
1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2694835, IEEE
Transactions on Parallel and Distributed Systems

Scalable Minimum-Cost Balanced Partitioning of
Large-Scale Social Networks: Online and Offline

Solutions
Romas James Hada, Hongyi Wu, Member, IEEE, and Miao Jin

Abstract—With the remarkable proliferation of intelligent mobile devices and fast growing broadband wireless technology, social
networking is undergoing explosive growth in recent years as more and more users access social networks via mobile platforms. It is
often expensive or even impossible to deploy a large online social network (OSN) on a single server. A cost-effective approach is
horizontal scaling, where the OSN is partitioned and deployed on a set of low-cost servers. In this research, we study the problem of
minimum-cost balanced partitioning of OSNs. Our goal is to achieve the best partitioning by minimizing the total inter-server traffic cost
and at the same time balancing the load among servers. Given its NP-hardness, we propose new techniques and explore efficient
heuristics to address the problem, especially for extremely large OSNs with an enormous volume of social nodes, social connections,
and social data. Our key contributions include a localized approach with O(δ2) complexity to explicitly calculate the projected gain in
inter-server traffic cost (named Server Change Benefit (SCB)). Built upon this technique, we devise two algorithms that offer online and
offline solutions to achieving minimum-cost balanced partitioning of OSNs. The online algorithm is fast and highly efficient to process
newly arrival individual nodes. The offline algorithm uses the current online result as a starting point. It further reduces inter-server
traffic cost by applying relocation and swapping. It employs a merging process to group the nodes according to the social structure and
swap the groups with similar size to further reduce the total inter-server traffic cost. We implement both algorithms and evaluate them
based on a variety of real-world OSN datasets from Facebook, Arxiv, Gnutella, Amazon, and Twitter. The simulations demonstrate that
the proposed algorithms can significantly reduce the execution time by an average of three folds and at the same time yield supreme
performance (i.e., inter-server traffic cost) in comparison with existing solutions.

Index Terms—Social Networks, Load Balancing, Inter-Server Traffic Cost, Scalability.

F

1 INTRODUCTION

Social networking is among the fastest growing infor-
mation technologies, as evidenced by the popularity of
such online social network (OSN) sites as Facebook, Twitter,
LinkedIn, Instagram, and Google+ that continue to experi-
ence explosive growth. The trend is further boosted by the
remarkable proliferation of intelligent wireless devices, as
many users access OSNs via mobile platforms. For instance,
the monthly active users of Facebook have reached 1.65
billions as of March 2016. Out of the 1.65 billion users, 989
million are daily active [5].

These popular and highly active OSNs generate an enor-
mous volume of data as well as work load every day. As a
matter of fact, social media is ruling the Internet today. In
contrast to traditional web applications, the data contents
at OSNs are highly personalized and interconnected due to
the social connection structure among users. These charac-
teristics make the deployment, maintenance, and scaling of
OSN a very unique, interesting, and challenging problem.

Although the continuous advance of technology has
enabled more and more powerful servers, it is often ex-
pensive or even impossible to deploy a large OSN on a
single server. A cost-effective approach is horizontal scaling,
where an OSN is partitioned and deployed on a set of
low-cost servers. However, such an approach also results

• R. Hada, H. Wu and M. Jin are with the Center for Advanced Computer
Studies, University of Louisiana at Lafayette, Lafayette, LA, 70504.
E-mail: rjh7688,mxj9809@louisiana.edu, h1wu@odu.edu

v
4

v
1

v
2

v
3

v
0

v
6

v
5

v
7

v
2

v
6

v
1

BA

Fig. 1: An OSN is partitioned and deployed on two servers
A and B. Replicas for v1, v2, and v6 are maintained on the
servers to create an illusion of locality.

in some undesired side effects. First, the coordination and
communication among servers require distributed program-
ming and management that are often complex and costly.
Second, since the social data are distributed on a set of
servers, the system may experience degraded performance
due to significant delay to query multiple servers across a
network. To this end, an architecture based replication [22],
[26], [12], [13], and [25] has been proposed to avoid such
side effects of horizontal scaling. More specifically, if two
socially connected users are placed on two separate servers,
their data are replicated on both servers, to enforce local
semantics at the data level. For example, as shown in Fig. 1,
assume Nodes v0, v1, v6 and v7 are deployed on Server A,
while the rest nodes are on Server B. An edge between
two nodes indicates the social connections between them.
Under the replication-based architecture, a replica of Node

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2694835, IEEE
Transactions on Parallel and Distributed Systems

2

The Minimum-Cost Balanced Partitioning Problem (Offline Version)

Minimize :
∑K

k=1

∑N

i=1
wiC

r
ik

S.t. : (1) Cp
ik

+ Cv
ik + Cr

ik ≤ 1, ∀1 ≤ i ≤ N, ∀1 ≤ k ≤ K

(2) Cp
ik

+ eij ≤ Cp
jk

+ Cr
jk + Cv

jk + 1, ∀1 ≤ k ≤ K, 1 ≤ i, j ≤ N,

(3)
∑K

k=1
Cv

ik = ψ,∀1 ≤ i ≤ N,

(4)
∑K

k=1
Cp

ik
= 1, ∀1 ≤ i ≤ N,

(5)
∑N

i=1
si(C

p
ik

+ Cv
ik)−

∑N

i=1
si(C

p
ik′ + Cv

ik′) ≤ ε, 1 ≤ k 6= k′ ≤ K,

(1)

v2 is deployed on Server A since its neighbors (v1 and v6)
are on Server A, and similarly, the replicas of v1 and v6
are maintained on Server B. This architecture creates an
illusion that the system is running on a centralized server
and allows queries to be resolved locally, thus reducing the
query delay and avoiding the hassle of complex distributed
programming.

While the replication-based architecture enjoys great ad-
vantages discussed above, it also introduces obvious cost
for communication and storage due to the replicas. When
a replica is created, it consumes storage at the server.
Moreover, any updates of the social user must be pushed
to all of its copies to maintain consistency of the system,
resulting in communication cost. In this research, we focus
on the problem of how to minimize such costs and at the same
time ensure balanced load among the servers. The problem is
challenging due to the enormous amount of data to be
processed for optimization. More specifically, the problem
is formally formulated as follows.

1.1 Problem Formulation

The social network can be abstracted by a graphG = (V,E),
where the nodes in V represent social users and the edges
in E stand for the social connections among them. We let
eij ∈ E be 1 (or 0) if Users i and j have (or do not have)
a social connection between them. Let N denote the total
number of nodes or users and K be the number of servers.
Our goal is to achieve the best partitioning of the social
network to minimize the total inter-server traffic cost and
at the same time keep balanced load among the servers.
In general, there is a tradeoff between load balance and
inter-server traffic cost. For example, as a trivial solution,
we can achieve the lowest cost by putting all users on one
server because it results in no replicas at all resulting zero
inter-server traffic cost, but this obviously leads to extremely
unbalanced load. The cost should be minimized under the
load balance constraint.

We formally formulate the minimum-cost balanced par-
titioning problem as follows. We first introduce the formu-
lation of the offline problem and then discuss the online
version of the problem. In the paper, the original nodes
are also called “primary copies”, their full replicas are
called “virtual primary copies” and their partial replicas
are called “non-primary copies”. We assume the primary
copy is responsible for updating virtual primary and non-
primary copies distributed across servers and handling user
read/write requests.

We assume a virtual primary copy stores all the informa-
tion similar to their primary ones, whereas a non-primary
copy stores recent user updates or frequently accessed data
only. Considering the storage cost incurred by the non-
primary copy to be negligible compared to the primary
copies and virtual primary copies, we only consider inter-
server traffic cost associated with the non-primary copy
during the problem formulation.

We introduce the virtual primary copies to fulfill data
availability requirement as to be shown in third constraint.
It is an exact replica of the primary copy in terms of storage
cost. In the problem formulation, we consider both storage
cost as well as inter-server traffic cost associated with it.

Offline Problem Formulation
Let Cp

ik and Cr
ik be binary variables to be determined to

achieve the optimization goal.Cp
ik = 1 indicates the decision

that the primary copy of Node i will be placed on Server k,
otherwise Cp

ik = 0. Similarly, Cr
ik = 1 means a non-primary

copy (or replica) of Node i will be created and deployed
on Server k, otherwise Cr

ik = 0. Similarly, Cv
ik = 1 means a

virtual primary copy of Node iwill be created and deployed
on Server k, otherwise Cv

ik = 0.
Depending on user’s activity on the OSN, a server may

need to allocate different sized storage space for each user.
Hence, there will be different storage costs associated with
different users. Let si be the storage cost associated with
user i.

Beside storage cost, there is also the traffic cost associated
with maintaining consistency of replicas across servers. Let
wi be an average writing frequency of a user i. Let τ be
an average write traffic cost associated with a single write.
The traffic cost associated with user i can be represented as
wiτ . As the total traffic cost is proportional to the number of
virtual primary and non-primary copies distributed across
servers, if a user i have r replicas (including both virtual
primary and non-primary copies), the total traffic cost to
maintain the replica consistency for the user i can be ex-
pressed as r(wiτ).

Considering the traffic cost, we aim to minimize∑K
k=1

∑N
i=1(wiτ)(C

v
ik +Cr

ik), subject to a set of constraints.
As the average traffic cost τ is constant and virtual primary
copies are also fixed, we can further simplify the objective
function as

∑K
k=1

∑N
i=1 wiC

r
ik.

The first constraint ensures only one type of replica
(either a primary copy, a virtual primary copy or, a non-
primary copy) of each node exists in a server.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2694835, IEEE
Transactions on Parallel and Distributed Systems

3

The second constraint makes sure that if there is a social
connection between Nodes i and j (i.e., eij = 1), then when
a primary copy of Node i is on Server k, a copy of Node j
(either primary, non-primary copy, or virtual primary copy)
must be deployed on the same server. As can be seen, if
eij = 0, the constraint always holds. Similarly, if eij = 1 but
Cp

ik = 0, the constraint is also always true. However when
eij = 1 and Cp

ik = 1, then Cp
jk or Cr

jk or Cv
jk must be 1.

The third constraint ensures data availability require-
ment. i.e., each node must maintain ψ virtual primary copies
distributed across servers.

The fourth constraint ensures each node has exactly one
primary copy assigned to one of the servers.

The last constraint ensures the load difference between
any two servers is no greater than a constant ε, i.e.,
|
∑N

i=1 si(C
p
ik + Cv

ik)−
∑N

i=1 si(C
p
ik′ + Cv

ik′)| ≤ ε.

Online Problem Formulation
The online version of the problem assumes a given set

of nodes, which have been distributed to K servers. When a
new node arrives, the problem is how to put the node onto
the best server in order to minimize the total inter-server
traffic cost. The problem formulation of the online version
is similar to the offline formulation, but we now consider
a single node only, in constrast to the offline version where
we try to optimize all N nodes. More specifically, assume
the previous N − 1 nodes are already on the K servers,
and we are now considering the N th node that just arrives.
We will have the same objective function and constraints as
discussed in the offline problem formulation, however, only
Cp

Nk and Cr
Nk, 1 ≤ k ≤ K, are variables to be optimized,

while other Cp
ik and Cr

ik (1 ≤ i ≤ N − 1) are already given.
The above description is for the strict online problem,

where all existing nodes are fixed. In practice, we often
loosen the constraint by allowing a small constant number
of existing nodes be moved in order to reduce the inter-
server traffic cost. In our later discussions, we assume one
of the existing node can be moved from its current server to
another server, such that the newly arrival node can swap
with an existing node.

1.2 Related Work
The minimum-cost balanced partitioning problem is NP-
hard [22]. Various practical approaches based on distributed
hash tables (DHTs) [24], NoSQL databases [20] and key-
value stores [21], [22] have been adopted in OSNs. For
example, Facebook uses Cassandra [2], [16] – an open source
distributed database management system developed to han-
dle massive amount of data across multiple commodity
servers. Amazon, on the other hand, employs Dyanamo [10]
which is a key-value based storage system. Instagram relies
on Amazon EC2 [1] to enable efficient sharing of photos
between users. These solutions partition and distribute data
in an arbitrary or random manner, without consideration
of social connections between OSN users. Such random
partitioning may lead to high inter-server traffic cost if two
closely connected users (with high volume of social data)
are placed on two different servers.

In an effort to achieve optimal partitioning, the most
related work is minimum-cut in graph theory. Minimum-
cut is a well studied problem, with several solutions such

as Kernighan-Lin [15] and Feduccia-Matheyeses [11] algo-
rithms. The minimum-cut problem aims to partition the
graph such that the number of (or the total weight of) the
edges being cut is minimized. At the first glance, minimum-
cut appears equivalent to the minimum-cost balanced parti-
tioning problem to be investigated in this paper. But in fact,
they are different. Fig. 2 illustrates why minimizing edge
cuts (i.e., reducing the inter-partition edges) is not same as
reducing number of replicas. Given an OSN of ten nodes
and assume ε = 2 (i.e., a maximum difference between the
two servers is two). If the OSN is partitioned according to
minimum-cut, five nodes must be replicated (as shown in
Fig. 2(a)), while the optimal result needs to replicate four
nodes only (as illustrated in Fig. 2(b)).

There are only a handful of works related to the mini-
mization of inter-server traffic cost. The main contribution of
[22] is to present a social connection aware replication based
scheme known as Social Partitioning and Replication mid-
dleware (SPAR). SPAR [22] presents a simple non-optimal
scheme to adjust the servers upon the change of social
users and connections. Their model focuses on minimizing
replication cost assuming all users generate equal write
traffic (equal traffic weights for all users), which is different
than our model, which considers different traffic weights
for different users based on their writing frequencies. While
looking at the algorithm perspective, our algorithm accu-
rately predicts the change in the inter-server traffic cost
without needing migration of a node to another server,
whereas there is no such provision in SPAR. Therefore,
SPAR must experiment different hypotheses which thus
needs the node to be moved to another server in order to
decide whether or not the migration is beneficial or not.

The Gossip-based Partitioning and Replication Middle-
ware (GPRM) [21] also uses a simple model similar to
SPAR [22]. Their algorithm uses a cost function to swap the
nodes between servers. However, the cost functions do not
always represent the actual change in replication cost before
and after swapping. Moreover, these schemes all face the
scalability problem when OSNs grow to the level of billions
of users.

Besides [21], [22], there are several works related to
our research but they consider different settings and/or
optimization goals.

Jiao et. al. [12], [13] study the cost optimization problem
of OSN in a geodistributed cloud scenario. They consider
a cloud-based environment with unlimited resources, while
we consider servers with balanced resources. Their problem
formulation and optimization goal focus on optimizing the
storage cost and the intercloud write traffic cost at the same
time providing geodistributed satisfactory quality of service
(QoS) and data availability to OSN users. Ours focus on
optimizing the inter-server write traffic cost with the strict
requirement of a balanced distribution of storage cost across
servers. At the same time, we also provide data availability
to OSN users. In summary of the differences of the algo-
rithms proposed in [12], [13] and ours, the algorithms in
[12], [13] choose a user for swapping randomly. However,
our algorithms are greedy in each step. We can choose a
user for swapping based on the highest SCB value. The
algorithms in [12], [13] search a potential swapping of
a user only with one of its neighbors stored in different

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2694835, IEEE
Transactions on Parallel and Distributed Systems

4

v
i

v
j

v
k

A B

v
l

v
m

vov
p

v
q

v
r

v
n

v
k

v
p

v
m

v
l

vo

(a)

v
i

v
j

v
k

A B

v
l

v
m

vov
p

v
q

v
r

v
n

v
j

v
qv

p

v
k

(b)

Fig. 2: Minimum-cut does not minimize the replication cost.
(a) If the OSN is partitioned according to minimum-cut (ε =
2), five nodes must be replicated on the servers. (b) The
optimal result needs to replicate four nodes only [22].

clouds/servers. However, our algorithms search a potential
swapping of a greedily chosen user with another one, not
necessarily its neighbors, stored in different clouds/servers
and with the highest SCB to swap. Our algorithms also
search potential swapping of group of users.

Similarly, Liu et. al. [19], studies selective data replica-
tion method in a distributed environment. Their goal is
to reduce read and write traffic between data centers. To
achieve this goal their method avoids replicating data of
users generating low read traffic and high write traffic. Our
approach is different from their approach. Based on our
problem formulation, neighbors of each node vi must have
either its primary, virtual primary or non-primary copies in
the same server where the primary copy of the node vi is
located.

In addition, [25] studies optimization of inter-server
communication for OSNs and introduces a Traffic-
Optimized Partitioning and Replication (TOPR) method,
which is based on analyzing the effect of replication on
inter-server communication. TOPR alters replication and
partitioning based on users’ data read and write rates. The
method assumes that reading and writing rates for a user
can vary based on her behavior. Based on this assumption,
the proposed method manages replication and partitioning
of data across multiple servers by taking account of both
read and write rates of users. However, according to Wit-
tie [27], OSNs (like Facebook) push a user’s updates (like
wall posts) to all of her connected friends. Accordingly, the
communication cost is determined regardless of the read
rate. Therefore, with contrast to the assumption made in
[25], we consider the problem of minimizing replication cost
is to minimize the cost for inter-server writing (or posting)
communication.

1.3 Our Contributions
Given its NP-hardness, we propose new techniques and
explore efficient heuristics to address the problem of
minimum-cost partitioning of OSNs, especially for ex-
tremely large OSNs with an enormous volume of social
nodes, social connections, and social data. Our key contri-
butions are summarized below.

The first contribution is a localized approach with O(δ2)
complexity to explicitly calculate the projected gain in inter-
server traffic cost of a node, would it be moved from
one server to another. Here δ is the nodal degree of the
social network. No matter which approach is adopted, the
partitioning algorithms intrinsically explore ways to adjust

the servers in order to reduce and eventually minimize
the total inter-server traffic cost. A key question is how
to efficiently determine the effect of such adjustment on
the total inter-server traffic cost. The prior works often
adopt a naive approach by straightforwardly computing the
difference between the total number of replicas before and
after the change. Such naive approach is expensive because
it involves all nodes in the network and it must be repeated
when the algorithm explores each possible partitioning. One
of the main contributions of this research is to formally
introduce a localized approach (with O(δ2) complexity) to
explicitly calculate the projected cost gain, which is named
as the Server Change Benefit (SCB). We also show a nice
property that changing the server of a node only affects its
two-hop neighbors and thus only a small number of nodes
need to recalculate their SCB.

Second, we propose an online algorithm based on SCB to
achieve scalable low-cost balanced partitioning of the social
networks. The proposed algorithm includes two phases
for initial node assignment and subsequent relocation and
swapping, which are both greedy. Given the NP-hardness
of the problem, the greedy approach is effective, especially
as it is guided by SCB that reflects the gain in inter-server
traffic cost. Although it is infeasible to derive a performance
bound, the simulations demonstrate it outperforms other
existing algorithms.

The online algorithm is fast and highly efficient to pro-
cess new nodes. But the online nature limits its optimality,
since it generally does not change the past decisions and
it has no knowledge about the future arrivals. The effect
will accumulate, resulting in reducing optimality over time.
Therefore, the system must be re-optimized once a period,
which leads to the offline version of the problem. To this
end, we propose an offline algorithm, which uses the cur-
rent result from the online algorithm as a starting point
and performs node relocation and swapping for further
cost reduction. It employs a merging process to group the
nodes according to their social connections. The nodes are
essentially merged to reflect the social structure. Then the
groups on different severs are swapped to reduce the total
inter-server traffic cost. We implement the proposed algo-
rithms and evaluate them based on a variety of real-world
OSN datasets from Facebook, Amazon, Arxiv, Gnutella, and
Twitter. While the details of the simulation and most results
are deferred to Sec. 4, here we take a peek at Fig. 3 that
highlights the efficiency of the proposed schemes, which
yields supreme performance (i.e., inter-server traffic cost)
in comparison with existing solutions (see Fig. 3), and at
the same time the proposed Online algorithm significantly
reduces the execution time by an average of three folds (see
Fig. 4).

In the rest of the paper, Sec. 2 and Sec. 3 present the
proposed online and offline algorithms for minimum-cost
partitioning of social networks, respectively. Sec. 4 discusses
the simulations and results. Sec. 5 concludes the paper.

2 PROPOSED ONLINE ALGORITHM

We first introduce the Server Change Benefit (SCB) in
Sec. 2.1. In Sec. 2.2, we provide the overall online algo-
rithm procedure and then discuss different online events
in Sec. 2.3.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2694835, IEEE
Transactions on Parallel and Distributed Systems

5

Fig. 3: A highlight of the efficiency of the proposed schemes
on Twitter Sample II dataset without considering data
availability requirement. Both online and offline algorithms
achieve supreme performance in terms of Inter-Server Traf-
fic Cost.

Fig. 4: A highlight of the efficiency of the proposed schemes
on Twitter Sample II dataset without considering data avail-
ability. The online algorithm significantly reduces running
time by about three folds in average.

2.1 Localized Calculation of Server Change
Benefit (SCB)

As stated in Sec. 1.1, our goal is to minimize the inter-server
traffic cost of the social data between servers. When the
amount of social data generated by each individual user
is unknown and unpredictable, the total cost of partitioning
is often defined as the number of replicas [22]. For a lucid
presentation of the proposed algorithm, we use the same
definition for now. It can be readily generalized by consid-
ering traffic and storage weights.

The online version of the problem assumes a given
arbitrary initial partitioning, which distribute the existing
nodes toK servers. When a new node arrives, the algorithm
should explore ways to put the node in the best server in
order to reduce and ideally minimize the total inter-server
traffic cost. A critical problem is how to efficiently determine
the effect of a change of the servers on the total cost. Most
prior works employ a naive approach by straightforwardly
computing the difference between the total costs before and
after the change. It is expensive because the calculation

v
4

v
5

v
1

v
2

v
3

v
0

v
6

Fig. 5: An example of an OSN divided into two servers. As-
sume there are two servers,A andB. The nodes represented
by dotted circles are assigned to Server A and the ones with
solid circles are on Server B. Nodes v0 and v5 are same side
neighbors (SSNs) of Node v1 as they all are on the same
server. Nodes v2 , v3 , and v4 are different side neighbors
(DSNs) of node v1. Node v0 is a pure same side neighbor
(PSSN) of v1 since v0 has no different side neighbors. Note
that, although Node v5 is on the same side as v1, it is not
a PSSN of v1 because it has DSNs, i.e., v2 and v4. Similarly,
Node v3 is a pure different side neighbor (PDSN) of v1 as
it has no DSN except v1. In this example, since v1 has both
DSN and SSN, its Bonus is 1 and its Penalty is -1. The sum
of Bonus and Penalty is 0. For Node v0, since it does not
have any DSN, its Bonus is 0. It has SSN, so, Penalty is
-1. The total sum of Bonus and Penalty is -1. On the other
hand, since Node v6 has no SSN, its Penalty is 0 and has a
DSN so, Bonus is 1. The total sum of Bonus and Penalty
is 1.

involves all nodes in the network and it must be repeated
when the algorithm explores different partitioning options.
A main contribution of this research is to formally introduce
a localized approach (with O(δ2) complexity where δ is the
nodal degree) to calculate the projected cost gain, named as
Server Change Benefit (SCB). We also show a nice property
that only a small (on the order of O(δ)) number of nodes in
the network need to recalculate their SCB when a node is
moved from one server to another.

Definition 1. Same Side Neighbor (SSN). A node vi is a same
side neighbor (SSN) of node vj if they are connected and are
assigned to the same server A.

Definition 2. Pure Same Side Neighbor (PSSN). A node vi
on Server A is a pure same side neighbor (PSSN) of node vj if
vi is a SSN of vj and all the neighbors of vi are also on the same
Server A.

Definition 3. Different Side Neighbor (DSN). A node vi on
Server A is a different side neighbor (DSN) of node vj on Server
B if they are connected.

Definition 4. Pure Different Side Neighbor (PDSN). A node
vi on Server A is a pure different side neighbor (PDSN) of node
vj on Server B if vi is a DSN of vj and none of the neighbors of
vi (except for the node vj) are on the Server B.

Definition 5. Bonus. If Node vi on ServerA has DSN on Server
B, it gains a bonus of 1 on Server B; otherwise, the bonus is 0.

Definition 6. Penalty. If Node vi on Server A has SSN, it has
a penalty of -1; otherwise, the penalty is 0.

Fig. 5 illustrates the above definitions by an example (see
the caption for details). Based on these definitions, we now
introduce the localized approach to determine the projected

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2694835, IEEE
Transactions on Parallel and Distributed Systems

6

gain in inter-server traffic cost, i.e., SCB, would a node be
moved from its current server to another server.

Lemma 1. Assume Node vi is currently at ServerA. If we intend
to move it to Server B, the total gain in inter-server traffic cost,
defined as Server Change Benefit (SCB), can be determined by
localized calculation with O(δ2) complexity.

Proof. Let AB denote the set of servers excluding A and B.
We have discovered that SCB = |PDSNB |+ |PDSNAB |−
|PSSN |−|DSNAB |+BonusB+Penalty, where |PDSNB |
represents the number of PDSN of vi on the target server
B; |PSSNAB | is the number of PDSN of vi on servers
excluding A and B; |DSNAB | is the number of different
side neighbors of vi on servers excludingA andB, which do
not have connections with any nodes on Server B; BonusB
indicates a copy of vi we will save on target server B if vi
would move from source server A to target server B; and
Penalty represents the copy of vi to be created on source
server A because of migration of node vi to target server B.

According to their definitions, it is obvious that only lo-
cal information is required to calculate SCB. The complexity
is clearly O(δ), where δ is the nodal degree of the social
network. In order to determine whether a node is DSN or
PDSN and DSN or PDSN, we need to check her neighbor
nodes too, which has a complexity of O(δ). Considering this
fact, the overall complexity is O(δ2).

Next, we focus on proving that |PDSNB | +
|PDSNAB | − |PSSN | − |DSNAB | + BonusB + Penalty
indeed shows the gain in inter-server traffic cost.

We do not know the number of replicas currently on
servers A, B, and AB before vi is moved. Let’s assume they
are ZA, ZB , and ZAB , respectively. Thus, at the current state
the total number of replicas is Z = ZA + ZB + ZAB .

After Node vi is moved from Server A to Server B,
the total replicas on Server A will be affected. Previously,
Server A maintains copies of PDSN of node vi on Server
A as well as copies of PDSNs of node vi on servers AB.
After migration, Server A no longer needs to maintain
these copies because Node vi no longer exists on Server
A. Similarly, as mentioned in Definition 6, Server A needs
to create a replica for Node vi if it has SSN before migra-
tion. Thus, total copies at Server A after migration will be
Z ′
A = ZA − |PDSNB | − |PDSNAB |+ (−Penalty).

In the mean time, the replicas on Server B will in-
crease by the number of |PSSN | because these PSSN of
node vi are now PDSN of vi and their replicas need to
be created on Server B. As mentioned in Definition 5,
Server B will save a replica of Node vi if it has DSN
on Server B before migration. Beside this, Server B also
needs to create replicas for DSN of node vi on servers AB
if DSNAB has no neighbor on Server B. In other words,
after migration of node vi to Server B, the system needs to
create replicas for all DSN of vi on other servers represented
by AB if the target server B do not already have the
copies. Thus, total copies at Server B after migration will
be Z ′

B = ZB + |PSSN |+DSNAB −BonusB .
There will be no change of replicas on Servers AB, i.e.,

Z ′
AB

= ZAB . The total replicas after migration will become
Z ′ = Z ′

A + Z ′
B + Z ′

AB
.

The gain in inter-server traffic cost is the reduced repli-
cas, i.e, −(Z ′ −Z) = |PDSNB |+ |PDSNAB | − |PSSN | −
|DSNAB |+BonusB+Penalty. So the lemma is proven.

The above result shows that SCB of a node can be
locally calculated with low computational complexity. SCB
of a node vi indicates the change in total inter-server traffic
cost, would vi be moved from Server A to Server B. As
to be discussed later, SCB can be employed as an effective
metric to guide the process of rectifying the servers, in order
to reduce the overall inter-server traffic cost.

After a node is moved to a different server, it may
apparently change some other nodes’ PDSN, PSSN, Bonus,
and Penalty. Therefore, their SCB must be updated. This also
leads to a potential concern about the overall complexity
if many nodes must recalculate their SCB. Fortunately, we
have discovered an interesting property of SCB, as sum-
marized in the following lemma. It shows when the server
changes, the complexity for updating the nodes’ SCBs is also
localized.

Lemma 2. After a node is moved from its current server to
another server, only O(δ) nodes need to recalculate their SCB.

Proof. We prove this by showing only the nodes within two
hops of the moved node (e.g., vo) will have any changes in
their SCB values due to the relocation of vo.

First, let’s consider an arbitrary node vi. As |PDSNB |+
|PDSNAB | − |PSSN | − |DSNAB | + BonusB + Penalty.
According to Definition 5, the value of BonusB depends on
whether Node vi has DSN. So any changes beyond one hop
do not affect BonusB . Similarly, Penalty is determined by
one-hop neighbors of vi. |PDSN | is the number of PDSN.
A node, e.g., vj is a PDSN of vi if vj is a DSN of vi and none
of the neighbors of vj are on the same server of vi. Therefore
|PDSN | is determined by two-hop neighbors. Likewise,
|PSSN | is affected by nodes within two hops. Similarly,
DSNAB can also be determined by two-hop neighbors.
As we can see, vi’s SCB is fully determined by the social
connections up to its two-hop neighbors.

Clearly, if vo is within two hops of vi, the latter needs
to recalculate its SCB after the former relocates to another
server. Otherwise, vi’s SCB remains unchanged. Therefore
after a node is moved from its current server to another
server, onlyO(δ) nodes need to recalculate their SCB values.

As to be shown next, this property of SCB is essential to
achieve the desired scalability.

2.2 Overall Algorithm Procedure

Built upon the techniques introduced above, we now
present the overall online algorithm procedure to achieve
scalable low-cost balanced partitioning of the social net-
works. We discuss different phases of the algorithm. i.e.,
Initial Assignment, Data Availability, Node Relocation and
Swapping. Besides that, we also discuss online events like
node and edge addition/deletion events and server addi-

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2694835, IEEE
Transactions on Parallel and Distributed Systems

7

tion/removal events in Sec. 2.3. The proposed algorithm
includes three major steps as outlined below.

(1) Initial Assignment. As soon as a new node, vi, arrives, it is
first assigned to a server, which currently has the minimum
load. Let A be such server.

(2) Data Availability. For each new node and its neighbors,
non-primary copies of the node as well as its neighbors is
created and assigned accordingly to maintain social locality.
Let us assume that a virtual primary copy of the node’s
neighbor (say vn) from another server previously exists in
Server A. A non-primary copy of vn must be created in
Server A in order to maintain social locality. As the virtual
primary copy of the node vn already exists in Server A,
there is no need to create a new non-primary copy of vn in
Server A. The same rule applies to all other neighbor nodes
including the new node itself.

Similarly, the virtual primary copies for the new node
are assigned across servers to maintain data availability.
i.e., for each new node, a virtual primary copy is assigned
to the another random server with the minimum load. If
the chosen server for assigning the virtual primary copy
consists non-primary copy of the node, it is replaced by the
virtual primary copy. Replacing the non-primary copy by a
virtual primary copy reduces non-primary copy as well as
fulfills the data availability requirement. The above process
repeats until required number of virtual primary copies are
assigned across servers.

(3) Node Relocation and Swapping. Once the node is assigned
to the initial server, the algorithm computes the SCBs of the
node, would it be moved from its current assigned server to
every other server. Apparently, there are K−1 such servers,
yielding K − 1 SCB values. Among them, if the highest
SCB is no greater than zero, i.e., does not indicate possible
benefit, the node will remain intact.

If the highest SCB is positive, the algorithm moves to the
phase of relocation and swapping. More specifically, let B
be the corresponding server that yields the highest SCB. The
node is moved to Server B if it would not violate the load
balance constraint, i.e., the loads of the servers would not
differ by more than ε as given in the problem formulation
in Sec. 1.1.

Otherwise, the algorithm tries to swap the node vi with
another node on Server B. It finds a best node vj with
highest SCB (among all nodes on Server B) would it be
moved from Server B to Server A. If the sum of the SCBs
of the two nodes, i.e., vi (to be moved from A to B) and vj
(to be moved from B to A) is positive, they are swapped.
The swapping obviously keeps the same loads on the two
servers.

When a node moves from Server A to Server B, if the
Server B holds the virtual primary copy of the node, the
primary copy of the node from Server A will be swapped
with the virtual copy of the node on Server B in order to
ensure that the data availability requirement is maintained.

2.3 Online Events

Besides node arrival event, edge addition, edge deletion
and node deletion events are also considered in the online

algorithm. This section also discusses server addition and
removal events.
(1) Edge Addition. A newly added edge is categorized into
i) Inter-server edge and ii) Intra-server edge. An edge is
considered inter-server edge, if it connects nodes from two
different servers. An edge is considered intra-server edge
if it is created within a server. For an edge addition event,
no action is needed if the edge belongs to intra-server edge
category as it does not incur change in inter-server traffic
cost.

Consider a new inter-server edge, e(vi, vj), where the
node vi belongs to Server A and vj belongs to Server B.
The newly added edge may induce increase in total inter-
server traffic cost. In order to reduce the inter-server traffic
cost, the node vi is considered to be moved to Server B if it
would not violate the balance constraint and SCB for vi (to
be moved from A to B) is positive. Despite being beneficial
to be moved from Server A to Server B, if the node vi could
not be moved because it would violate balance constraint, a
node vk from Server B with highest SCB (among all nodes
on Server B) will be chosen to be moved to Server A. If the
sum of SCBs of two nodes, i.e., vi (to be moved from A to
B) and vk (to be moved from B to A) is positive, they are
swapped. Same procedure described above will be repeated
for the node vj too.
(2) Edge Deletion. Consider an edge e(vi, vj) is being deleted,
where node vi belongs to Server A and node vj belongs to
Server B respectively. If the edge e(vi, vj) is an inter-server
edge, no action is needed as it will not adversely impact the
inter-server traffic cost.

Consider an intra-server edge e(vi, vj) is being deleted,
where both nodes vi and vj belongs to Server A. No action
is needed if they have no neighbors on other servers.

If the node vi have neighbor(s) on other server(s), it will
be considered to be moved to another server. A Server B
is chosen such that moving the node vi to Server B gives
maximum possible benefit, i.e., highest SCB among possible
K − 1 servers. If it does not violate the balance constraint,
the node vi will be moved to Server B.

If the node relocation is not possible because of violation
of balance constraint, a best node vk with highest SCB will
be chosen from the Server B to be swapped with the node
vi. If the sum of SCBs of two nodes, i.e., vi (to be moved
from A to B) and vk (to be moved from B to A) is positive,
they are swapped. Same procedure described above will be
repeated for the node vj too.
(3) Node Deletion. A node deletion event is followed by
edge deletion events. A node deletion event can cause load
imbalance. Considering the fact that continuous arrival of
nodes can maintain the balance constraint, a buffer balance
constraint α greater than the balance constraint ε is defined.
Consider Server A with maximum load and Server B with
minimum load respectively. If the load difference between
Server A and Server A exceeds the buffer balance constraint
α, a best node vi with highest SCB (among all possible nodes
on Server A) will be chosen to be moved to Server B. In
other words, moving the node vi with highest SCB from A
to B indicates maximum possible benefit.
(4) Server Removal. In case of server failure, a node vi from
a crashed Server A will be moved to minimum load Server

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2694835, IEEE
Transactions on Parallel and Distributed Systems

8

B. As soon as it moves to Server B, it will be treated as a
newly arrived node. i.e., node relocation and swapping will
be performed if it would be beneficial and would not violate
the balance constraint.
(5) Server Addition. In case of server addition, there are
two options. i.e., i) Wait for arrival nodes to fill up a new
Server A and ii) Find a best node vi with highest SCB
from a maximum load Server B (i.e., highest SCB indicates
maximum possible benefit if the node vi is moved from B to
A) and move it to Server A; repeat the process until required
balance constraint is achieved.

In the proposed algorithm, the initial node assignment
and the subsequent relocation and swapping are greedy.
Given the NP-hardness of the problem, the greedy approach
is effective, especially as it is guided by SCB that reflects the
gain in inter-server traffic cost. Although it is infeasible to
derive performance bound, the simulations to be discussed
next demonstrate it outperforms other existing algorithms.

The proposed algorithm runs fast, with an overall time
complexity of O(δ2(K + N/K)), where N and K are the
number of nodes and servers, respectively. More specifically,
the complexity of each part of the algorithm is analyzed
below. The initial node assignment needs to examine all
servers to find the one with the lowest load, thus has a
complexity of O(K). Similarly, the calculation of SCB has
a complexity of O(δ2K). Once SCB values are available,
the relocation results in a constant time complexity. But
for swapping, the algorithm needs to search for the best
node on Server B, with the complexity of O(δ2N/K). Thus,
the overall complexity of the proposed online algorithm is
O(δ2(K + N/K)). As to be shown by our simulations, the
algorithm is significantly faster than existing approaches.
This is mainly because of the use of SCB, which reduces
the complexity for computing inter-server traffic cost from
O(N) to O(δ2).

3 PROPOSED OFFLINE ALGORITHM

The above discussion has focused on the online version of
the problem, where a set of nodes are already distributed
on the servers. The problem is how to place a new node
in order to reduce the total inter-server traffic cost. While
the new node can be put on any server, the existing nodes
are generally fixed. We do not relocate them, with the only
exception in swapping, which moves one existing node to a
different server.

To this end, we propose an offline algorithm, which
will further reduce inter-server traffic cost by employing
node relocation and swapping. Besides node relocation and
swapping, it also employs a merging process to group the
nodes according to their social connections. The nodes are
essentially merged to reflect the social structure. Then the
groups on different severs are swapped to reduce the total
inter-server traffic cost.

In this section, we discuss different phases of the of-
fline algorithm. i.e., Initial Assignment, Node Relocation
and Swapping, Merging and Group-Based Swapping, and
Virtual Primary Swapping.

3.1 Initial Assignment
The offline algorithm is based on an initial assignment of the
nodes on the servers. As the algorithm’s goal is to reduce

the inter-server traffic cost further, the current result from
the online algorithm can be used as an initial assignment
for offline algorithm.

3.2 Node Relocation and Swapping

We can apply node relocation and swapping as mentioned
in Sec. 2.2 for each node selected randomly or selected
greedily based on SCB values from the initial placement.
After all nodes are considered for either relocation or swap-
ping, same procedure is repeated again until no further
reduction can be achieved or until the number of such
iterations does not exceed a constant η.

3.3 Merging and Group-Based Swapping

The initial assignment after node relocation and swapping
provides a good starting point, with the load across the
servers well balanced. However, since it is obtained by pro-
cessing the nodes in a random or greedy order, the result is
often suboptimal. To further exploit the offline property, we
explore different ways to move the nodes in order to further
reduce the inter-server traffic cost. For example, we can try
to swap a block of n nodes on a server with another block
of n nodes on a different server (with 1 ≤ n < dN/Ke) to
check if it results in lower inter-server traffic cost and does
not violate data availability constraint. Ideally, we want to
consider all combination of nodes and servers. While the
idea is straightforward, the complexity is overwhelming due
to the explosively large solution space.

Fortunately, our research reveals that it is unnecessary
to consider some combinations. For example, the closely
connected nodes should be naturally placed on the same
server, or otherwise, it renders higher inter-server traffic
cost. To this end, we propose an algorithm to merge closely
connected nodes and then deal with merged nodes only,
in order to reduce the solution space and lower the time
complexity.

Before presenting the algorithm, we first introduce sev-
eral definitions related to the merging process. We call the
nodes in the original social network graph the original nodes.
Under the proposed merging algorithm, two original nodes
can be merged into a merged node. The merged node can
be merged again with another original node or a merged
node. So in general, a merged node consists of multiple
original nodes. A social connection completely inside a
merged node is call an internal connection. Let λi denote the
number of internal connections of a merged node i and αi

the number of original nodes included in the merged node
i. On the other hand, a social connection across two merged
nodes is called an external connection. Similarly, let µi denote
the number of external connections of a merged node i.
Two nodes are external (or internal) neighbors, if they are
connected by an external (or internal) connection. We define
a merging metric, βi = (λi − µi)/αi. It is not difficult to
show that a higher β means more internal connections than
external connections (normalized per node). Thus a high β
indicates a strongly connected group of nodes.

The merging algorithm is an iterative process as outlined
below.
(1) Randomly select an original node. Create a merged node
i that includes this original node only. Let d denote the

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2694835, IEEE
Transactions on Parallel and Distributed Systems

9

degree of the node. Apparently, λi = 0, µi = d and αi = 1.
Accordingly, we have βi = −d.
(2) Randomly select an external connection of the merged
node i. Let j denote the corresponding external neighbor,
which can be either an original node or a merged node.
Suppose node j is merged into node i, we calculate the
corresponding λ′i and µ′

i, and accordingly β′
i. If β′

i > βi, the
merge is valid. Otherwise, the merge is withdrawn, and thus
nodes i and j remain separate. Note that, if they are merged,
the new node i will have different (usually expanded) set of
external neighbors.
(3) Repeat Step (2) until none of the current external neigh-
bors of node i can be merged.
(4) Repeat Step (1)-(3) until all nodes are processed.

An example of the merging process is illustrated in
Fig. 6 (see the caption for details). The nodes are merged,
essentially forming social groups, where the nodes in each
group have many social connections and thus should be
placed on the same server.

Next, we run group-based swapping. More specifically,
we select the largest group that has not been processed so
far and check if it can be swapped with another group in
a similar size and on a different server. We observed that
swapping any two groups may affect non-primary replicas
of the nodes involved in swapping and their respective
neighbors. Considering this fact, if the swapping results in
reduced replicas and at the mean time does not violate the
data availability requirement for every node (including their
neighbors) in the group, they will be swapped. The process
repeats until all groups have been considered.

In the swapping process, we can require the two groups
to have exactly same size, in order to ensure perfect load
balance. However, this often limits the opportunity for
swapping. Alternatively, we can allow their size to differ by
a small constant of ε. A side effect of this approach is that the
load may become unbalanced among the servers. To address
this problem, the servers are further refined by migrating
the individual original nodes from the server with high
load to the one with low load until the balancing condition
is satisfied. Similar to the relocation process introduced in
the online algorithm, SCB is employed to identify the best
server for migrating each node.

3.4 Virtual Primary Swapping
This phase of the algorithm further reduces inter-server traf-
fic cost by replacing non-primary copies by their respective
virtual primary copies from different servers.

Each virtual primary copy of a node vi from the Server k
(i.e., Cv

ik = 1) can be swapped with another virtual primary
copy of a node vj from another Server l (i.e., Cv

jl = 1) only
if a non-primary copy of the node vj exists on Server k,
i.e., Cr

jk = 1 and a non-primary copy of the node vi exists
on the Server l, i.e., Cr

il = 1. In other words, when virtual
primary copies of nodes vi and vj are swapped, they will
replace their respective non-primary copies reducing the
non-primary copies that eventually results in the reduction
of inter-server traffic cost. Above procedure can be repeated
for all possible pairs of virtual primary copies.

Fig. 7 illustrates an example of the offline algorithm. The
time complexity of the algorithm is analyzed as follows. The
number of iterations in node relocation and swapping is

limited to a constant η. For the implementation purpose η is
fixed to 10. Hence, the node relocation and swapping phase
has a time complexity of O(ηδ2(K +N/K).

Similarly, the merging process essentially checks every
edge, and thus has a time complexity of O(N2). The swap-
ping is based on groups. In the worst case, each group
contains one original node only, so the algorithm must deal
with N groups. Therefore it leads to a complexity of O(N2)
to go through each group and check if can be swapped with
another group.

Similarly, for the virtual primary swapping phase, in the
worst case, we may need to check each virtual primary
copies with ψ(N − 1) other virtual primary copies for
possible exchange benefit, which leads to a time complexity
of O((ψN)2) and that can be further simplified to O(N2)
as ψ is usually very small compared to N . As a result, the
overall complexity of the offline algorithm is O(N2).

4 SIMULATION RESULTS

We have implemented the proposed algorithm and two
other existing approaches, i.e., “SPAR” [22] and “Random”.
“SPAR” has been introduced in Sec. 1.2. For fair comparison,
same balance constraint (ε = 1) has been used for Random,
METIS [14], SPAR [22], Offline and Online.

Considering policy for user limitations in various fac-
tors including storage defined by most of the online social
networks (like YouTube [9], Instagram [8], Pinterest [6],
Facebook [3], [4] and Twitter [7]), we assume all primary
copies as well as virtual primary copies have equal storage
weights during the implementation.

The basic idea of the “Random” approach, which is
currently employed in many practical OSNs [1], [2], [10],
[16], is to simply distribute the nodes to the servers in
a uniformly random manner. In addition, we have also
collected results based on minimum-cut. We have created
minimum-cut servers by using METIS [14] and evaluated
its inter-server traffic cost.

For the fair comparison, data availability requirement
in Random, SPAR, and METIS is maintained using the
same algorithm described in Sec. 3.4. SPAR maintains
data availability (fault tolerance) by introducing required
number of additional slave replicas [22], whereas in our
proposed scheme, we use a fixed number of virtual primary
copies instead of non-primary copies (slave replicas).

We use a machine with four 3.0 GHz cores and 16
GB RAM to run the algorithms based on several real-
world social network datasets, including Facebook [18],
p2p-Gnutella [23], Arxiv [17], Twitter [18], and Amazon [28].
The Facebook dataset is a sparse graph representing Face-
book users and the relationship between them. p2p-Gnutella
is a dataset collected from Gnutella showing the connections
between Gnutella nodes. Arxiv represents authors and rela-
tionship between their papers submitted to General Relativ-
ity and Quantum Cosmology (GR-QC). The Twitter dataset
consists of “circles” (or “lists”). It was crawled from public
sources. The Amazon dataset was collected by crawling
Amazon website. It is based on the “Customers Who Bought
This Item Also Bought” feature of the Amazon website. We
have used samples of Twitter dataset (i.e., Twitter Sample I
and Twiiter Sample II) as well as Amazon datasets. Twitter
Sample I and II have total nodes of approximately 5% and
10% of total nodes of Twitter dataset respectively. Similarly,
Amazon Sample is a sparse graph, which has total nodes

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2694835, IEEE
Transactions on Parallel and Distributed Systems

10

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6: An example of the merging process. (a) The original social network graph. (b) Node 1 is selected randomly, and a
merged node (i.e., Group 1) is created that includes Node 1 only. (c) Two nodes are merged into Group 1. (d) Three nodes
are merged into Group 1. (e) Four nodes are merged into Group 1, and no other nodes can be merged into it. Accordingly,
the algorithm randomly selects another node, i.e., Node 5, to create a new merge node (i.e., Group 2). (f) Two nodes are
merged into Group 2. (g) Three nodes are merged into Group 2. (h) The final result of the merging process, including three
groups.

(a) (b) (c) (d) (e)

Fig. 7: An example of the offline algorithm without considering data availability. (a) The original social network graph
(based on sampled Facebook data set). (b) The initial assignment (i.e., the outcome of the online algorithm) with 3 servers.
The colors indicate servers. The nodes with the same color are in the same server and will be put on the same server. There
are a total of 26 replicas. (c) Node Relocation and Swapping Phase. There are total of 19 replicas. (d) The merged graph.
Each group of nodes are enclosed by a circle-like boundary. (e) The result of the offline algorithm with node relocation and
swapping and group-based swapping, resulting in a total of 18 replicas. Again, colors indicate servers.

of approximately 5% of original Amazon dataset. The orig-
inal Twitter dataset is a dense graph, whereas the original
Amazon dataset is a sparse graph. The number of nodes and
connections of each dataset are summarized below:

Dataset Number of nodes Number of edges
Facebook 4,039 88,234
p2p-Gnutella 8,114 26,013
Arxiv 5,242 14,496
Twitter Sample I 4,066 240,261
Twitter Sample II 8,131 65,109
Amazon Sample 3,349 15,483
Twitter 81,306 1,768,149
Amazon 334,863 925,872

Fig. 3 (which has been previewed in Sec. 1) compares
the performance of the proposed online and offline schemes
with other solutions. As shown in Fig. 3, the proposed
schemes achieve supreme performance in terms of inter-
server traffic cost.

Based on SCB that accurately reflects the gain in inter-
server traffic cost, the proposed online algorithm can effec-
tively choose the best server and/or adjust the servers via
relocation and swapping to reduce the inter-server traffic

cost. It achieves a dramatic gain in reduced inter-server
traffic cost, in comparison with SPAR and Random (as well
as METIS as to be shown in Fig. 11). The offline algorithm
further reduces the inter-server traffic cost, since it employs
node relocation and swapping and merging and group-
based swapping followed by virtual primary swapping.
Although infeasible to derive performance bound for the
proposed heuristics, our simulation results (under a variety
of social network datasets) show an average reduction of
50% of the inter-server traffic cost in comparison with SPAR.
The Random scheme unsurprisingly has the lowest execu-
tion time (see Fig. 4), but as shown in Fig. 3, it results in very
high inter-server traffic cost. SPAR consumes about three
times longer time than the proposed online scheme. This is
obvious as SPAR uses a naive way to compute the total inter-
server traffic cost in each iteration, involving all nodes. Each
time a new node arrives it computes the projected change in
inter-server traffic cost by assuming it is moved to different
servers that host its neighbors. So, with the increase of the
number of servers (i.e., K), the computation time increases.

Similarly, for the Online algorithm, the computation

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2694835, IEEE
Transactions on Parallel and Distributed Systems

11

Fig. 8: Inter-server traffic cost under varying number of
nodes (N) for Facebook datasets without considering data
availability requirement.

Fig. 9: Inter-server traffic cost under varying number of
nodes (N) for for Facebook datasets with data availability
requirement.

time decreases when the number of servers K approaches√
N and continues to increases afterwards. When K equals

N/K, the time complexity for the Online algorithm can be
expressed as O(2δ2

√
N), which is the reason why the exe-

cution time has a decreasing trend when K is approaching√
N . When K goes further away from

√
N approaching

N , the value of K dominates N/K ultimately increasing
execution time compared to the point, where K =

√
N .

Fig. 8 and 9 illustrates the inter-server traffic cost by
varying the number of nodes (i.e., N). The results under
different virtual primary settings show similar trend that
the inter-server traffic cost increases with N . This is because
more nodes result in a denser network with higher nodal
degree. Thus, more replicas must be created, resulting in
higher cost. At the same time, more computation is needed
to determine the best server for each node. Compared to
SPAR, our propose schemes (both online and office schemes)
always deliver supreme performance. In the online setting,
as soon as a new node arrives and is assigned to a minimum
load server, our proposed scheme seeks node relocation or
swapping in order to reduce adverse impact of inter-server
traffic cost due to the new arrival. On the top of that, the
offline scheme further exploits the offline property of the
social graph by employing group-based swapping to reduce
the inter-server traffic cost.

Fig. 10 and 11 illustrates the performance of the pro-

Fig. 10: Performance comparison between Random, SPAR
[22], Offline and Online considering traffic weights and
two virtual primary copies for each node (inter-server traffic
cost).

Fig. 11: Performance comparison between Random,
METIS [14], SPAR [22], Offline and Online with equal
traffic weights and three virtual primary copies for each
node (inter-server traffic cost).

Fig. 12: Performance comparison between SPAR [22] and
Online (Execution time).

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2694835, IEEE
Transactions on Parallel and Distributed Systems

12

Fig. 13: Performance comparison between Random, SPAR
[22], Offline and Online with traffic weights (inter-server
traffic cost).

Fig. 14: Performance comparison between SPAR [22] and
Online with traffic weights (Execution time).

posed scheme under various datasets and varying param-
eters. As shown in Fig. 10 and 11, the proposed offline
algorithm always has the lowest inter-server traffic cost,
followed by the online algorithm. They both have better per-
formance over Random, SPAR, and METIS. As illustrated
earlier in Fig. 2, minimum-cut does not lead to minimum
inter-server traffic cost. This can be clearly observed in the
figure by comparing METIS with our proposed schemes.

As mentioned above two figures represent results ob-
tained using two different parameters. In the first case, each
node maintains two virtual primary copies across servers
and each node is assigned a unique traffic weight. The list of
traffic weights for each dataset is generated independently
using Gaussian distribution.

Similarly, the second case considers all nodes with equal
traffic weights and each node maintains three virtual pri-
mary copies (ψ = 3).

Fig. 12 compares the execution time between our online
algorithm and “SPAR”. Under most datasets, the proposed
scheme has significantly lower computation time, in an

Fig. 15: Replica distributions (based on Facebook dataset
with 10 servers).

Fig. 16: Nodal distributions (based on Facebook dataset with
10 servers).

average of three folds. As discussed in Sec. 2.2, execution
time for the proposed scheme depends on the number
of servers K and the total number of nodes N . On the
other hand, SPAR has two main phases, which contribute
to computation time, i.e., (i) edge creation event, which
leads to node relocation, and (ii) computation of change in
inter-server traffic cost. For each new social connection, the
algorithm seeks benefit of relocating the primary copy of a
node to its new neighbor’s server or relocating the primary
copy of new neighbor onto its current server. If both of
them does not seem to benefit overall inter-server traffic
cost, no changes will be made. Based on these conditions,
the execution time is directly proportional to the number
of edges in the social network. Since Gnutella, Amazon
Sample and Arxiv datasets are sparse in nature compared
to other datasets, their lower computation time is reasonable
as illustrated in Fig. 12.

Fig. 13 and 14 illustrates the performance of the pro-
posed scheme under Twitter and Amazon datasets. As we
can clearly see the proposed algorithm is able to reduce
inter-server traffic cost significantly compared to SPAR [22].

Fig. 14 depicts performance comparison of proposed
scheme in terms of execution time. As the Twitter dataset
has fewer nodes compared to Amazon, proposed scheme
performance better than SPAR as the performance of pro-
posed scheme primarily depends on K and N , whereas
SPAR depends primarily on number of edges |E|. Simi-
larly, better performance of SPAR in the case of Amazon
dataset is justifiable as Amazon dataset is sparse in nature
compared to the Twitter dataset.

Fig. 15 depicts the distribution of replicated copies. De-

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2694835, IEEE
Transactions on Parallel and Distributed Systems

13

Fig. 17: Inter-server traffic cost Reduction Per Event
(Online).

Fig. 18: Number of Nodes Moved Per Event (Online).

spite some variation (e.g., at Server 4 and 5), the replicated
copies are largely randomly uniformly distributed across
different servers. We also observe that over 78% nodes have
one or two copies (see Fig. 16. Only a few nodes have
multiple neighbors on different servers and thus need to
create more than two copies, evidencing the efficiency of
our partitioning algorithm.

Fig. 17 and Fig. 18 illustrate replication reduction cost
per event and the number of nodes moved per event re-
spectively for Facebook dataset on 16 servers with ε = 1.
Replication reduction represents a difference between the
total cost after the event and the total cost after applying
proposed Online algorithm as a response to the event. An

Fig. 19: Inter-server traffic cost For Varying Virtual Primary
Copies for Random, SPAR [22], Offline and Online.

event represents one of the following events, i.e., i) node
arrival, ii) node removal, iii) edge creation and iv) edge
removal. As illustrated in Fig. 18, 41% of events are no
action events. Also, most of the action events constitutes
of swapping, which seems to be more beneficial compared
to the node relocation with the maximum reduction of 196
replicas as illustrated in Fig. 17.

From both Fig. 17 and Fig. 18, we can conclude that our
algorithm is able to achieve higher reduction in the inter-
server traffic cost for almost all action events with maximum
node moves of 4. All action events consist of node moves
ranging from 1 to 4, where most of the action events are
dominated by node moves of two.

Fig. 19 illustrates inter-server traffic cost with increasing
number of virtual primary copies. When ψ is zero, it rep-
resents a special case without considering data availability
constraint. When ψ is (N − 1) (ψ = 7 for the particular
case), it represents the full replication. Despite increasing
number of virtual primary copies, our proposed scheme still
performs better than Random and SPAR.

5 CONCLUSION

Online social networks (OSNs) have experienced explosive
growth in recent years, especially due to the remarkable
proliferation of intelligent mobile devices and fast growing
mobile users who access social networks via their portables.
A large OSN often consists of an enormous volume of social
nodes, social connections, and social data, which are very
expensive or even impossible to be deployed on a single
server. To this end, horizontal scaling has been proposed to
server an OSN and distribute the servers to a set of low-
cost servers. In this research, we have studied the problem
of minimum-cost balanced partitioning of OSNs, aiming to
achieve the best partitioning by minimizing the total inter-
server traffic cost and at the same time balancing the load
among servers. Given its NP-hardness, we have proposed
new techniques and explored efficient heuristics to address
the problem. In particular, we have developed a localized
approach with O(δ2) complexity to explicitly calculate the
projected gain in inter-server traffic cost (named Server
Change Benefit (SCB)). Built upon this technique, we devise
two algorithms that offer online and offline solutions. The
online algorithm is fast and highly efficient to process newly
arrival individual nodes. The offline algorithm uses the
current online result as a starting point and further reduces
cost by applying node relocation and swapping. It employs
a merging process to group the nodes according to the
social structure and swap the groups with similar size to
further reduce the total inter-server traffic cost. We have
implemented the proposed algorithms and evaluated them
based on a variety of real-world OSN datasets from Face-
book, Amazon, Arxiv, Gnutella, and Twitter. The simulation
results have demonstrated that the proposed scheme can
significantly reduce the algorithm execution time by about
three folds and at the same time yield supreme performance
(i.e., inter-server traffic cost) in comparison with existing
solutions.

Although the Random method maximizes data retrieval
efficiency via parallel computing, there is a tradeoff between
maximizing the data retrieval efficiency and minimizing

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2694835, IEEE
Transactions on Parallel and Distributed Systems

14

inter-server traffic cost at the same time. In this paper,
we focused on minimizing replication cost that eventually
minimizes inter-traffic cost. Besides that, nowadays a typical
server can accommodate many small servers for parallel
computation, which in turn can enhance data retrieval ef-
ficiency.

REFERENCES

[1] Amazon EC2. http://aws.amazon.com/ec2/. Accessed: 2015-07-
21.

[2] Cassandra. http://cassandra.apache.org/. Accessed: 2015-07-21.
[3] Facebook Help. https://www.facebook.com/help/

116603848424794?helpref=search. Accessed: 2016-10-17.
[4] Facebook Limits. http://www.adweek.com/socialtimes/

facebook-increases-limit-on-photo-albums-from-60-to-200-with-haystack/
221691. Accessed: 2016-10-17.

[5] Our History. http://newsroom.fb.com/company-info/. Ac-
cessed: 2016-05-16.

[6] Pinterest Help. https://help.pinterest.com/en/articles/
limits-pins-boards-likes-and-following. Accessed: 2016-10-17.

[7] Twitter Support. https://support.twitter.com/articles/13920#
maxtweets. Accessed: 2016-10-17.

[8] What are your limits on Instagram? http://www.jennstrends.
com/limits-on-instagram/. Accessed: 2016-10-17.

[9] YouTube Help. https://support.google.com/youtube/answer/
71673?hl=en. Accessed: 2016-10-17.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s Highly Available Key-value Store. In ACM
SIGOPS Operating Systems Review, volume 41, pages 205–220, 2007.

[11] C. M. Fiduccia and R. M. Mattheyses. A Linear-Time Heuristic
for Improving Network Partitions. In Proceeding of IEEE Design
Automation Conference, pages 175–181, 1982.

[12] L. Jiao, J. Li, T. Xu, and X. Fu. Cost optimization for online social
networks on geo-distributed clouds. In Proceedings of International
Conference on Network Protocols (ICNP), pages 1–10. IEEE, 2012.

[13] L. Jiao, J. Li, T. Xu, and X. Fu. Optimizing cost for online social
networks on geo-distributed clouds. IEEE/ACM Transactions on
Networking, 24(1):99–112, 2016.

[14] K. V. Karypis George. A fast and highly quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on Scientific
Computing, 20(1):359–392, 1999.

[15] B. Kernighan and S. Lin. An Efficient Heuristic Procedure for
Partitioning Graphs. pages 291–307, Sept. 1969.

[16] A. Lakshman and P. Malik. Cassandra: a Decentralized Structured
Storage System. ACM SIGOPS Operating Systems Review, 44(2):35–
40, 2010.

[17] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph Evolution:
Densification and Shrinking Diameters. ACM Transactions on
Knowledge Discovery from Data (TKDD), 1(1):2, 2007.

[18] J. Leskovec and J. J. Mcauley. Learning to Discover Social Circles in
ego Networks. In Advances in Neural Information Processing Systems,
pages 539–547, 2012.

[19] G. Liu, H. Shen, and H. Chandler. Selective data replication for
online social networks with distributed datacenters. In Proceedings
of International Conference on Network Protocols (ICNP), pages 1–10,
2013.

[20] A. Moniruzzaman and S. A. Hossain. NoSQL Database: New Era
of Databases for Big Data Analytics-classification, Characteristics
and Comparison. arXiv preprint arXiv:1307.0191, 2013.

[21] M. A. U. Nasir. Gossip-based Partitioning and Replication Mid-
dleware for Online Social Networks. Master’s thesis, Kth Royal
Institute of Technology, Stockholm, Sweden, may 2013.

[22] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris,
P. Chhabra, and P. Rodriguez. The Little Engine(s) That Could:
Scaling Online Social Networks. In Proc. of ACM SIGCOMM, pages
375–386, 2010.

[23] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the Gnutella
Network: Properties of Large-scale Peer-to-peer Systems and Im-
plications for System Design. arXiv preprint cs/0209028, 2002.

[24] S. Sarmady. A survey on Peer-to-Peer and DHT. arXiv preprint
arXiv:1006.4708, 2010.

[25] J. Tang, X. Tang, and J. Yuan. Optimizing inter-server communica-
tion for online social networks. In Proceedings of IEEE International
Conference on Distributed Computing Systems (ICDCS), pages 215–
224, 2015.

[26] D. A. Tran, K. Nguyen, and C. Pham. S-clone: Socially-aware data
replication for social networks. Computer Networks, 56(7):2001–
2013, 2012.

[27] M. P. Wittie, V. Pejovic, L. Deek, K. C. Almeroth, and B. Y.
Zhao. Exploiting locality of interest in online social networks.
In Proceedings of International Conference on emerging Networking
EXperiments and Technologies (CoNEXT), page 25, 2010.

[28] J. Yang and J. Leskovec. Defining and Evaluating Network
Communities Based on Ground-truth. Springer Knowledge and
Information Systems, 42(1):181–213, 2015.

Romas James Hada received the B.S. degree
in computer engineering from Institute of Engi-
neering, Pulchowk Campus, Tribhuvan Univer-
stiy, Nepal, in 2007, and the M.S. degree in
computer science from University of Nevada at
Las Vegas, Las Vegas, NV, USA, in 2011, and
is pursuing Ph.D. degree in computer science
at the Center for Advanced Computer Studies
(CACS), University of Louisiana at Lafayette (UL
Lafayette), since 2013. His current research in-
terests include computational geometric algo-

rithms, data mining, graph theory, and wireless networks. He received
University Fellowship in 2013.

Hongyi Wu is the Batten Chair in Cybersecurity
and the Director of the Center for Cybersecurity
Education and Research at Old Dominion Uni-
versity (ODU). He is also a Professor in Depart-
ment of Electrical and Computer Engineering.
Before joining ODU, he was an Alfred and Helen
Lamson Endowed Professor at the Center for
Advanced Computer Studies (CACS), University
of Louisiana at Lafayette (UL Lafayette). He re-
ceived the B.S. degree in scientific instruments
from Zhejiang University, Hangzhou, China, in

1996, and the M.S. degree in electrical engineering and Ph.D. degree
in computer science from the State University of New York (SUNY)
at Buffalo in 2000 and 2002, respectively. His research focuses on
networked cyber-physical systems for security, safety, and emergency
management applications, where the devices are often light-weight,
with extremely limited computing power, storage space, communication
bandwidth, and battery supply. He received NSF CAREER Award in
2004 and UL Lafayette Distinguished Professor Award in 2011.

Miao Jin received the B.S. degree in computer
science from Beijing University of Posts and
Telecommunications, Beijing, China, in 2000,
and the M.S. and Ph.D. degrees in computer
science from the State University of New York at
Stony Brook, Stony Brook, NY, USA, in 2006 and
2008, respectively. Since then, she has been
with the Center for Advanced Computer Stud-
ies (CACS), University of Louisiana at Lafayette
(UL Lafayette), where she is now an associate
professor. Her research interests are computa-

tional geometric and topological algorithms with applications in wireless
networks, computer graphics, computer vision, and medical imaging.
Her research results have been used as cover images of mathematics
books and licensed by Siemens Healthcare Sector of Germany for
virtual colonoscopy. She received NSF CAREER Award in 2011, Jack
and Gladys Theall/BoRSF Professorship in 2013, and Lockheed Martin
Corporation/BoRSF Professor in 2016.

