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Distributed Information Storage and Retrieval in 3-D
Sensor Networks With General Topologies

Yang Yang, Miao Jin, Yao Zhao, and Hongyi Wu

Abstract—Distributed in-network data-centric processing aims
to reduce energy consumed for communication and establish a self-
contained data storage, retrieval, aggregation, and query sensor
system that focuses more on the data itself rather than the identi-
ties of the individual network nodes. Double-ruling-based schemes
support efficient in-network data-centric information storage and
retrieval, especially for aggregated data, since all data with dif-
ferent types generated in a network can be conveniently retrieved
along any single retrieval curve. Previous double-ruling-based re-
search focuses on two-dimensional (2-D) wireless sensor networks
where a 2-D planar setting is assumed. With increasing interests
in deploying wireless sensors in three-dimensional (3-D) space for
various applications, it is urgent yet fundamentally challenging to
design double-ruling-based approach in general 3-D sensor net-
works because double-ruling-based schemes in general have much
harder geometric constraints than other distributed in-network
data-centric processing schemes. In this research, we propose a ge-
ographic location-free double-ruling-based approach for general
3-D sensor networks with possibly complicated topology and geo-
metric shapes. Without the knowledge of the geographic location
and the distance bound, a query simply travels along a simple curve
with the guaranteed success to retrieve aggregated data through
time and space with one or different types across the network. Ex-
tensive simulations and comparisons show the proposed scheme
with low cost and a balanced traffic load.

Index Terms—3-D sensor networks, data-centric, in-network,
information storage and retrieval.

I. INTRODUCTION

IRELESS sensor networks have experienced an explo-
W sive growth in recent years. In comparison to earlier
computer communication systems, the unique and intrinsic
challenge in sensor networking is distributed and scalable
computation and communication. In particular, an individual
sensor is highly resource-constrained, with extremely limited
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computing, storage, and communication capacities. On the
other hand, however, the target applications often require
large-scale deployment where the amount of data generated,
stored, and transmitted in the network grows proportionally
with the network size. This dilemma renders the conventional
sensor networking strategy that intends to transmit all sensor
data to an external server impractical. To this end, distributed
in-network data-centric storage and retrieval have been exten-
sively discussed in the literature [1]-[11]. The new paradigm
of distributed in-network data-centric processing focuses more
on data themselves rather than the identities of individual
sensor nodes. Data are uniquely named, and data processing
is achieved using data names instead of network addresses,
aiming to establish a self-contained data acquisition, storage,
retrieval, and query system.

While a two-dimensional (2-D) planar setting has been
assumed in most earlier studies of in-network data storage
and retrieval, there has been increasing interest in deploying
wireless sensors in three-dimensional (3-D) space for such
applications as underwater reconnaissance and atmospheric
monitoring. Several explorative 3-D sensor network testbeds
have been developed recently (either in space or under-
water) [12], [13]. Although they are all in relatively small size,
we foresee large-scale deployment will soon be demanded in
the near future.

This research focuses on in-network data-centric information
storage and retrieval in large-scale 3-D sensor networks. We
first summarize existing in-network data-centric storage and re-
trieval algorithms for 2-D networks, and then discuss the chal-
lenges in 3-D networks, followed by an overview of our pro-
posed approach.

A. Overview of Distributed Information Storage and Retrieval
Algorithms

Geographical hash table [3], [11], [14]-[16] is a general ap-
proach for in-network data-centric storage and retrieval. A basic
geographical hash-table-based scheme hashes a datum by its
type into geographic coordinates and stores at the sensor node
geographically nearest to such coordinates. Queries apply the
same hash table with the desired type to retrieve data from the
storage node. Delivery of the data is implemented by geographic
routing, such as GPSR [17]. To reduce bottleneck at the hash
nodes and improve data survivability under node failure, a geo-
graphical hash-table-based scheme applies a structured replica-
tion with multiple mirrors scattered in the network. Structured
replication reduces the cost of storage, but increases the cost of
queries.
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Fig. 1. Simple double-ruling scheme on (a) a 2-D grid sensor network and (b) a
3-D grid sensor network. p; and P» are two information producers with their
replication routes marked in blue. ¢ is an information consumer with its retrieval
route marked in red.

Different from geographical hash-table-based schemes, a
double-ruling-based scheme works as follows. A datum (or a
pointer to the datum) is duplicated along a curve called repli-
cation curve, and a query travels along another curve called
retrieval curve. Successful retrieval is guaranteed if the retrieval
curve intersects the replication curve. A simple double-ruling
scheme on a planar grid is illustrated in Fig. 1(a) where nodes
are located at lattice points. The replication curves follow the
horizontal lines, and the retrieval curves follow the vertical
lines. By traveling along a vertical line, a data query, called
information consumer, can always find the requested data
generated by an information producer.

Double-ruling-based schemes support efficient data retrieval
since all data with different types generated in a network can
be conveniently retrieved along one simple retrieval curve.
This is in a sharp contrast to geographical hash-table-based
schemes where an information consumer has to visit multiple
nodes scattered in the network to collect data with different
types hashed to various locations. Moreover, with modestly
increased data replication, a double-ruling-based scheme has
well-balanced load across the network, while nodes near the
hashed location suffer much higher traffic load than others in a
geographical hash-table-based scheme. A double-ruling-based
scheme also has better fault tolerance against geographically
concentrated node failure by replicating data on nodes that are
uncorrelated with node proximity.

Double-ruling-based schemes achieve all the desired
properties at the cost of more data duplication and much
stronger geometric constraints on the shape of a sensor net-
work than geographical hash-table-based schemes. Previous
double-ruling-based schemes either assume networks with
2-D grid shape [1], [4], [18] or with heavy data replication to
achieve high probability that the retrieval curve would meet one
of the replication curves within the sensor network field [5]. To
extend double-ruling scheme to networks with uneven sensor
distribution and irregular geometric shapes, landmark-based
scheme [9] is proposed to partition the sensor field into tiles.
GHT is adopted at the tile level, i.e., a data type is hashed to a
tile instead of a single node. Inside each tile, a double-ruling
scheme is applied to ensure the intersection of a retrieval path
and a replication path. Later, a location-free double-ruling
scheme is introduced in [19] based on boundary recognition
and the computation of the respective gradient fields. To im-
prove the flexibility of retrieval, a spherical projection-based
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Fig. 2. (a) 3-D sensor network deployed underwater around an island. (b) 3-D
sensor network with several coverage holes inside.

double-ruling scheme is proposed in [10], where a planar
network is mapped to a sphere based on the inverse of stere-
ographic projection. Both the replication and retrieval curves
are great circles such that a retrieval curve always intersects all
other replication circles.

B. Challenges in 3-D Networks

Although double-ruling has shown highly effective for
distributed information storage and retrieval in 2-D sensor
networks, it cannot be efficiently applied in 3-D networks. A
naive double-ruling-based scheme in 3-D sensor networks is
shown in Fig. 1(b). In such a 3-D grid-based cube-shape sensor
network, data replication and retrieval are along the horizontal
and vertical planes, respectively, such that a retrieval plane
intersects all replication planes. Besides an extremely high cost
of data replication, such a 3-D grid-based double-ruling scheme
requires a network with a regular cube shape and uniform node
distribution. Recently, a volumetric parametrization-based
double-ruling scheme is introduced in [20] and [21]. They map
a 3-D sensor network to a cube and assign each node a virtual
coordinates. Their method requires the network shape to be
topologically equivalent to a cube.! However, many practical
3-D sensor networks are topologically different from a cube.
Fig. 2(a) shows a 3-D sensor network with sensors deployed
underwater around an island. The topology of the network is
equivalent to a donut with a handle. Fig. 2(b) gives another
example of a 3-D sensor network with multiple coverage holes
inside.

Another challenge to achieve double-ruling in 3-D sensor net-
works is the delivery of data and query to the mapped geolocal-
izations for in-network data storage and retrieval. Previous GHT
and double-ruling-based schemes on 2-D sensor networks rely
on geographical routing schemes, such as GPSR [17]. They re-
quire global location information. However, some application
scenarios in 3-D prohibit the reception of satellite signals by
part or all of the sensors, rendering it impossible to solely rely
on global navigation systems. Moreover, the cost to equip a GPS
receiver at each node is greatly exacerbated in a 3-D sensor net-
work due to the dramatically increased sensor quantity in order
to cover a 3-D space compared to its 2-D counterpart. Even if
we assume location information for each sensor node, it is still
nontrivial to design a scalable geographic routing scheme that

ITwo shapes topologically equivalent to each other means they can be con-
tinuously transformed one into the other. A continuous mapping exists between
them.
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Fig. 3. (a) 3-D sensor network model with two handles. (b) Computed cut graph of the triangulated boundary surface of the network is marked with yellow.
(c) Boundary surface of the network is cut open to a topological disk along the cut graph and mapped to an aligned planar rectangle. The horizontal lines marked with
blue are two data replication curves with different types. The vertical line marked with red is one data retrieval curve. (d) Query of aggregated data corresponding
to (c). (e) 3-D sensor network model. (f) Computed cut graph marked with yellow. (g) Boundary surface of the network is cut open to a topological disk along the
cut graph and mapped to an aligned planar rectangle. The horizontal line marked with blue is one data replication curve. The vertical line marked with red is one

data retrieval curve. (h) Data query corresponding to (g).

guarantees successful delivery and requires constant storage at
each node in general 3-D sensor networks.

C. Our Approach

Considering the boundary surface of a 3-D volume is always
a closed surface, the proposed approach is motivated by a topo-
logical concept that any closed surface can be cut open to a
topological disk along an appropriate set of edges called a cut
graph of the surface [22]. Two examples given in Fig. 3 briefly
illustrate the basic idea of our approach. The first example is
a 3-D volumetric sensor network model with two handles [see
Fig. 3(a)]. We first detect the boundary nodes and build a trian-
gular structure of the identified boundary surface of the network
[see Fig. 3(a)]. We then compute a cut graph of the boundary sur-
face of the network that is marked with yellow color in Fig. 3(b).
We cut the boundary surface of the network open to a topolog-
ical disk along the cut graph, and then map it to an aligned planar
rectangle such that each boundary node of the network is asso-
ciated with a planar rectangle virtual coordinates [see Fig. 3(c)].
Each nonboundary sensor stores the ID of its neighbor nearest
to the boundary of the network. A data generator follows the se-
quence of IDs to the boundary of the network, and then travels
along a horizontal line of the virtual planar rectangle and leaves
data copies. The two horizontal lines of the virtual planar rec-
tangle marked with blue color shown in Fig. 3(c) correspond
to the two real data replication curves of the network shown
in Fig. 3(d) marked with the same color. Similarly, a consumer
follows the sequence of IDs to the boundary of the network and
collects the aggregated data of different types along a vertical
line. The vertical line of the virtual planar rectangle marked
with red shown in Fig. 3(c) corresponds to the data aggrega-
tion curve of the network shown in Fig. 3(d) marked with the
same color. The second example is also a 3-D sensor network

deployed underwater [see Fig. 3(e)]. We cut the boundary sur-
face of the network open to a topological disk along a com-
puted cut graph [see Fig. 3(f)], and then assign each boundary
node of the network a planar rectangle virtual coordinates [see
Fig. 3(g)]. Similarly, Fig. 3(h) gives a data query example.

The proposed cut-graph-based double-ruling approach works
for 3-D sensor networks with general topology and geometry
shapes. Without the knowledge of the geographic location
and the distance bound, the success of data retrieval is always
guaranteed because a pair of horizontal and vertical lines surely
intersect. Retrieval of aggregated data through time and space
with different types is also guaranteed. A consumer travels
along a vertical line and then collects all desired information in
the network because the vertical line intersects all horizontal
lines—replication curves of the network. The proposed algo-
rithm has no constraints on communication models and is fully
distributed. Each node only needs to exchange information with
its direct neighbors. The amount of extra information stored at
individual nodes is constant and small. Simulation results show
the proposed approach with low cost and a balanced traffic
load.

The rest of this paper is organized as follows. Section II ex-
plains in detail the algorithm to compute the cut graph.
Section III describes the method to generate the planar rec-
tangle virtual coordinates of boundary nodes of a network.
Section IV discusses a number of implementation issues of
the proposed cut-graph-based double-ruling approach in 3-D
sensor networks. Section V presents the simulation results, and
Section VII concludes the paper.

II. CUT GRAPH OF BOUNDARY SURFACE OF THE NETWORK

As briefly introduced in Section I, given a sensor network de-
ployed in 3-D volume with distance information within one-hop
neighborhood only, we detect its boundary nodes and extract
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a triangular boundary surface of the 3-D volume before com-
puting its cut graph. Note that a boundary surface of any 3-D
volume is a closed surface (i.e., without any holes).

We apply the algorithm proposed in [23] to identify boundary
nodes of a 3-D volume sensor network. The algorithm is fully
distributed with no constraints on communication models.
Although the algorithm can tolerate a moderate distance mea-
surement error, we do not require accurate detection of all
boundary nodes of the network. We only need a connected
triangular structure to approximate the boundary surface of
the 3-D volume network. We allow some mistakenly detected
nonboundary vertices on the triangular structure.

We then apply the algorithm proposed in [24] to extract a
triangular structure of the detected boundary nodes of the net-
work. The algorithm takes the connectivity graph of the detected
boundary nodes of the network as input. Based on locally esti-
mated distances between nodes within one-hop communication
range, a local coordinates system can be constructed. Each edge
based on its local coordinates system then computes a weight
that measures the number of triangles shared by the edge and
the various local neighbor sets for the edge in the initial graph.
An iterative algorithm keeps removing edges until each edge in
the final graph has weight exactly two—shared by two triangles
only. The algorithm is also fully distributed with no constraints
on communication models. The constraint of the algorithm is
that it assumes that a triangular graph is a subgraph of the initial
connectivity graph of boundary nodes of the network.

Before we introduce the algorithm of computing a cut graph
of'the triangulated boundary surface of a 3-D volume network in
Section II-B, we give a brief review of some important topolog-
ical concepts that are necessary to the algorithm in Section II-A.
We refer the interested reader to [22], [25] for formal definitions
and further topological background.

A. Topological Background

A surface is orientable if it has two distinct sides. General
surfaces in the real world are orientable surfaces. A loop is a
continuous function of the circle on a surface. Two loops are
homotopic if there is a continuous deformation from one loop
onto the other on the surface. Denote M a connected and ori-
entable surface embedded in 3-D, and L a loop on M. L is con-
tractible if it is homotopic to a constant (a loop that can shrink
to a single point) as shown in Fig. 4 with L;; otherwise it is
noncontractible. L is surface separating if it can be expressed as
the symmetric difference of boundaries of topological disks em-
bedded in surface as shown in Fig. 4 with L, and L; otherwise
it is nonseparating as shown in Fig. 4 with Ls. Any nonsepa-
rating loop is a noncontractible loop; similarly, any contractible
loop is a separating loop.

The genus of M is the maximum number of disjoint non-
separating loops Ly, Ls,..., L, in M; that is, any L; and L;
have no topological intersection if i # j, and M\(Ly U--- L)
is connected. The genus number is the most basic topology in-
formation of a surface and equals the number of handles. For
example, a disk and a sphere have a genus 0, and a torus has a
genus 1.

Any closed surface M (e.g., a surface without a hole) can
be opened into a topological disk D (e.g., a surface with one
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Fig. 4. Loops on a genus-2 surface: L; is contractible and surface separating;
Lo is noncontractible and surface separating; Ls is noncontractible and
nonseparating.

boundary) by cutting along an appropriate set of edges called
cut graph. Denote G a cut graph of M. Each edge of G appears
twice on the boundary of D, and we can obtain M by gluing to-
gether these corresponding boundary edges of D. Fig. 5 shows
cut graphs of genus-0, genus-1, and genus-2 surfaces, respec-
tively. The three closed surfaces are cut open to topological
disks along the given cut graphs. Denote g the genus number
of M. The number of base loops of a cut graph is 2g.

B. Cut Graph of the Boundary Surface of a Network

The triangulated boundary surface of a 3-D sensor network
is connected, orientable, and closed. We abuse the symbol M
to denote a connected and orientable triangulated surface em-
bedded in 3-D. Specifically, we denote M = (V, E, F) a tri-
angulated surface embedded in 3-D, consisting of vertices V',
edges I/, and triangle faces F'. Denote v; € V avertex with ID ¢;
e;; € E an edge with two ending vertices v; and v;; fiju € F
a triangle face with vertices v;, v, and v.

The problem of computing the shortest cut graph of a general
topology surface is studied in [26], which proves the problem
NP-hard and provides a polynomial-time approximation al-
gorithm. Canonical systems of loops, a system of 2g (g is the
genus number of the surface) loops with a single base vertex
to cut a surface into a disk, is discussed in [27]. Erickson
and Whittlesey [28] provide a greedy algorithm to compute
a shortest system of such canonical loops. Shortest cut graph
with prescribed vertex set is discussed later in [29].

Instead of adopting the above optimization algorithms, we
propose a fully distributed two-step algorithm motivated by that
of [30], aiming to balance the size of the cut graph measured by
the number of edges and the computation cost and the commu-
nication cost measured by the number of exchanged messages.
The basic idea of the first step introduced in Section II-B.1 is
to grow triangles with the width first way. At each step of the
growing, all the marked triangles always form a topological
disk, and the marked edges form the boundary of the disk.
After all the triangles have been marked, we can cut the closed
surface into a topological disk along the marked edges. The
size of the cut graph can be largely reduced by trimming away
those unnecessarily marked edges at the second step introduced
in Section II-B.2. For genus-0 surfaces, there are no marked
edges left after trimming, which provides a convenient way to
automatically identify the topology of a 3-D sensor network.
We discuss the computational cost of the two-step algorithm in
Section II-B.3.

1) Computing the Cut Graph: The algorithm starts from one
randomly chosen triangle f;;z of A/, which can be the one with
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Fig. 5. Any closed surface M can be cut open to a topological disk D along one cut graph of the surface G: (a) Network I—a genus-0 surface; (b) Network I[I—a
genus-1 surface; (¢) Network I1I—a genus-2 surface. Notice that the edges on G appear twice on the boundary of ID. D has one-to-one mapping with M except

the boundary of D.

the smallest node ID. fj;; marks itself and its three edges e;;,
ejk, and ex;. Each of the marked edges checks whether it is
shared by two marked triangles. For example, edge ¢;; finds
its neighboring triangle f;; unmarked. e;; then removes mark
from itself but adds mark on triangle f;;; and edges e;; and e;;.
Note that it is possible that ¢;; or e;; may have been marked al-
ready. The propagation algorithm stops when all the triangles
of M have been marked. Let all the marked edges be &, which
form a cut graph of M. We prove the correctness of the algo-
rithm as follows.

Theorem 1: A closed surface M can be cut into a topological
disk D along the cut graph G computed by the above algorithm.

Proof: We can prove it by way of induction. The algorithm

starts from one triangle of M with its edges marked. This single
triangle is topologically equivalent to a disk with boundary
edges marked. We denote it as D;. After the i — 1 steps, 4 — 1
triangles have been marked and added. We have D;_;. Suppose
D,_; is a topological disk with boundary edges marked. At
the step #, an unmarked triangle is identified, which means this
triangle does not belong to D;_; but must share at least one
of the boundary edges of D; ;. By adding this triangle into
D, and updating the marked edges as the way described by
the algorithm, the newly formed D; is still a topological disk.
Marked edges form the boundary of D;. When all the triangles
of M have been marked, D,,, has included all the triangles and
is still a topological disk with its boundary edges marked. The
surface M can then be cut open to a topological disk D = D,,
along the marked edges by splitting each marked edge and its
two ending vertices to two. |

Theorem 2: The cut graph computed by the above algorithm
is connected.

Proof: This can be easily proved by way of contradiction.

If the computed cut graph is disconnected, then the boundary of
D,,, in the proof of Theorem 1 is disconnected. It is impossible
that the boundary of a topological disk is disconnected. |

2) Trimming: If we cut a closed surface M open along the
cut graph computed by the above propagation algorithm, the
boundary of the topological disk surface D would be extremely
zigzagged. The size of the boundary edges of D in the worst
case can equal the size of the triangles of M. The reason is that,
in the worst case, the size of the marked edges is increased by
one each time when one triangle of M is marked.

To control the size of the cut graph, we need to trim away
those unnecessarily marked edges. Marked edges forming non-
segmenting loops of M are necessary because the loops cor-
respond to the cut open of each handle. Meanwhile for those
marked and dangling tree edges that do not belong to or con-
nect any loops, M can still be cut open to a topological disk
after removing them from the cut graph.

The algorithm of trimming is straightforward. Each marked
edge checks whether its two ending vertices connect to other
marked edges. If one of its two ending vertices does not con-
nect to any other marked edges, the edge is identified as a dan-
gling tree edge and can be unmarked—removed from the cut
graph. The unmarked edge will then send messages to its neigh-
boring marked edges through the other ending vertex. Its neigh-
bors then conduct the same checking when receiving the mes-
sage. The trimming process stops when there is no marked, dan-
gling tree edges. Note that it is impossible that the two ending
vertices of a marked edge do not connect to any other marked
edges because we proved that the marked edges are connected
in Theorem 2.

Theorem 3: The removal of marked, dangling tree edges does
not disconnect the cut graph.

Proof: Each dangling tree edge connects to G with only
one ending vertex when it is removed. Hence, the removal of
dangling tree edges does not disconnect . ]

We have the following theorem, which said that all marked
edges will be unmarked by the end of the trimming process for
a genus-0 surface M.

Theorem 4: After the trimming process, there is no marked
edge left for a closed genus-0 surface M (i.e., a topological
sphere surface).

Proof: We first use way of contradiction to prove the
cut graph of a genus-0 surface M computed by the above
propagation algorithm is a tree. Considering the fact that M
is topologically equivalent to a sphere, every loop on M is
contractible, therefore surface-separating, If there exists a loop
in the computed cut graph of M, the loop will separate M to
two disconnected parts. This contradicts what we have proved
in Theorem 1: At each step ¢ of the propagation, D; is always
a topological disk. Thus, the computed cut graph of a genus-0
surface M should be a tree without loops. Each marked edge
will be identified as dangling tree edge and removed eventually
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by the proposed trimming algorithm. There will be no marked
edges left at the end of the trimming process. |

For a boundary surface of a network-detected genus 0, the
boundary node of the network with the smallest ID conducts a
simple flooding on the boundary surface of the network to find
one boundary node with the longest shortest path measured by
hops on the boundary surface. We then cut the surface open to a
topological disk surface (i.e., a simply connected domain) along
the shortest path between the pair of nodes.

3) Computational Cost: The algorithm to compute a cut
graph of a boundary surface of a network involves many
topological concepts, but the computational complexity of the
algorithm is actually low.

The first step of computing the cut graph starts from marking
one randomly chosen triangle of the boundary surface of the
network and then continues to mark others with the width first
way, so each triangle will be visited only once before this step
ends. The time complexity of this step is linear to the size of
the triangles of the boundary surface. During the growth of the
marked triangles, only nodes at the two ends of a marked edge
exchange messages. They exchange messages at most twice: the
first time when the marked edge is shared by only one marked
triangle, and the second time when the marked edge is shared
by two marked triangles. Each edge will be marked only once,
so the communication cost is twice of the size of the edges of
the boundary surface of the network.

The second step of trimming is to remove those unnecessary
marked edges. Both the time complexity and communication
cost are determined by the number of marked edges at the end of
the first step. The size of the marked edges in the worst case can
equal the size of the triangles of the boundary surface of the net-
work. For genus-0 surfaces, denote m the size of the boundary
nodes; an extra O(mlogm) cost is spent to find one longest
shortest path on the boundary surface of the network after all
marked edges are trimmed out.

Given an arbitrary triangular surface, the sizes of its triangles
and edges are both linear to the size of the nodes. In summary,
for non-genus-0 surfaces, both the time complexity and the com-
munication cost of the whole algorithm are linear to the size of
the boundary nodes of a network. For genus-0 surfaces, we need
an extra O(mlogm) cost. Note that the size of the boundary
nodes of the network is far less than the size of the network in
general.

III. GENERATING PLANAR RECTANGLE VIRTUAL
COORDINATES

After we virtually cut the outside boundary surface of a net-
work M to a topological disk D along the computed cut graph.
We then apply discrete surface Ricci flow to compute the planar
rectangle virtual coordinates of boundary nodes. We introduce
briefly discrete surface Ricci flow in Section III-A, and then the
algorithm in Section III-B.

A. Discrete Surface Ricci Flow

To briefly introduce the concept of discrete surface Ricci
flow, we start from the definitions of circle packing metric
and discrete Gaussian curvature. Given a topological disk
triangulated surface D = (V, E, F) as defined in a similar way
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in Section II-B, we assign each v; a circle with radius ~; and
denote the radius function I' : V' — R™. For each edge €;5, the
two circles at v; and v; intersect with an acute angle ¢;;. We
call ¢;; the weight of e;;, and denote the weight function ¢ : F
- (0,5,

Definition 5 (Circle Packing Metric): [31] A circle packing
metric of D includes I' and &.

Denote /;; the length of e;;. {;; can be computed from 7;, v;,
and ¢;; from the following cosine law:

(1

Discrete Gaussian curvature measures how curved a discrete
surface is embedded in R3. _

Definition 6 (Discrete Gaussian Curvature): Denote 6] * the
corner angle attached to v; belonging to f;;%, 0D the boundary
of D, and K; the discrete Gaussian curvature at vertex v;. K;
can be computed as the angle deficit at v;

Lig® = 7" 4757 + 27i7; cos i

K — 2 — Zf,;jkeFezjh v; € 0D
o r-Xep 0", vicoD.

Definition 7 (Discrete Surface Ricci Flow [32]): Denote
(Lo, ®) an initial circle packing metric of M, K; and K; the
target and current Gaussian curvatures at v;, respectively, and ¢
the time. Let u; be the logarithm of ~y; for each v;. The discrete

surface Ricci flow is defined as

@)

dui (t)
dt

Discrete surface Ricci flow deforms the initial circle packing
metric such that the final circle packing metric induces edge
lengths satisfying the target Gaussian curvatures. Chow and Luo
prove the convergence of discrete surface Ricci flow in [32]. We
refer readers to our previous work [33] for details of discrete
surface Ricci flow.

— (K — K)). (3)

B. Computing Planar Rectangle Virtual Coordinates

A planar rectangle has zero Gaussian curvature everywhere
except its four corner points with Gaussian curvature %ﬂ'.
Hence, we uniformly pick four vertices along the boundary of
the topological disk triangulated surface D and assign their
target Gaussian curvatures: ki = %ﬂ'. For all other vertices of
D, we assign: ki = 0.

We initialize a circle packing metric on D such that
each circle associated with a vertex has a unit radius, i.e.,
v = Lu; = log~y; = 0 for each v;, and ¢;; = 3 for each
e;5. Discrete surface Ricci flow deforms the circle packing
metric on D such that the induced edge lengths from final circle
packing metric satisfy our predefined Gaussian curvatures.
Isometric embedding of D on a plane based on the computed
edge lengths generates a planar rectangle mapping of D. The
mapping is diffeomorphism that provides planar rectangle
virtual coordinates for vertices of D. The detail of the algorithm
is as follows.

1) Initialization of circle packing metric: For each v;, u; = 0.

For each e;;, ¢35 = 5.
2) Compute edge length for each e;;: I;; = " + ™.
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3) Compute each 95 k according to the law of cosines:
LA lf’k
Ql,‘jlki
4) Compute current Gaussian curvature k; for each v; as (2).
5) Denote ¢ a threshold and set to le — 4. If all |k; — k;| < e,
the algorithm goes to the next step; otherwise, u; = wu; +
8(k; — k;), where & is a small constant and set to 0.1, and
the algorithm goes back to step 2.
6) Isometric embedding: Denote p; the planar coordinates of
each v;. Start from a boundary edge ¢;; with v; one of
the four chosen boundary vertices: We assign p; = (0, 0),
p;j = (L;;,0). In a breadth-first-search way, if f;;5 has ex-
actly two vertices (e.g., v; and v;) with planar coordinates
(e.g., p; and p;), compute py as one intersection point of
two circles centered at p; and p; with radii /; and I}, re-
spectively, and satisfying (pr, — p;) x (p; — pr) > 0.2
Repeat the above process until every vertex has its planar
coordinates. The planar rectangle is automatically aligned
with z-axis.
Note that each boundary node of the network only needs
to exchange information with its direct neighbors when imple-
menting the above algorithm.

ik
87" = cos

IV. IMPLEMENTATION

A. Data Replication

Since a network is location-free, we let each nonboundary
node store the ID of its neighbor nearest to the boundary of the
network. A producer follows a sequence of nodes to the nearest
boundary node of the network denoted as p. The boundary sur-
face of the network has been mapped to a virtual planar rec-
tangle, so each boundary node has planar rectangle virtual co-
ordinates. We assume a data replication curve is along a hor-
izontal line of the virtual planar rectangle. The horizontal line
through p is unique, solely determined by the y-coordinate of the
planar rectangle virtual coordinates of p. The producer travels
and leaves pointers or copies of the data at nodes along the line
with two directions—one with the increased and the other with
the decreased x values. At each step, the producer simply checks
the planar rectangle virtual coordinates of its one range neigh-
bors and chooses the one with the closest distance to the line
and along the current direction. Once finishing data replication,
the producer turns back and follows the reversed path back.

B. Data Retrieval

Without awareness of the knowledge of the producer's loca-
tion and the distance, a consumer follows a sequence of nodes
to the nearest boundary node denoted as p. We assume a data
retrieval curve is along a vertical line of the virtual planar rec-
tangle. A vertical line passing through p is determined solely by
the x-coordinate of the planar rectangle virtual coordinates of
p. The consumer simply travels along the line with two direc-
tions—one with the increased and the other with the decreased
y values. At each step, similarly, the producer simply checks

2The direction of the cross product of the two planar vectors points outside
instead of inside.
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the planar rectangle virtual coordinates of its one range neigh-
bors and chooses the one with the closest distance to the line
and along the current direction. Note that the boundary surface
of the network is only virtually cut open and mapped to a planar
rectangle. Once a consumer hits the boundary side of the rec-
tangle, the consumer can cross the boundary side and keep trav-
eling along the line with the same direction. The consumer stops
as soon as it hits the replication curve of its desired data. If there
are multiple producers and different types of data, the consumer
travels along a full vertical line to collect all the aggregated data
in the network. Once data has been collected, the consumer turns
back and follows the reversed path back.

C. Delivery of Data and Query

As a preprocessing, each of the boundary nodes of the
network sends messages recording its minimum hop count to
boundary (initialized to zero) to its neighbors. A nonboundary
node receives a message and compares it to its current record
(initialized to infinity). If the received count has more than one
hop count less, the node updates its current one and records the
ID of its neighbor sending this message. The node also updates
the count of the message and then sends to its neighbors.
Otherwise, the node simply discards the message. When there
is no message in the network, each of the nonboundary nodes
of the network has recorded the ID of its neighbor nearest
to boundary. It is then straightforward for a producer or a
consumer to travel along the shortest path to the boundary
according to the sequences of IDs.

D. Storage

We have very limited information stored at the nodes of the
network. For each of the nonboundary nodes, it only stores the
ID of its neighbor nearest to boundary; for each of the boundary
nodes, it stores the computed planar rectangle virtual coordi-
nates. For the data replication, we can leave copies of data on
either all the nodes along the replication curve; or just a small
portion of nodes sampled along the replication curve, which is
a tradeoff between the storage cost and the retrieval cost as dis-
cussed in Section V-D.

E. Time Complexity and Communication Cost

We measure the communication cost by the number of mes-
sages. Denote the size of all the nodes of a network as n and the
size of its boundary nodes as m. We summarize the time com-
plexity and the communication cost of the major steps of the
cut-graph-based double-ruling scheme.

Both the time complexity and the communication cost to
compute the cut graph are linear to the size of the boundary
nodes of the network, O(m), including the trimming step.

We apply discrete Ricci flow to compute the planar rectangle
virtual coordinates. The number of iterations, as shown by
Fig. 6 for the model in Fig. 3(a), determines the time com-
plexity of computing the edge lengths, given by —C 10§ < where
C is a constant, ¢ is the threshold of curvature error (set to
le — 4 in our implementation), and A is the step length of each
iteration (set to 0.1 in our implementation) [32]. Since each
vertex only needs to exchange messages with its one range
neighbors at one iteration, the corresponding communication
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cost is —C b%d’ m where d' is the average vertex degree of
the triangulated boundary surface. With the computed edge
lengths, both the time complexity and the communication cost
of computing the planar rectangle embedding are linear to the
size of the boundary nodes, i.e., O(m).

Let the boundary nodes of the network synchronize among
themselves and start to send messages recording the min-
imum hop count to boundary to its neighbors at roughly the
same time [34], [35]. The total communication cost for each
nonboundary node to record the ID of its neighbor nearest to
boundary is O{dn), where d is the average number of neighbors
of each node. The time complexity is O(n).

F. Bound on Data Replication and Retrieval Costs

Data replication and retrieval costs, without considering the
cost to travel to the nearest boundary node for inner nodes, are
bounded by the number of nodes along the horizontal and ver-
tical lines of the virtual planar rectangle, respectively.

The algorithm to compute the cut graph in Section II starts
from one randomly chosen triangle of the boundary surface of
a network and propagates to grow the marked triangles in a
width-first way until all triangles of the boundary surface have
been marked. When cutting the boundary surface open to a
topological disk along the computed cut graph, the longest ra-
dius of the topological disk is bounded by the longest shortest
path of the nodes of the starting triangle on the boundary sur-
face. We then uniformly pick four nodes along the boundary
of the topological disk and map the topological disk to a well-
aligned planar rectangle with corners of the four chosen nodes
in Section IIT using Ricci flow. The mapping is a conformal map
(i.e., a diffeomorphism) that preserves angles and local shape.
Specifically, the mapping preserves both the neighborship of a
boundary node and the relative positions of its neighbors when
virtually mapped to a planar rectangle. Therefore, the horizontal
and vertical lines of the rectangle should be bounded by the di-
ameter of the topological disk. It is twice of the longest shortest
path of the nodes of the starting triangle.

Since we randomly choose the starting triangle to compute
the cut graph, the horizontal and vertical lines of the vertical
rectangle should be bounded by twice of the longest shortest
path of a pair of nodes on the boundary surface of a network.
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V. SIMULATIONS

A set of 3-D sensor networks with representative topolo-
gies and various sizes is simulated in this work as shown in
Figs. 2 and 3. The genus numbers of these network models
range from genus 0 to genus 2. One network model is particu-
larly designed to have several inner holes (uncovered regions).
We evaluate the performance of the proposed location-free
cut-graph-based double-ruling scheme on these network
models. Specifically, we denote the one given in Fig. 3(d) as
Network I model. It is genus 0 with 4k number of nodes,
and the average number of neighbors of each node 13.79. We
denote the one given in Fig. 2(a) as Network II model. It is
genus 1 with 4k number of nodes, and the average number
of neighbors of each node 13.43. We denote the one given in
Fig. 3(a) as Network III model. It is genus 2 with 6k number
of nodes, and the average number of neighbors of each node
13.67. We denote the one given in Fig. 2(b) as Network IV
model. It is genus 0 with two inner holes. The size of Network
IV model is close to 8%, and the average number of neighbors
of each node is 13.7181.

Several parameters are particularly important for the perfor-
mance of a distributed in-network data storage and retrieval
scheme. One parameter is the cost to store data, and another
parameter is the cost to retrieve data. We call them the pro-
ducer and consumer costs measured by the number of hops
traveled to store or retrieve data. In general, there is a bal-
ance between the two costs. If one distributed in-network
data processing scheme favors data storage, a producer on
average will spend less cost than a consumer, and the vice
versa. For non-double-ruling-based distributed in-network
data processing schemes, the number of data types generated
inside a network and the frequency of the requests for aggre-
gated data retrieval will greatly increase the consumer cost.
Section V-A is designed to evaluate the costs of the producer
and the consumer with different scenarios. Some scenarios that
require frequent aggregated data retrieval are designed to favor
double-ruling-based schemes, while some scenarios do not.

Traffic load is also a very important parameter to evaluate
the performance of a distributed in-network data storage and re-
trieval scheme. We measure the traffic load on each node by
the number of messages passing through it. A balanced traffic
load is preferred; otherwise nodes with extremely high traffic
load will run out of battery very soon. Section V-B is designed
to evaluate traffic load with various scenarios. Similarly, some
scenarios favor double-ruling-based schemes, while some sce-
narios do not.

It is desirable that a consumer spends a lower cost to retrieve
data from a nearby producer than from a faraway one. Assume
that the distance between a producer and a consumer measured
by hops is d. A distance-sensitive retrieval scheme would re-
quire that the retrieval cost of the consumer is O(d). Such dis-
tance-sensitive retrieval is discussed in Section V-C.

The motivation of double-ruling-based schemes is to trade
storage cost for efficient and successful data retrieval, espe-
cially the aggregated data retrieval. To find the balance between
storage cost and data retrieval, another parameter—the data
storage cost—is evaluated in Section V-D.
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Fig. 7. Comparison of average consumer costs with the increase of data types in the network. (a) Network I. (b) Network II. (c) Network III. (d) Network IV.

TABLE I
COMPARISON OF AVERAGE PRODUCER AND CONSUMER COSTS OF SINGLE TYPE OF DATA
Network 1 Network 11 Network III Network IV
Cut Graph  GHT SR-GHT | Cut Graph = GHT SR-GHT | Cut Graph ~GHT SR-GHT Cut Graph ~ GHT SR-GHT
Producer cost 67. 6919 22.5738 19.4178 63.7369 23.6468 16.0400 | 78.6357 24.6926  13.7566 105.4353 41.0066  24.23068
Consumer cost | 20.3451 22.8416  94.4715 19.3566 23.8186  93.0521 25.9980 247264  101.8150 | 28.2378 41.2531 157.83

Different choices of parameters when computing the cut
graph in Section II and mapping the cut open boundary sur-
face to a planar rectangle in Section III may lead to different
producer and consumer costs for the same given network. We
discuss and evaluate such possibility in Section V-E.

There are very limited algorithms with which to compare
because all previous double-ruling-based schemes cannot work
on 3-D sensor networks with general topology and geom-
etry shapes including the naive 3-D grid-based double-ruling
scheme and the volumetric parametrization-based double-ruling
scheme [20], [21]. Hashing-based schemes can tolerate dif-
ferent topology but require geographic information. Our
implementation of the GHT scheme for comparison has ac-
tually considered geographic information to design the hash
function and stored heavy routing information on each node
(shortest path tree rooted at each node) to guarantee the routing
path a shortest one from the producer and the consumer to the
hashed location, and hence all “improved GHT” approaches
will not help to achieve better performance in our comparison.

A. Producer and Consumer Costs

1) Single Type of Data: We compare the proposed scheme
to the GHT one with and without structured replication. For

GHT with structured replication (SR-GHT), we apply 1 level
hierarchy with extra three mirror points scattered in network
to store the nearby data. Table I lists the average producer and
consumer costs with one type of data generated in network. For
cut-graph-based scheme, the producer cost is the highest, and
the consumer cost is the lowest; a producer needs to travel and
leave copies of data along the whole replication curve, while a
consumer can stop immediately when its retrieval curve inter-
sects the replication curve. For SR-GHT scheme, on the con-
trary, the producer cost is the lowest, and the consumer cost is
the highest; a producer can store data at the closest location, but
a consumer has to travel to both the hashed location and its three
mirror points to collect data.

2) Aggregated Data: 1If there are more than one data
type in network, as shown by Fig. 7, the consumer cost of
cut-graph-based scheme is fixed; a consumer collects all dif-
ferent types of data by simply moving along a retrieval line.
While the consumer cost of GHT scheme increases proportion-
ally to the number of data types, a consumer has to travel to
different hashed locations for different types of data. Note that
the cost of GHT scheme may decrease because we simply take
a round trip to each hashed location in our implementation.
However, to find a minimum tour to visit all of the locations
is the traveling salesman problem, which is NP-hard. The
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producer cost does not change for either cut-graph-based and
GHT schemes with the increase of data types.

Fig. 7 clearly shows that the cut-graph-based scheme per-
forms the best for retrieval of multiple types of data gener-
ated in the network. When there is only one type of data in
the network, cut-graph-based scheme and GHT schemes have a
tradeoff between the producer and consumer costs. Meanwhile
with the increases of data replication, cut-graph-based scheme
has a better fault tolerance and a more balanced load distribution
across the network as discussed in Section V-B. The length of
the data replication curve of cut-graph-based scheme is bounded
(Section VI).

B. Load Distribution

We simulate different scenarios to evaluate the load distribu-
tion of a cut-graph-based scheme and compare to GHT scheme.
The first scenario is one data producer with one data type in
a network. Each node in the network has equal probability to
request for data. We randomly choose the data producer from
the network and repeat the tests for 10 times and get the av-
erage. For both GHT and cut-graph-based schemes, the load
on the majority of the nodes is within a small number. Specifi-
cally, the loads on roughly 83% of nodes in Network I, roughly
84% of nodes in Networks II and III, and roughly 79% of nodes
in Network IV are below 10. Fig. 8 shows the distribution of
high traffic load on the remaining nodes. For GHT scheme,
nodes near the hashed location suffer much higher traffic load,
while for cut-graph-based scheme, boundary nodes take a little
bit more traffic load since the load has been evenly distributed
among the boundary. The node suffering the highest traffic has a
load of 4368 with GHT scheme and 813 with cut graph scheme
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one data type in the network. (a) Network I. (b) Network II. (c) Network III.

for Network I; a load of 4297 with GHT scheme and 140 with
cut graph scheme for Network II; a load of 6193 with GHT
scheme and 981 with cut graph scheme for Network III: and a
load of 14 077 with GHT scheme and 996 with cut graph scheme
for Network IV.

The second scenario is 100 data producers with 10 data types
in a network. We randomly choose the data producers from the
network. Each node in the network has equal probability to re-
quest for aggregated data. Fig. 9 shows the distribution of the
total traffic load of data storage and retrieval. For GHT scheme,
a data consumer has to travel a long path to collect different
types of data scattered in a network, which generates high traffic
load in the network; while for cut-graph-based scheme, a data
consumer has fixed cost for aggregated data retrieval so that
the majority of the traffic load of the network is still low. The
node suffering the highest traffic has a load of 10211 with GHT
scheme and 1542 with cut graph scheme for Network I; a load of
10 540 with GHT scheme and 1404 with cut graph scheme for
Network II; a load of 22 935 with GHT scheme and 1614 with
cut graph scheme for Network III: and a load of 48 074 with
GHT scheme and 3778 with cut graph scheme for Network III.

C. Distance-Sensitive Retrieval

It is desirable that a consumer only needs to spend a low travel
cost to retrieve data generated from a nearby producer. Such
property is called distance sensitivity of retrieval. GHT-based
schemes in general do not have such property because a con-
sumer travels to a hashed position by the desired data type and
the data stored there may be produced by a nearby or a faraway
producer.
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(d) Network IV.

For our scheme, we first consider the case of a pair of a con-
sumer and a producer close on the boundary surface. They are
not necessarily boundary nodes. If they are inner nodes, we mea-
sure the hops between the two boundary nodes nearest to the
producer node and the consumer node, respectively. The fol-
lowing lemma says that if a pair of a consumer and a producer
is close on the boundary surface, the consumer travels a distance
less than the one to the producer on the boundary surface to ac-
cess the data.

Lemma 1: The distance a consumer travels on the boundary
surface of a network to hit the data replication curve of a pro-
ducer is no more than the distance between the consumer and
the producer on the boundary surface.

Proof: The mapping we conducted in Section III is
conformal mapping. It is diffeomorphism preserving the neigh-
borship of a boundary node and the relative positions of its
neighbors when virtually mapped to a planar rectangle. The
shortest path between a pair of a producer and a consumer on
the boundary surfaces can be approximated by a straight line
between their nearest boundary nodes on the planar rectangle.
A data replication curve is a straight line passing through the
boundary node nearest to the producer on plane. The distance
between the boundary node nearest to the consumer and the
data replication curve is always less than the distance between
the pair of the boundary nodes. The two distances equal each
other only when the line between the pair of the boundary
nodes is perpendicular to the data replication curve.

Two boundary nodes, one nearest to a producer and the other
nearest to a consumer, may be close on the boundary surface
but far away on the planar rectangle if they are located exactly

on the two sides of the cut graph. Such a case will not affect
the distance the consumer travels to retrieve the data because
the boundary surface is only virtually cut open and mapped to a
planar rectangle. We design the data retrieval scheme as once a
consumer hits the boundary side of the rectangle; the consumer
can cross the boundary side and keep traveling along the same
line with the same direction. |

We randomly select 1000 pairs of producers and consumers
on each network model. Fig. 10(a) shows the simulation results
based on the distances of the pairs of producers and consumers
on the boundary surface of a network. It is obvious that the av-
erage consumer cost increases with the distance between the
producer and the consumer on the boundary surface of a net-
work. Such a trend does not always hold when the distance of
a pair of a consumer and a producer is large. They may be far
away on the boundary surface, but the consumer is still close to
the data replication curve.

However, if we consider the distance between a pair of a
producer and a consumer in the volume of a network, such
distance-sensitive retrieval is not necessarily applied. It is
possible that a consumer is geographically close to a producer
in the 3-D volume of a network, but the consumer has to go a
long distance to hit the data replication curve by the producer.
Such an extreme case happens when the consumer and the
producer are located very close to each other but at the two
sides of the medial axis of the 3-D volume network,3 so their
nearest boundary nodes are far away from each other on the

3The medial axis of a shape is the set of all points that have more than one
closest point to the boundary of the shape.
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Fig. 11. Tradeoff between storage cost and consumer cost.

boundary surface of the network. We still randomly choose
1000 pairs of producers and consumers on each network model.
Fig. 10(b) shows the simulation results based on the distances
of the pairs of producers and consumers in the 3-D volume of
a network. The average consumer cost does not show a strong
linear correlation with the distance.

D. Tradeoff Between Storage Cost and Consumer Cost

As discussed in Section IV, it is a tradeoff between the storage
cost and the consumer cost for the proposed cut-graph-based
double-ruling approach for information storage and retrieval in
general 3-D sensor networks. Fig. 11 shows clearly that the av-
erage consumer cost drops dramatically when the percentage of
nodes stored with a copy of the data along the data replication
curve increases from 10% to 40%, and then decreases slowly
when the percentage of nodes stored with a copy of the data is
over 50% for Network II model. A balance between the storage
cost and the consumer cost would be to store copies of data at
half of the nodes along the data replication curve.

E. Different Choices of Parameters

As we introduced in Section II, the algorithm to compute
the cut graph starts from one randomly chosen triangle of the
triangular boundary surface of a network. The algorithm marks
the triangle and keeps a width-first propagation with the center
of the first marked triangle until all triangles of the network have
been marked. We assume the algorithm always picks the triangle

TABLE 11
EVALUATION OF THE PERFORMANCE UNDER DIFFERENT CHOICES
OF PARAMETERS

Starting Triangle Corner Nodes

Producer cost  Consumer cost  Producer cost Consumer cost

u 58.2514 20.7714 61.7551 21.3348
c 10.9340 4.0029 14.691962 4.7569
x 57.2104 20.2214 57.7746 20.9780

with the smallest boundary node ID as the starting triangle in
our previous simulations. To evaluate the effect of the choice of
the starting triangle, we first randomly select 1000 pairs of pro-
ducers and consumers from Network II model. We randomly
pick a triangle of the boundary surface as the starting triangle to
compute the cut graph, and then compute the average producer
and consumer costs of the chosen 1000 pairs. The testing is re-
peated 10 times with the same set of pairs of producer and con-
sumer but 10 different triangles as the starting triangle. Denote
1 the average producer and consumer costs of the 10 tests, o the
standard deviation, and Z the median. Table II shows the mean,
the standard deviation, and the median of the producer and con-
sumer costs of the 10 tests under different starting triangles.
After we cut the closed boundary surface open to a topolog-
ical disk along the computed cut graph, we uniformly pick four
nodes along the boundary of the topological disk and map the
topological disk to a planar rectangle with four corner points ex-
actly of the four chosen nodes in Section III. We assume the al-
gorithm always chooses the node with the smallest ID along the
boundary of the topological disk as the first corner node and then
uniformly chooses the other three in our previous simulations.
To evaluate the effect of the choice of the four corner nodes,
similarly, we first randomly select 1000 pairs of producers and
consumers from Network II model. We randomly pick a node
along the boundary of the topological disk as the first corner
node and then uniformly select the other three to do the map-
ping. We compute the average producer and consumer costs of
the chosen 1000 pairs. The testing is repeated 10 times with the
same set of pairs of producers and consumers, but 10 different
sets of corner nodes when mapping the cut open boundary sur-
face to a planar rectangle. Table II shows the mean, the standard
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deviation, and the median of the producer and consumer costs
of the 10 tests under different sets of corner nodes.

In summary, the different choices of the parameters slightly
affect the performance of the proposed cut-graph-based double-
ruling scheme.

VI. DISCUSSIONS

A. Network Model

The proposed solution does not require any global position
information of a network. It has no constraints on communica-
tion models of the network either. The network only requires
one-hop neighborhood distance information to detect boundary
nodes and construct a triangular structure at the preprocessing
step.

The proposed cut-graph computation algorithm is indepen-
dent of the complexity and irregularity of a 3-D volume where
a set of sensors is deployed because the boundary surface of a
3-D volume is always a closed surface. The algorithm cuts a
closed surface with any geometric shape or topology to a topo-
logical disk and then virtually maps it to a planar rectangle. It
is possible that a 3-D network degenerates. One example is that
a 3-D volume sensor network degenerates to a 3-D surface net-
work. The algorithm can simply be applied to the surface net-
work directly, which is not necessarily closed. Another example
is that part of a 3-D network degenerates to a single line, neither
a volume nor a surface. We can apply 3-D network segmenta-
tion algorithm [36] to identify the bottleneck and then segment
the network to parts. Double-ruling approach can be applied at
individual parts.

B. Network Dynamics

As discussed in Section IV-E, both the time complexity and
communication cost of the proposed cut-graph-based double-
ruling approach are dominated by computing the planar rec-
tangle virtual coordinates of the boundary surface using discrete
surface Ricci flow. For a network with possible nodes' failures,
we do not need to restart the computation of Ricci flow each
time a sensor node runs out of its battery. We only need to re-
place a dead boundary node with its nearest active sensor node.
The process can be triggered by nodes with dead communica-
tion to one common node. They conduct a local flooding to find
one node nearest to the dead one. Note that this new one is not
necessarily a boundary node. Denote this new node v;. v; ini-
tializes its v; = 1, u; = log~; = 0. v; and its direct neighbors
recompute the weights of edges neighboring to v;. Discrete sur-
face Ricci flow continues until the convergence.

C. Network Density

As we mentioned in Section II, the algorithm provided in [24]
to construct a triangular boundary surface of a network assumes
that a triangular graph is a subgraph of the initial connectivity
graph of detected boundary nodes. Such assumption is true only
when the node density of the network is not too low. The node
densities of the network models we choose in simulations are all
around 13. We have no problem to construct such triangular sur-
faces. In our previous simulations, however, such assumption
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may not be true when the node density of a network is around
or lower than 8.

VII. CONCLUSION

We present a location-free cut-graph-based double-ruling ap-
proach for 3-D sensor networks with general topology and ge-
ometry shapes. An information consumer simply travels along a
simple curve with the guaranteed success to retrieve aggregated
data through time and space with different types across the net-
work. We conduct extensive simulations and comparisons that
further show the proposed approach with low cost and a bal-
anced traffic load.
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