at
the origin (0,0). Then in each iteration, a non-boundary vertex
node updates its position as the average of positions of its direct
neighboring vertices. Each vertex receives a unique position in the
unit disk when each non-boundary vertex has stopped updating
its position. The fundamental domain of M is one-to-one and
continuously mapped to a unit disk in plane. We then assign
the computed planar coordinates as virtual coordinates of each
node. Note that a boundary node has two sets of virtual planar
coordinates. We set the threshold of the termination of harmonic
map as 1e−6. A non-boundary vertex stops updating its position
if the difference with the previously computed one is less than the
threshold. Such precision is enough to guarantee the mapping a
diffeomorphism.

Algorithm 1 provides the detailed steps of mapping the cut
open M to a unit disk using discrete harmonic map.

3.3 Routing
Given a pair of source S and destination T nodes in network, the
primary path is a straight line connecting S and T in the unit

Algorithm 1 Algorithm using discrete Harmonic Map
Input: A 4g-polygon M
Output: M mapped to a unit disk in plane

1: A corner node with the lowest ID, denoted as v0 initiates
a message with a segment ID and a counter as (1,0) and
forwards it to one of its neighbors along the boundary.

2: while The message not returned to v0 do
3: A boundary node vi receives the message and set counter+

+.
4: vi stores segment ID and counter.
5: if vi is a corner node then
6: vi sends the counter information back to boundary nodes

with the same segment ID.
7: vi sets ID++ and counter = 0
8: end if
9: vi forwards the message to its next neighboring boundary

node.
10: end while
11: v0 sends a message with the received segment ID (the total

number of segments) to its next neighboring boundary node
12: while The message not returned to v0 do
13: A boundary node vi receives the message and stores the ID.
14: vi forwards the message to its next neighboring boundary

node.
15: end while
16: Each boundary node vi computes its position along a unit

circle denoted as ui:

ui = (cos(
2π

D
(d−1+

n
N
)),sin(

2π

D
(d−1+

n
N
)))

{For a boundary node, denote the stored segment ID, number
of segments, position in the segment, and number of nodes in
the segment as d, D, n, and N, respectively.}

17: For all non-boundary node vi, initial ui = (0,0)
18: while true do
19: bool continue = false;
20: for all Each non-boundary node vi do
21: úi = ∑u j

{v j ∈ direct neighbors of vi}
22: if |úi−ui|> ε then
23: continue = true;
24: end if
25: ui = úi;
26: end for
27: if !continue then
28: return ui as virtual coordinates of vi

29: end if
30: end while

disk. S first sends a package storing the planar coordinates of T
along the primary path. A node always forwards the packet to
one of its neighbors, which is the closest to the destination T of
the packet based on the computed virtual planar coordinates. Since
the boundary of the mapped fundamental domain in plane is circle,
greedy forwarding will never get stuck at boundary.

If the primary path fails, S will choose an alternative path
with different homotopy type. We can generate infinite number of
paths with different homotopy types, but we always choose the
next shortest one based on approximated path length as discussed
in Sec. 3.4.1. Assume the alternative path crosses side ai. Based
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on the side ID, S computes the closest point, denoted by P, on
the arc where side ai is mapped. S then forwards the package
including the side ID, the planar coordinates of P and T to P.
Later the package is forwarded to a boundary node closest to P
along side ai. Since the boundary node stores two sets of planar
coordinates corresponding to sides ai and a−1

i respectively, we
pick the planar coordinates corresponding to side a−1

i and start
from the coordinates to greedy forward the packet to T .

Algorithm 2 provides the detailed steps of greedy forwarding
a packet to an alternative path when the primary one fails.

Algorithm 2 Algorithm of choosing an alternative path
Input: M with planar virtual coordinates stored at each node, a

pair of S and T
Output: An alternative path from S to T with different homotopy

type
1: Assume we have chosen a homotopy type represented as a

sequence of homotopy group generators L = aibi.
2: while L not empty do
3: Remove the first generator ai from L.
4: Greedy forward a packet to the arc where segment ai is

mapped.
5: The packet is forwarded to a closest boundary node vi on

segment ai.
6: Pick the planar coordinates stored at vi corresponding to

side a−1
i as the current position of the packet.

7: end while
8: Greedy forward the packet to T .
{Greedy forwarding is purely based on planar virtual coordi-
nates.}

3.4 Discussions
3.4.1 Sorting
Giving a pair of S and T nodes on M, we can generate infinite
number of paths with different homotopy types if we allow the
path to cross any combinations of the generators of the homotopy
group of M. However, considering the efficiency and security of
a network, we have to choose a limited number of paths among
them to avoid unnecessary retransmissions when the primary path
fails.

A straightforward idea is to sort and choose paths with the
shortest lengths. Paths with the shortest length will not only
consume less energy of the network, but also have better resilience
to network failures. In general, the more complicated homotopy
type a path has, the longer the path will be with a given pair of S
and T . So we first sort paths that cross only one generator of the
homotopy group of M. If it is necessary, we then sort paths that
cross combinations of two generators of the homotopy group of
M.

Assume a path crosses the generator ai. It is similar for bi. The
path can cross loop ai on M from its left or right direction, which
corresponds in the embedded fundamental domain that the path
starting from S crosses side ai or a−1

i . S computes the distances
to the two arcs where sides ai and a−1

i are mapped, denoted by
d0 and d1 respectively. S also computes the distances of T to the
two arcs, denoted by d2 and d3 respectively. The sum of d0 and
d3 is the approximated length of a path crossing ai from its left
direction. Similarly, the sum of d1 and d2 is the approximated
length of a path crossing ai from its right direction. S compares

the two paths and chooses the one with the shorter length. Usually
crossing a generator from two directions would generate paths
of totally different lengths, so the approximation error caused
by distortion can be remedied. Finding the closest point on a
generator sometimes might lead to high traffic near the endpoints
of the generator. One solution is that if such node has been used
in building other source-target paths for several times, then it can
be virtually disabled to future path setting requests.

3.4.2 Greedy Forwarding
Greedy forwarding based on the computed virtual planar coor-
dinates will always be successful along the boundary since the
boundary of the fundamental domain is mapped to a unit circle
in plane. However, greedy forwarding may get stuck at some
non-boundary node because some triangle around that node may
be mapped to an obtuse one in plane. Although all angles are
acute for all the mappings we obtained in our simulations, we
can handle such situation by allowing information exchange of the
stuck node with its 2-hop neighbors. The packet can then jump out
local minimum and keep greedy forwarding. In rare case when a
packet still gets stuck with its 2-hop neighbors’ information, face
routing [35] can be applied to guide the packet out of the local
minimum.

3.4.3 Time Complexity and Communication Cost
Given a network with n nodes, we now discuss the steps that
dominate the computing time and communication cost of the
overall algorithm. Specifically, the time complexity to extract a
triangular mesh M from the connectivity graph of the network is
O(n). The time complexity to find a canonical set of fundamental
group generators of M is O(gn), where g is the genus number of
the triangular mesh. The time complexity of computing harmonic
map can be measured by the number of iterations given by
O(nlogn).

The communication cost, measured by the number of mes-
sages, is O(dnlogn) for computing harmonic map where d is
the average vertex degree of M, since each vertex only needs to
exchange messages with its direct neighbors in each iteration. The
communication cost of other steps of the algorithm is linear to n
since it is a completely local algorithm.

Although the time complexity of the majority of existing
multipath algorithms [16], [22], [23] is linear to a network size,
these algorithms need to recompute for a new pair of source-
destination nodes. While our algorithm only needs to compute
virtual coordinates for each sensor node once. Assume every
node of a network can be a source or destination, the overall
time and communication complexity of existing multipath routing
algorithms is O(n3). In contrast, the time and communication com-
plexity of our algorithm is O(nlogn) and O(dnlogn) respectively,
scalable to both the size and genus number of a network.

Our algorithm is also fully distributed. The only broadcasting
through the whole network is the genus number after we compute
a canonical set of homotopy group generators. Then a node only
needs to communicate with its direct neighbors to compute virtual
coordinates for later greedy routing.

4 SIMULATIONS

The proposed resilient routing algorithm applies for large-scale
sensor networks deployed on surfaces of coal mine tunnels for
disaster prevention and rescue, or corridors of buildings for fire
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(a) Network I (b) Network II (c) Network III (d) Network IV

Fig. 10. The first row shows various network models with extracted triangular structures. The second row shows the embedding of the triangular
mesh of each network onto plane. Greedy forwarding is based on the computed virtual planar coordinates stored at each sensor node.

detection, or sewer or gas systems for monitoring underground
pipelines. These surfaces generally have complex shapes and
multiple handles, i.e., genus numbers.

To this end, we create multiple representative surface models
with various genus numbers ranging from one to four. Sensor
nodes varying from 500 to 1000 are randomly deployed on these
surface models to carry out simulations. As we discussed in
Sec. 3.1, we apply the algorithm proposed in [31] to extract
a triangular mesh. The algorithm has requirement on the node
density but no constraint on the communication model. Therefore,
we assume a surface model is initially fully covered by sensors,
and the average neighboring degree of each node is at least six. All
sensors have a common transmission range and communication
model. The first row of Fig. 10 shows the extracted triangular
meshes from the connectivity graph of networks based on locally
estimated distances between nodes. The second row of Fig. 10
shows the embedding of the triangular mesh of each network onto
plane. Greedy forwarding is based on the computed virtual planar
coordinates of each sensor node.

In our simulations, we check three different failure models
of a network: independent node failure, where each node in
network has an equal and independent probability of failure during
some time interval; small geographically correlated failure, where
all nodes within a certain fixed radius fail simultaneously and
locations of the centers of these regions are along the primary path;
and giant geographically correlated failure, in which all nodes
within a large radius fail simultaneously such that the surface
network is disconnected at some handle.

We use three important metrics to evaluate the performance
of a resilient routing algorithm. The first metric is the successful
delivery ratio. Assume the source and destination nodes can be any
pair of network nodes. The successful delivery ratio measures the
probability of an algorithm can successfully find an alternate path
within a limited number of retransmissions when the primary path
between a randomly chosen pair of source and destination nodes
is broken. The successful delivery ratio indicates the resilience
of a routing algorithm. The second metric is the average number

of switching to alternate paths before a message is forwarded to
destination successfully. This metric reflects the consumed energy
of a successful delivery, and we expect a small number. The
third metric is delay ratio. We divide the end-to-end hop count
from source to target including the cost of forwarding messages,
informing source of failed paths, and local detours, by the hop
count of primary path.

We compare our method with other multipath resilient routing
methods including idealized node-disjoint multipath [22], directed
diffusion [16], and N-to-1 multipath routing [23]. To avoid un-
limited number of trying alternate paths, and control the energy
consumption and delay cost, we require that all multipath methods
can try at most a constant number of alternate paths for a given
pair of source and destination nodes when the primary one fails.
The number is application sensitive and depends on the size of a
network. We set it to 5 in our simulations.

For each network model, we randomly choose 100 source
and destination nodes, respectively, and then construct a total
of 1×104 source and target pairs. Simulation results given in
Secs. 4.1, Secs. 4.2, and Secs. 4.3 show that our method achieves
the best performance under geographically correlated failures
including small and giant failure models.

In the case when a network is failure free, we compare our
algorithm with existing routing schemes specifically designed
for surface networks with guaranteed delivery. Simulation results
given in Sec. 4.4 show a consistently low stretch factor of our
algorithm over previous routing schemes.

In Sec. 4.5, we analyze the computing time of the proposed
resilient routing algorithm.

4.1 Independent Node Failure
The first row of Fig. 11 compares the successful delivery ratio of
different methods as a function of the probability of independent
node failure for networks shown in Fig. 10. As the probability
increases, the successful delivery ratio of all methods decreases
dramatically. When the probability of node failure in network is
around 10%, almost half of the sampled source-destination pairs
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Fig. 11. Independent Node Failure: the first row gives the successful delivery ratio as a function of the probability of independent node failure. The
second row shows the average number of switching to alternate path before a message is forwarded to destination successfully.

fail. For the same set of network models, the second row of Fig. 11
shows the average number of switching to alternate path for a
successful delivery. Considering that it is difficult and also unfair
to count the number of the alternate paths for directed diffusion,
we exclude it from the comparison. Since the successful delivery
ratios are too low for all comparison methods, the discussion of
delay ratio of a successful delivery is unnecessary.

Fig. 11 clearly shows that switching to an alternate path does
not help when the probability of node failure is high. The reason is
that an alternate path is always longer than the primary one for any
multipath method, so the failure probability of the alternate path
is always higher than the primary one assuming each node has an
equal failure probability. All multipath methods are intrinsically
low resilient to independent node failures and perform no better
than a local detour one.

Therefore, we set a local detour method as an initial resilient
routing strategy, but at the same time, each node periodically
updates its neighboring nodes and local mesh structure. Either
a single or a set of connected nodes failure will result in holes.
Given a mesh structure, a non-boundary edge is shared by exactly
two triangle faces, and a boundary edge is shared by only one.
The two ending vertices of a boundary edge are boundary vertex.
Boundary edges and vertices along newly generated holes can be
easily detected in a mesh structure. A boundary node initiates a
message with a counter set to 0 and forwards it to one of its
neighbors along the boundary. When a boundary node receives the
message, it increases the counter by 1. The message keeps being
forwarded until it comes back to the initial boundary node. If the
size of the hole is large or keeps growing, the initial boundary node
will send out a message to the whole network to alert a multipath
strategy for routing.

4.2 Small Geographically Correlated Failure
The first row of Fig. 12 compares the successful delivery ratio
of different methods as a function of the radius of geographically
correlated node failure. As the radius of a failure region increases,
the successful delivery ratio of directed diffusion decreases dra-
matically. However, our method consistently performs the best
over other multipath methods.

The second row of Fig. 12 shows the average number of
switching to alternate path for a successful delivery. With the
increase of the radius of failure region, the average number
of switching to alternate path increases correspondingly for all
methods. It is reasonable since all methods need to find an
alternate path geographically spread out to avoid the failure region.
The difference is that our method requires the least number of
switching to achieve the highest successful delivery ratio.

The third row of Fig. 12 shows the average delay ratio of a
successful delivery. It is clear that paths with different homotopy
types are not necessarily short routes. However, the highest suc-
cessful delivery ratio of our algorithm can justify such moderate
delay cost.

4.3 Giant Geographically Correlated Failure
Fig. 13 (a) compares the successful delivery ratio of different
methods when at least one handle of a network is disconnected.
Directed diffusion cannot tolerate such large area of node failure.
Its successful delivery ratio drops to 0 for all models. Idealized
node-disjoint multipath and N-to-1 multipath routing perform not
well either. On the contrary, our algorithm can jump far enough to
avoid a huge failure area.

Fig. 13 (b) shows the average number of switching to alternate
path for a successful delivery. Since the maximal number of
switching to alternate path is set to 5, we can see that both
Idealized node-disjoint and N-to-1 multipath routing have to try
at least 3 alternate paths on average to find a successful one.
Our method achieves the highest successful delivery ratio with
the lowest number of switching to alternate path.

Fig. 13 (c) shows the average delay ratio of a successful
delivery. Since our algorithm requires a far lower number of
switching to alternate paths than others under such failure model,
our algorithm achieves consistently the least delay ratio.

4.4 Surface Routing
If a network is failure free, our algorithm guarantees 100%
delivery rate between all pairs of nodes. Since previous greedy
routing schemes including GPSR [36], its variants, and BVR
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(a) Network I (b) Network II (c) Network III (d) Network IV

Fig. 12. Small Geographically Correlated Failure for network models: the first row gives the successful delivery ratio of different methods as a
function of the radius of geographically correlated node failure. The second row shows the average number of switching to alternate path before a
message is forwarded to destination successfully. The third row shows the average delay ratio compared to primary path.
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Fig. 13. Giant Geographically Correlated Failure: (a) the average successful delivery ratio of different methods. (b) the average number of switching
to alternate path before a message is forwarded to destination successfully. (c) the average delay ratio compared to primary path.

[37] cannot guarantee successful delivery in surface networks, we
compare ours with existing routing schemes specifically designed
for surface networks with guaranteed delivery.

We compare our method with two other routing methods. One
is the SINUS method [4] - the most recent routing algorithm
specifically designed for WSNs on high genus surfaces. Their
method cuts a closed high genus surface network open to a
topological annulus and then maps to a planar annulus. Greedy
routing is carried out based on the planar virtual coordinates of
each sensor node. The other is the Random-Walk (RW) algo-
rithm [9] working well for general 3D networks including surface
networks. In our simulations, we pick RW-GRG algorithm that
applies greedy forwarding in the original network graph instead of

the dual one, because it achieves better performance on 3D surface
network routing than other RW algorithms.

Note that a source node S in our method has the flexibility to
choose a particular target node T in universal cover to deliver a
package. In our comparison, we let S to choose one from a group
of T s including the one in the central domain and the 4g ones
in one layer of the central domain based on the shortest distance
in the embedded universal cover. Figure 10 gives the embedded
one-layer universal cover of the testing models in Euclidean plane
and 2D hyperbolic space.

4.4.1 Stretch Factor
We run routing queries on 20,000 randomly selected source-
destination pairs on each network model. Since all the three
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methods including ours, the SINUS method, and the Random-
Walk algorithm are guaranteed for successful delivery, the delivery
rates are all 100%. We then measure the stretch factor that is the
ratio of lengths between the routed path and the shortest one for
each route. Figure 14(a) compares the average stretch factors of
the three methods on the network models.

It is obvious that our method shows a consistently low stretch
factor for each model. However, the SINUS method shows an
increased stretch factor with the increased number of genus of
the testing model. With more genus numbers, more cuts are
required to slice each handle open to cut the originally closed
high genus surface to a topological annulus. Pairs with source and
target nodes close to each other in original network become far
away when source and target nodes locate on each side of the
cuts introduced by the SINUS method. The stretch factor of the
Random-Walk algorithm, on the contrary, depends on the shape of
a network model instead of its genus number. The reason is that
the performance of Random-Walk algorithm is mostly decided
by the number of local minimums along source-target pairs. If a
network model has many local concave shapes, the Random-Walk
algorithm has to trigger the expensive recover step frequently. So
the stretch factors of the Random-Walk algorithm vary a lot for
different models.

4.4.2 Network Load
For each model, we measure the load of each node for the same
routing queries we randomly chosen for computing the stretch
factors. Figures 14(b) and (c) compare the average load and the
maximum load per node of the three methods on the network
models.

Both the average load and the maximum load per node of the
Random-Walk algorithm vary a lot for different models, which
shows again a strong dependency on the shape of a network
model. Local minimums at concave regions require frequent local
recover steps of the Random-Walk algorithm, which induces heavy
network traffic around those concave regions.

Our method has consistently lower average load and maximum
load per node than the SINUS method for each model. Both
methods show an increased pattern of the maximum load per node
with the increased genus number of the network models. However,
the SINUS method has a much higher maximum load per node.
The reason is that nodes around the inner boundary of the mapped
planar annulus take much heavier traffic of a network.

4.5 Computing Time

Given a network with the size of sensor nodes n, the time
complexity of our overall algorithm is linear to n. We discuss
steps that dominate the computing time of the overall algorithm.

The time complexity of the algorithm to extract a triangular
mesh M from the connectivity graph of the network based on
locally measured distances is O(n). The time complexity of the
algorithm to find a canonical set of fundamental group generators
of M is O(gn), where g is the genus number of the triangular
mesh.

The time complexity of harmonic map is measured by the
number of iterations. In our experiments, we set the step length to
0.5, and the threshold of the maximal moving distance of non-
boundary nodes to 1e− 3. Fig. 15 gives the convergence rate
of discrete harmonic map on different networks. The maximal
moving distance of non-boundary nodes at each iteration, denoted

as error, decreases exponentially fast, so the convergence time is
less than 4 seconds for all network models.

5 CONCLUSION AND FUTURE WORKS

The routing scheme we proposed in the paper is the first work
to achieve resilient routing for networks deployed on a surface
of a complex-connected 3D setting. Paths are classified by their
homotopy types. A source node can flexibly choose one greedy
path from a homotopy type to deliver packet to its destination. Our
routing scheme does not require GPS information for individual
node. Greedy forwarding along a route is always guaranteed based
on the computed nodes’ virtual planar coordinates. The proposed
algorithms are distributed with information exchanged between
neighboring nodes. They are also scalable to both the size and
genus number of a surface network with a small and constant
storage at each node. Simulation results show that our resilient
routing scheme achieves the best performance under geographi-
cally correlated failure models compared with the state-of-the-art
resilient routing algorithms. We also compare our routing scheme
with existing ones specifically designed for surface networks
in the case when a network is failure free. Simulation results
show that our routing scheme achieves the lowest stretch factor
compared with all existing state of the art surface network routing
schemes. In our future works, we will work on resilient routing
algorithms to achieve a high delivery rate for surface networks
under independent node failure model.
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