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Abstract— This work introduces a unified framework for
discrete surface Ricci flow algorithms, including spherical, Eu-
clidean, and hyperbolic Ricci flows, which can design Riemannian
metrics on surfaces with arbitrary topologies by user-defined
Gaussian curvatures. Furthermore, the target metrics are con-
formal (angle-preserving) to the original metrics.

Ricci flow conformally deforms the Riemannian metric on
a surface according to its induced curvature, such that the
curvature evolves like a heat diffusion process. Eventually, the
curvature becomes the user defined curvature.

Discrete Ricci flow algorithms are based on a variational
framework. Given a mesh, all possible metrics form a linear
space, and all possible curvatures form a convex polytope. The
Ricci energy is defined on the metric space, which reaches its
minimum at the desired metric. The Ricci flow is the negative
gradient flow of the Ricci energy. Furthermore, the Ricci energy
can be optimized using Newton’s method more efficiently.

Discrete Ricci flow algorithms are rigorous and efficient. Our
experimental results demonstrate the efficiency, accuracy and
flexibility of the algorithms. They have the potential for a
wide range of applications in graphics, geometric modeling, and
medical imaging. We demonstrate their practical values by global
surface parameterizations.

Index Terms— Discrete Ricci flow, Riemannian metric, uni-
formization, global conformal parameterizations, manifold

I. INTRODUCTION

Ricci flow is a curvature flow method, which has been applied
to the proof of the Poincaré conjecture on three dimensional man-
ifolds [1]–[3]. Ricci flow was introduced by Richard Hamilton for
general Riemannian manifolds in his seminal work [4] in 1982.

a) Physical Intuition: Ricci flow has a simple physical
intuition. Given a surface with a Riemannian metric, the metric
induces the Gaussian curvature function. If the metric is changed,
then the Gaussian curvature will be changed accordingly. We
deform the metric in the following way: at each point, we locally
scale the metric, such that the scaling factor is proportional to the
curvature at the point. After the deformation, the curvature will be
changed. We repeat the deformation process, then both the metric
and the curvature will evolve, such that the curvature evolution is
like a heat diffusion process. Eventually, the Gaussian curvature
function is constant everywhere. If the surface is closed and
simply connected, then the surface becomes a sphere eventually.
(The analogy of this process for three dimensional manifolds is
the basic idea of the proof of the Poincaré conjecture.)

b) Motivations: Surface Ricci flow is a powerful tool to
design a Riemannian metric, such that the metric induces the
user-defined Gaussian curvature function on the surface, and is
conformal (i.e.,angle-preserving) to the original metric. Many
applications in engineering fields can be formulated as finding
some metrics with desired properties, where Ricci flow can be
directly utilized.

In graphics, a surface parametrization is commonly used,

which refers to the process of mapping a surface to another
canonical domain. If the domain is planar, then it is equivalent to
finding a Riemannian metric, which induces 0 Gaussian curvature
everywhere. (Such a metric is called a flat metric.)

In digital geometry processing, if such a parameterization is
known, then any signal (e.g. texture) on the surface can be
defined on the parametric domain. Complicated processing tasks
on surfaces can be transferred to easier ones on the parametric
domains, such as texturing [5] and re-meshing [6].

In computer-aided geometric modeling, a flat metric is helpful
for constructing manifold splines, whose parametric domains are
manifolds with arbitrary topologies instead of planar domains.
In order to build a manifold spline, a special atlas of the
domain manifold needs to be found, such that all local coordinate
transition maps are affine. One way to construct such an atlas
is to find a flat metric. Details of the manifold theory and the
construction of an affine atlas can be found in [7].

In the medical imaging field, conformal brain mapping has been
widely used, which maps the human brain cortical surfaces to the
unit sphere to facilitate registration, fusion, and comparison. This
is equivalent to finding a Riemannian metric on the brain cortical
surface, such that the induced Gaussian curvature is a constant
+1 everywhere.

c) Brief History: For engineering applications, Ricci flow
theory on smooth surfaces needs to be generalized to discrete
algorithms on piecewise linear meshes.

Ricci flow on surfaces was first introduced by Hamilton in
[8]. A circle packing algorithm was introduced by Thurston
in [9]. Chow and Luo discovered their intrinsic relations and
laid down the theoretic foundation for discrete Ricci flow in
[10], where the existence and convergence of the discrete Ricci
flow were established. However, that work only considers the
combinatorial structures of triangular meshes, and the algorithm is
not efficient in practice. Because the discrete Ricci flow algorithm
is the gradient descent algorithm, it has been improved by using
Newton’s method in our later works on discrete hyperbolic Ricci
flow [11] and discrete Euclidean Ricci flow [12].

In this work, we introduce the discrete spherical Ricci flow
based on Newton’s method for the first time to fulfill our goal of
using Ricci flow to handle all sorts of surfaces with different
topologies. We provide a simple and unified framework for
all three types of discrete Ricci flow algorithms, which is a
complete system to design Riemannian metrics with user-defined
Gaussian curvatures (if there is no user defined curvature, the
target curvature is set to be constant), which are conformal to the
original induced Euclidean metric.

d) Organization: The paper is organized as follows: Previ-
ous works are briefly surveyed in Section II. Section III introduces
the most important concepts in differential geometry which are
crucial for designing our algorithms. Section IV presents the
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theory of discrete surface Ricci flow. Specific algorithms are given
in Section V. The performance of the algorithms is analyzed
and one application of the algorithms in computer graphics is
demonstrated in Section VI. Finally, the conclusion and future
work are given in Section VII.

II. PREVIOUS WORK

There are many applications in graphics and geometric model-
ing directly related to computing a desired Riemannian metric
with user-defined Gaussian curvatures on a given surface as
discussed in Section I. Before demonstrating the effectiveness of
discrete Ricci flow for these applications, we first give a brief
survey of current works in these areas.

A lot of research has been done on mesh parameterization
due to its usefulness in computer graphics applications. The
surveys of [13], [14] provide excellent reviews on various kinds of
mesh parameterization techniques. Here we only review the most
related ones. For more details, we refer readers to [13], [14].
Among previous research on mesh parameterization, conformal
mesh parameterization is distinguished by its angle preserving
nature, and many researchers developed algorithms of conformal-
ity mappings [5], [15]–[19]. Lévy et al. [5] applied the Cauchy-
Riemann equation for mesh parameterization and provided suc-
cessful results on the constrained 2D parameterizations with free
boundaries. Desbrun et al. [17] minimized the Dirichlet energy
defined on triangle meshes for computing conformal parameter-
ization. Angle based flattening methods [16], [18] approximate
conformal mappings directly by minimizing angle distortions. Gu
and Yau in [19] computed the conformal structure using Hodge
theory. A flat metric of the given surface is induced by com-
puting the holomorphic 1-form with a genus-related number of
singularities to obtain a globally smooth parameterization. Gortler
et al. [20] used discrete 1-forms for mesh parameterization.
Their approach provided good results for mesh parameterization
with several holes, but they cannot control the curvatures on
the boundaries. Ray et al. [21] used the holomorphic 1-form
to follow the principal curvatures on manifolds and computed
a quad-dominated parameterization for arbitrary models. Tong et
al. [22] utilized harmonic 1-forms for designing quadrangulations.
Fisher et al. [23] used discrete 1-forms for tangential vector fields
design.

Circle packing was first studied by Koebe in 1928. Thurston
reinvented it in 1978 [9] in order to find hyperbolic metrics on
3-manifolds. A practical software system for circle packing with
an improved algorithm can be found in [24], which considers
the combinatorial structure of the triangulation only. A different
approach, which generalizes the tangential circle pattern, was
proposed by Bobenko-Springborn in [25], [26]. They used the
notion of angle structures first introduced by Colin de Verdiére
[27] in 1991. The work in [27] is seminal, and first introduced
the variational approach to circle packing theory. The practical
implementation of [25] was carried out in [28], and was used for
surface parameterization on Euclidean geometry. The difference
between the work of [28] and ours is as follows.

The circle pattern and the discrete Ricci flow are the Legendre
dual to each other (the concept of Legenendre dual is explained
in details [29]). Therefore, the convexity of circle pattern energy
is equivalent to the convexity of the discrete Ricci energy, and
the convergence of one is equivalent to the other. The approach

in [25], [28] uses angles as variables and ours uses edge lengths.
However, our approach works for circle packing where circles
could have intersection angles, which cannot be covered by
[25], [28]. The practical application of circle patterns has been
provided only for the Euclidean case in [28]. Circle pattern has
defined curvatures on both vertices and faces, while discrete Ricci
flow has only vertex curvatures. In contrast, our work provides
the discrete theories as well as the applications for generally
topological surfaces under Euclidean, spherical, and hyperbolic
parametrization domains.

For surfaces with spherical topologies there exist several meth-
ods for parameterizing the surface onto the sphere. This approach
is used for texture mapping in [30], [31] and for conformal brain
mappings in [32], [33].

Affine structure is another common geometric structure on
arbitrary surfaces, applied for constructing manifold splines on
general surfaces in [7], where the affine structures are induced by
holomorphic differentials computed using the algorithms in [19],
[34].

Hyperbolic structure was applied in [35], [36] for the topo-
logical design of surfaces, where the high genus surfaces were
represented as quotient spaces of the Poincaré disk over Fuch-
sian group actions, which results in a single domain, global
parameterization for surfaces with handles. In [37], Grimm and
Hughes defined parameterizations for high genus surfaces and
constructed functions on them. Wallner and Pottmann introduced
the concept of spline orbifold in [38], which defined splines on
three canonical parameter domains: the sphere, the plane, and the
Poincaré disk. However, in their methods, only the combinatorial
structure of the mesh is used, while the induced Euclidean metric
is not considered. For many applications in graphics, such as
texture mapping, shape analysis, and spline constructions, original
geometry information is highly desirable.

III. THEORETICAL BACKGROUND ON CONTINUOUS

SURFACES

In this section, we introduce the theory of Ricci flow in the
continuous setting, which will be generalized to the discrete set-
ting in Section IV. Some basic concepts in differential geometry
can be found in Appendix VIII-B.

For readers who are more interested in implementation details,
this section can be skipped. For those who are more interested in
inventing new schemes to approximate Ricci flow or to improve
the existing algorithms, they can find inspiration from this section.

Conformal deformation Let S be a surface embedded in R
3.

S has a Riemannian metric induced from the Euclidean metric
of R

3, denoted by g. Suppose u : S → R is a scalar function
defined on S. It can be verified that ḡ = e2ug is also a Riemannian
metric on S. Furthermore, angles measured by g are equal to those
measured by ḡ. Therefore, we say ḡ is a conformal deformation
from g.

A conformal deformation maps infinitesimal circles to infinites-
imal circles and preserves the intersection angles among the
infinitesimal circles. In Fig. 1, we illustrate this property by
approximating infinitesimal circles by finite circles. We put a
regular circle packing pattern on the texture and map the texture
to the surface using a conformal parameterization, where all the
circles on the texture still look like circles on the surface, and all
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Fig. 1. Properties of Conformal Mapping: Conformal mappings transform
infinitesimal circles to infinitesimal circles and preserve the intersection angles
among the circles. Here, infinitesimal circles are approximated by finite ones.
Notice that a circle in the texture appears in a scaled one in the texture
mapping result. Also, the angles in the checkerboard pattern preserved in the
texture mapping result.

(a) χ > 0, S
2 (b) χ = 0, E

2 (c) χ < 0, H
2

Fig. 2. Uniformization Theorem: Each surface in R3 admits a uniformiza-
tion metric, which is conformal to the original metric and induces constant
Gaussian curvature; the constant is one of {+1,0,−1} depending on the
Euler characteristic number χ of the surface. Its universal covering space
with the uniformization metric can be isometrically embedded onto one of
three canonical spaces: sphere, plane, or hyperbolic space. Here, we shows
the parameterizations computed by using discrete spherical, Euclidean, and
hyperbolic Ricci flows, respectively.

the tangency relations among the circles are preserved.

When the Riemannian metric is conformally deformed, curva-
tures will also be changed accordingly. Suppose g is changed to
ḡ = e2ug. Then, the Gaussian curvature will become

K̄ = e−2u(−Δgu+K), (1)

where Δg is the Laplacian-Beltrami operator under the original
metric g. The geodesic curvature will become

k̄ = e−u(∂ru+ k), (2)

where r is the tangent vector orthogonal to the boundary. Ac-
cording to the Gauss-Bonnet theorem, the total curvature is still
2πχ(S), where χ(S) is the Euler characteristic number of S.

Uniformization Theorem Given a surface S with a Riemannian

metric g, there exist an infinite number of metrics conformal to
g. The following uniformization theorem states that, among all of
the conformal metrics, there exists a unique representative, which
induces constant curvature. Moreover, the constant will be one of
{+1,0,−1}.

Theorem 1 (Uniformization Theorem): Let (S,g) be a compact
2-dimensional surface with a Riemannian metric g, then there
is a metric ḡ conformal to g with constant Gaussian curvature
everywhere; the constant is one of {+1,0,−1}.

We call such a metric the uniformization metric of S. According
to the Gauss-Bonnet theorem (Eq. 13), the sign of the constant
Gaussian curvature must match the sign of the Euler number of
the surface: +1 for χ(S) > 0, 0 for χ(S) = 0, and −1 for χ(S) < 0.

Therefore, we can embed the universal covering space of
any closed surface using its uniformization metric onto one
of the three canonical surfaces: the sphere S2 for genus zero
surfaces with positive Euler numbers, the plane E

2 for genus one
surfaces with zero Euler number, and the hyperbolic space H

2

for high genus surfaces with negative Euler numbers (see Fig. 2).
Accordingly, we can say that surfaces with positive Euler number
admit spherical geometry; surfaces with zero Euler number admit
Euclidean geometry; and surfaces with negative Euler number
admit hyperbolic geometry.

Smooth Surface Ricci Flow Suppose S is a smooth surface
with a Riemannian metric g. The Ricci flow deforms the metric
g(t) according to the Gaussian curvature K(t) (induced by itself),
where t is the time parameter

dgi j(t)

dt
= −2K(t)gi j(t). (3)

There is an analogy between the Ricci flow and the heat diffusion
process. Suppose T(t) is a temperature field on the surface.
The heat diffusion equation is dT (t)/dt = −ΔgT(t), where Δg
is the Laplace-Beltrami operator induced by the surface metric.
The temperature field becomes more and more uniform with the
increase of t, and it will become constant eventually.

In a physical sense, the curvature evolution induced by the
Ricci flow is exactly the same as heat diffusion on the surface,
as follows:

dK(t)
dt

= −Δg(t)K(t), (4)

where Δg(t) is the Laplace-Beltrami operator induced by the metric
g(t). If we replace the metric in Eq. 3 with g(t) = e2u(t)g(0), then
the Ricci flow can be simplified as

du(t)
dt

= −2K(t), (5)

which states that the metric should change according to the
curvature.

The following theorems postulate that the Ricci flow defined
in Eq. 3 is convergent and leads to a conformal uniformization
metric. For surfaces with non-positive Euler numbers, Hamilton
proved the convergence of Ricci flow in [8]:

Theorem 2 (Hamilton 1988): For a closed surface of non-
positive Euler characteristic, if the total area of the surface is
preserved during the flow, the Ricci flow will converge to a metric
such that the Gaussian curvature is constant everywhere.

It is much more difficult to prove the convergence of Ricci flow
on surfaces with positive Euler numbers. The following result was
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proven by Chow in [39]:

Theorem 3 (Chow 1991): For a closed surface of positive Eu-
ler characteristic, if the total area of the surface is preserved during
the flow, the Ricci flow will converge to a metric such that the
Gaussian curvature is constant everywhere.

The corresponding metric g(∞) is the uniformization metric.
Moreover, at any time t, the metric g(t) is conformal to the
original metric g(0).

The Ricci flow can be easily modified to compute a metric with
a user-defined curvature K̄ as the following,

du(t)
dt

= 2(K̄ −K). (6)

With this modification, the solution metric g(∞) can be computed,
which induces the curvature K̄.

IV. THEORETICAL BACKGROUND ON DISCRETE SURFACES

In engineering fields, smooth surfaces are often approximated
by simplicial complexes (triangle meshes). Major concepts, such
as metrics, curvature, and conformal deformation in the continu-
ous setting can be generalized to the discrete setting. We denote
a triangle mesh as Σ, a vertex set as V , an edge set as E, and a
face set as F . ei j represents the edge connecting vertices vi and
v j, and fi jk denotes the face formed by vi, v j, and vk.

Background Geometry In graphics, it is always assumed that
a mesh Σ is embedded in the three dimensional Euclidean space
R

3, and therefore each face is Euclidean. In this case, we say the
mesh is with Euclidean background geometry (see Fig. 2(a)). The
angles and edge lengths of each face satisfy the Euclidean cosine
law.

Similarly, if we assume that a mesh is embedded in the three
dimensional sphere S

2, then each face is a spherical triangle. We
say the mesh is with spherical background geometry (see Fig.
2(b)). The angles and the edge lengths of each face satisfy the
spherical cosine law.

Furthermore, if we assume that a mesh is embedded in the
three dimensional hyperbolic space H

2, then all faces are hyper-
bolic triangles. We say the mesh is with hyperbolic background
geometry (see Fig. 2(c)). The angles and the edge lengths of each
face satisfy the hyperbolic cosine law.

In the following discussion, we will explicitly specify the
background geometry for a mesh when it is needed. Otherwise,
the concept or the algorithm is appropriate for all kinds of the
background geometries.

Discrete Riemannian Metric A Riemannian metric on a mesh
Σ is a piecewise constant metric with cone singularities. A metric
on a mesh with Euclidean metric is a Euclidean metric with
cone singularities. Each vertex is a cone singularity. Similarly,
a metric on a mesh with spherical background geometry is a
spherical metric with cone singularities; a metric on a mesh with
hyperbolic background geometry is a hyperbolic metric with cone
singularities.

The edge lengths of a mesh Σ are sufficient to define this
Riemannian metric,

l : E → R
+,

as long as, for each face fi jk , the edge lengths satisfy the triangle
inequality: li j + l jk > lki.

v1

v2 v3

φ12

φ23

φ31γ1

γ2

γ3

θ1

θ2 θ3

(a) (b)

Fig. 3. Circle Packing Metric (a) Flat circle packing metric (b) Circle
packing metric on a triangle.

Discrete Gaussian Curvature The discrete Gaussian curvature
Ki on a vertex vi ∈ Σ can be computed from the angle deficit,

Ki =

{
2π −∑ fi jk∈F θ jk

i , vi �∈ ∂ Σ
π −∑ fi jk∈F θ jk

i , vi ∈ ∂ Σ
(7)

where θ jk
i represents the corner angle attached to vertex vi in

the face fi jk, and ∂ Σ represents the boundary of the mesh.
The discrete Gaussian curvatures are determined by the discrete
metrics.

Discrete Gauss-Bonnet Theorem The Gauss-Bonnet theorem
(Eq. 13) states that the total curvature is a topological invariant.
It still holds on meshes as follows.

∑
vi∈V

Ki +λ ∑
fi∈F

Ai = 2πχ(M), (8)

where Ai denotes the area of face fi, and λ represents the constant
curvature for the background geometry; +1 for the spherical
geometry, 0 for the Euclidean geometry, and −1 for the hyperbolic
geometry.

Discrete Conformal Deformation Conformal metric defor-
mations preserves infinitesimal circles and the intersection angles
among them. The discrete conformal metric deformation of met-
rics uses circles with finite radii to approximate the infinitesimal
circles.

The concept of the circle packing metric was introduced by
Thurston in [9] as shown in Fig. 3. Let Γ be a function defined
on the vertices, Γ : V → R

+, which assigns a radius γi to the
vertex vi. Similarly, let Φ be a function defined on the edges,
Φ : E → [0, π

2 ], which assigns an acute angle Φ(ei j) to each edge
ei j and is called a weight function on the edges. The pair of vertex
radius function and edge weight function on a mesh Σ, (Γ,Φ), is
called a circle packing metric of Σ.

Fig. 3 illustrates the circle packing metrics. Each vertex vi has
a circle whose radius is γi. For each edge ei j, the intersection
angle φi j is defined by the two circles of vi and v j, which either
intersect or are tangent.

Two circle packing metrics (Γ1,Φ1) and (Γ2,Φ2) on the
same mesh are conformally equivalent if Φ1 ≡ Φ2. A conformal
deformation of a circle packing metric only modifies the vertex
radii and preserves the intersection angles on the edges.

Admissible Curvature Space A mesh Σ with edge weight Φ
is called a weighted mesh, which is denoted as (Σ,Φ). In the
following, we want to clarify the spaces of all possible circle
packing metrics and all possible curvatures of a weighted mesh.
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Let the vertex set be V = {v1,v2, · · · ,vn}, and the radii be Γ =
{γ1,γ2, · · · ,γn}. Let ui be

ui =

⎧⎨
⎩

logγi E
2

logtanh γi
2 H2

logtan γi
2 S

2
(9)

where E
2, H

2, and S
2 indicate the background geometry of

the mesh. We represent a circle packing metric on (Σ,Φ) by a
vector u = (u1,u2, · · · ,un)

T . Similarly, we represent the Gaus-
sian curvatures at mesh vertices by the curvature vector k =
(K1,K2, · · · ,Kn)

T . All the possible u’s form the admissible metric
space, and all the possible k’s form the admissible curvature
space.

According to the Gauss-Bonnet theory (Eq. 8), the total curva-
ture must be 2πχ(Σ), and therefore the curvature space is n−1
dimensional. We add one linear constraint to the metric vector
u, ∑ui = 0, for the normalized metric. As a result, the metric
space is also n−1 dimensional. If all the intersection angles are
acute, then the edge lengths induced by a circle packing satisfy the
triangle inequality. There is no further constraint on u. Therefore,
the admissible metric space is simply R

n−1.

A curvature vector k is admissible if there exists a metric
vector u, which induces k. The admissible curvature space of
a weighted mesh (Σ,Φ) is a convex polytope, specified by the
following theorem. The detailed proof can be found in [10].

Theorem 4: Suppose (Σ,Φ) is a weighted mesh with Euclidean
background geometry, I is a proper subset of vertices, FI is the set
of faces whose vertices are in I and the link set Lk(I) is formed
by faces (e,v), where e is an edge and v is the third vertex in the
face,

Lk(I) = {(e,v)|e∩ I = /0,v ∈ I},
then a curvature vector k is admissible if and only if

∑
vi∈I

Ki > − ∑
(e,v)∈Lk(I)

(π −φ(e))+2πχ(FI).

The admissible curvature spaces for weighted meshes with
hyperbolic or spherical background geometries are more com-
plicated. We refer readers to [29] for detailed discussions.

Discrete Surface Ricci Flow Suppose (Σ,Φ) is a weighted
mesh with an initial circle packing metric. The discrete Ricci flow
is defined as follows.

dui(t)
dt

= (K̄i −Ki), (10)

where k̄ = (K̄1, K̄2, · · · , K̄n)
T is the user defined target curvature.

Discrete Ricci flow is in the exact same form as the smooth Ricci
flow (Eq. 6), which deforms the circle packing metric according
to the Gaussian curvature, as in Eq. 10.

Discrete Ricci flow can be formulated in the variational setting,
namely, it is a negative gradient flow of a special energy form.
Let (Σ,Φ) be a weighted mesh with spherical (Euclidean or
hyperbolic) background geometry. For two arbitrary vertices vi

and v j, the following symmetric relation holds:

∂ Ki

∂ u j
=

∂ Kj

∂ ui
.

Let ω = ∑n
i=1 Kidui be a differential one-form [40]. The symmetric

relation guarantees that the one-form is closed (curl free) in the

metric space.

dω = ∑
i, j

(
∂ Ki

∂ u j
− ∂ Kj

∂ ui
)dui ∧du j = 0.

By Stokes theorem, the following integration is path indepen-
dent,

f (u) =
∫ u

u0

n

∑
i=1

(K̄i −Ki)dui, (11)

where u0 is an arbitrary initial metric. Therefore, the above
integration is well defined, so called the discrete Ricci energy.
The discrete Ricci flow is the negative gradient flow of the
discrete Ricci energy. The discrete metric which induces k̄ is the
minimizer of the energy.

Computing the desired metric with user-defined curvature k̄
is equivalent to minimizing the discrete Ricci energy. For the
Euclidean (or hyperbolic) case, the discrete Ricci energy (see Eq.
11) has been proven to be strictly convex (namely, its Hessian
is positive definite) in [10]. The global minimum uniquely exists,
corresponding to the metric ū, which induces k̄. The discrete Ricci
flow converges to this global minimum.

Theorem 5 (Chow & Luo: Euclidean Ricci Energy): The Eu-
clidean Ricci energy f (u) on the space of the normalized metric
∑ui = 0 is strictly convex.

Theorem 6 (Chow & Luo: Hyperbolic Ricci Energy): The hy-
perbolic Ricci energy is strictly convex.

Although the spherical Ricci energy is not strictly convex, the
desired metric ū is still a critical point of the energy. In our
experiments, the solution can be reached using Newton’s method.

V. ALGORITHM

In this section, we explain the algorithms in detail. It requires
some knowledge from hyperbolic geometry and algebraic topol-
ogy. We briefly introduce the most related concepts in Appendices
VIII-C and VIII-A. We refer readers to [41] and [42] for further
details.

The unified pipeline for all kinds of the discrete Ricci flow
algorithms is as follows:

1) Determine the target curvature and the background geome-
try;

2) Compute the initial circle packing metric;
3) Optimize the Ricci energy using both gradient descent and

Newton’s methods;
4) Compute the layout using the result metric.

Step 1. Determine the Target Curvature and the Background
Geometry
The user is free to define the target curvatures for different
applications, while obeying the Gauss-Bonnet theorem in Eq. 8.
In other words, the user can distribute the curvatures arbitrarily
across the vertices, in a way that the sum of target curvatures is
constant.

For example, for constructing manifold splines (see [7] and
[12] for details), it is desirable to obtain a flat metric with a
minimal number of cone singularities. One can concentrate all
the curvatures at a single vertex and make everywhere else flat.
In this case, the background geometry of the mesh is chosen to
be Euclidean and the curvature for the selected vertex is set to
2πχ(Σ). The curvature at all other vertices is set to zero.
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For the application of surface classification using conformal
structures (see [43] for details), no cone singularities are allowed.
All of the curvatures must be evenly distributed over the whole
surface. In this case, the target curvature is zero for all vertices and
the background geometry is hyperbolic for high genus meshes.

Step 2. Compute the Initial Circle Packing Metric
In this step, the initial circle packing metric (Γ,Φ) is computed.
This metric should approximate the original Euclidean metric
as much as possible. In practice, we use the following simple
heuristic procedure, which gives satisfactory results.

1) For each face fi jk , compute a radius for the vertex vi:

γ jk
i =

lki + li j − l jk

2
,

where li j, l jk, lki are the lengths of the edges ei j,e jk,eki,
respectively.

2) For each vertex vi, we approximate the radius γi by aver-
aging the radii from the faces adjacent to vi:

γi =
1
m ∑

fi jk∈F

γ jk
i ,

where m is the number of the adjacent faces to vertex vi.
3) For each edge ei j, we compute its edge weight φi j from

γi,γ j using a cosine law, which depends on the background
geometry:

l2
i j = γ2

i + γ2
j +2γiγ j cosφi j, E

2

cosh li j = coshγi coshγ j + sinhγi sinhγ j cosφi j, H
2

cos li j = cosγi cosγ j − sinγi sinγ j cosφi j, S2

(12)
If the edge weight is greater than π

2 , we take π
2 as its value.

If the initial mesh has too many obtuse angles and the requirement
for the conformality is very high, we can use an extra re-meshing
step to improve the triangulation quality.

Step 3. Optimize Ricci Energy
In the following we introduce two methods to optimize the
Ricci energy; one is the gradient descent method and another
is Newton’s method.

3.1 Gradient Descent
The Ricci energy can be optimized using the gradient descent
method, which is the direct analogy of the smooth Ricci flow.
Note that during the computation the vertex radii Γ vary over
time while the edge weights Φ are fixed. This reflects the fact
that conformal metric deformation preserves angles.

1) Compute edge lengthes li j from the current vertices radii γi

and γ j and the fixed edge weight φi j, using the cosine law
(Eq. 12) for the background geometry.

2) Compute the corner angles θ jk
i in each face fi jk from the

current edge lengths by using the cosine law according to
the background geometry.

3) Compute the discrete Gaussian curvature Ki of each vertex
vi by using Eq. 7.

4) Update ui of each vertex vi by using Eq. 11, as follows.

ui = ui + ε(K̄i −Ki),

where K̄i is the target Gaussian curvature. In our experi-
ments, ε is no greater than 0.05.

5) Normalize the metrics. Let s = ∑ui, then

ui = ui − s
n
,

where n is the total number of vertices.
6) Update the radius γi of each vertex vi, using ui and Eq. 9.
7) Repeats the steps from 1 through 5, until the maximal

curvature error falls below a threshold delta.

max |K̄i −Ki| < δ ,

where δ is a user-specified error tolerance. In our experi-
ments, we set it to 1e− 6, which is good enough for the
later embedding procedure. For meshes with 30k faces, no
folding or overlapping has been found.

3.2 Newton’s Method
As described in Section IV, Ricci flow is the negative gradient
flow of the discrete Ricci energy in Eq. 11. We can further
improve the convergence speed by using Newton’s method.

The key to Newton’s method is to compute the Hessian matrix.
Different Ricci flows have different Hessian matrices according to
their background geometries. The Hessian matrix for Euclidean
Ricci energy is explained here. We refer readers to Appendix
VIII-D for the other cases.

The elements in the Hessian matrix are ∂ Ki/∂ u j. From the
circle packing metric, the edge lengths and the corner angles can
be derived from Eq. 12; then the discrete Gauss curvatures can be
obtained from Eq. 7. Combining them, we obtain the relationship
between the Gaussian curvature Ki and γi, γ j, γk as follows.

Ki = 2π − ∑
fi jk∈F

cos−1 (
γ2

i + γiγ j cosφi j + γkγi cosφki − γ jγk cosφ jk
)

From the above equation, we can deduce ∂ Ki/∂ ui and ∂ Ki/∂ u j,
as follows.

∂ Ki

∂ ui
=

∂ γi

∂ ui

∂ Ki

∂ γi
= γi ∑

fi jk∈F

AD−BC

A
√

A2 −B2
,

∂ Ki

∂ u j
=

∂ γ j

∂ u j

∂ Ki

∂ γ j
= γ j ∑

fi jk∈F

AF −BE

A
√

A2 −B2
,

where

A = 2li j lki

B = l2
i j + l2

ki − l2
jk

C = 2(γi + γ j cosφi j)
lki
li j

+2(γi + γk cosφki)
li j
lki

D = 2(2γi + γ j cosφi j + γk cosφki)

E = 2(γ j + γi cosφi j)
lki
li j

F = 2
(
γi cosφi j − γk cosφ jk

)
Step 4. Compute the Layouts
In this step, we flatten the mesh with the target metric onto one
of the canonical domains: the plane E

2, the sphere S
2, or the

hyperbolic space H2. The algorithms in this step involve several
topological concepts, such as fundamental domain, canonical
fundamental group basis, universal covering space, etc. We refer
readers to Appendix VIII-A for details.

The following is the unified pipeline for computing the layout:

1) Flatten a seed face.
2) Flatten a fundamental domain.
3) Flatten the universal covering space.
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(a) (b) (c) (d) (e) (f)

Fig. 4. Euclidean Ricci flow (a) Genus one kitten model marked with a set of canonical fundamental group generators a and b. (b) A fundamental domain
is conformally flattened onto the plane, marked with four sides aba−1b−1. (c) One translation moves the side b to b−1. (d) The other translation moves the
side a to a−1. (e) The layout of the universal covering space of the kitten mesh on the plane, which tiles the plane. (f) The conformal parameterization is
used for the texture mapping purpose. A checkerboard texture is placed over the parameterization in b). The conformality can be verified from the fact that
all the corner angles of the checkers are preserved.

Fig. 5. Hyperbolic Ricci flow (a) Genus two vase model marked with a set of canonical fundamental group generators which cut the surface into a topological
disk with eight sides: a1, b1, a−1

1 , b−1
1 , a2, b2, a−1

2 , b−1
2 . (b) The fundamental domain is conformally flattened onto the Poincaré disk with marked sides.

(c) A Möbius transformation moves the side b1 to b−1
1 . (d) Eight copies of the fundamental domain are glued coherently by eight Möbius transformations.

(e) A finite portion of the universal covering space is flattened onto the Poincaré disk. (f) Zoom in on a region on the universal covering space, where eight
fundamental domains join together. No seams or overlapping can be found. (g) Conformal parameterization induced by the hyperbolic flattening. The corners
angle of checkers are well-preserved.

4.1 Flatten a Seed Face
We randomly select a seed face f012, and compute the parametric
positions of the vertices v0, v1, and v2 using the edge lengths of
f012. For meshes with the Euclidean geometry, the positions of
the three vertices are set as:

τ(v0) = (0,0),τ(v1) = (l01,0),τ(v2) = l02(cosθ 12
0 ,sinθ 12

0 );

in the hyperbolic case, the positions are set as τ(v0) = (0,0):

τ(v1) =
el01 −1
el01 +1

(1,0),τ(v2) =
el02 −1
el02 +1

(cosθ 12
0 ,sinθ 12

0 );

in the spherical case, the positions are set as τ(v0) = (0,0,1):

τ(v1) = (0,0.5× l01 ×
√

4− (l01)2,1−0.5× (l01)
2),

τ(v2)[2] = 1−0.5× (l02)
2

τ(v2)[1] = 1−0.5×(l12)2−τ(v2)[2]×τ(v1)[2]
τ(v1)[1]

τ(v2)[0] = −
√

1− (τ(v2)[1])2 − (τ(v2)[2])2.

Then we put faces adjacent to the seed face into a queue.

4.2 Flatten a Fundamental Domain
In this step, we propagate the flattening to the rest of all faces,
namely we want to embed a fundamental domain. We call the
resulting layout a fundamental polygon.

To propagate the flattening, we put all unprocessed faces adja-
cent to the current face into the queue. We pop a face fi jk from the

queue and test whether all its vertices have been set to parametric
positions. If so, we continue to pop the next one from the queue
as long as the queue is nonempty. Otherwise, suppose that vi and
v j have been embedded, then τ(vk) can be computed as one of the
two intersection points between the two circles, c(τ(vi), lki) and
c(τ(v j), lk j), satisfying (τ(v j)−τ(vi))×(τ(vk)−τ(vi)) > 0. Note
that, depending on the background geometry, the circles may be
spherical, Euclidean or hyperbolic circles.

By using a stereo-graphic projection, spherical circles can be
converted to Euclidean circles; hyperbolic circles in the Poincaré
disk coincide with Euclidean circles. Therefore, computing the
intersection points between spherical (or hyperbolic) circles boils
down to finding intersections between Euclidean circles.

Different choices of the seed faces induce different layouts,
which differ by a rigid motion. In the Euclidean case, a rigid
motion is a planar translation and rotation; in the hyperbolic case,
it is a Möbius transformation; in the spherical case, it is a rotation.
Fig. 8 (b), (c) and (d) are the layouts for the same genus two
model, shown in Fig. 8(a), with different seed faces marked in
red. The layouts in (c) and (d) are transformed to align with the
layout in (b) by different Möbius transformations, as shown in
Fig. 8(e). The difference of positions of the same vertex among
the three aligned layouts is less than 1e−6.

4.3 Flatten the Universal Covering Space
For the purpose of texture mapping, it is enough to flatten a
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Fig. 6. Performance of Ricci flow The horizontal axis represents time, and the vertical axis represents the maximal curvature error. The blue curves are for
the Newton’s method; the green curves are for the gradient descent method. The meshes have about 30k faces. The tests were carried out on a laptop with
1.7GHz CPU and 1G RAM. All the algorithms are written in C++ on a Windows platform without using any other numerical library.

fundamental domain. For the purpose of constructing a manifold
spline (see [7] and [12] for details) or surface classification by
conformal equivalence (see [43] for details), we need to flatten a
finite portion of the universal covering space.

The universal covering space of a closed mesh with a positive
Euler characteristic number is the mesh itself, which can be
embedded onto the unit sphere S2. The universal covering space
of a mesh with a zero or negative Euler number can be embedded
onto the whole Euclidean plane E

2 or the whole hyperbolic space
H2. The algorithmic pipeline is as follows:

1) Embed a canonical fundamental domain.
2) Compute the deck transformation group generators.
3) Tile the whole canonical domain R2 or H2.

The first step is exactly the same as the procedures introduced
in 4.2. Figs. 4(b) and 5(b) give the embeddings of the canonical
fundamental domains for the genus one kitten model on the plane
and the genus two amphora model on the Poincaré disk.

Compute Deck Transformation Group Generators
The embedding of a canonical fundamental domain for a closed
genus g surface has 4g different sides, which induce 4g rigid
transformations. These 4g rigid motions are the generators of the
deck transformation group.

Fig. 4 explains the process for a mesh with a zero Euler
number. The surface has two fundamental group generators a and
b. The complement of {a,b} is a fundamental domain, denoted
as D. The boundary of D is ∂ D = aba−1b−1. Let the flattening
map be τ : D → R2. Then the planar image τ(D) has 4 sides,
τ(a),τ(b),τ(a−1),τ(b−1) (see Fig. 4(b)). There exists unique
translations α ,β : R

2 → R
2 , such that α maps τ(a) to τ(a−1)

and β maps τ(b) to τ(b−1), as shown in Fig. 4(c) and (d). α ,β
are the generators of the deck transformation group.

Similarly, Fig. 5 illustrates the process for a mesh
with a negative Euler number. Let {a1,b1, · · · ,ag,bg}
be a set of canonical fundamental group generators,
where g is the genus. The embedding of its canonical
fundamental domain in hyperbolic space has 4g sides,
τ(a1),τ(b1),τ(a−1

1 ),τ(b−1
1 ), ...,τ(ag),τ(bg),τ(a−1

g ),τ(b−1
g )

(see Fig. 5(b) in Poincaré disk). There exists unique Möbius
transformations αk,βk, which map the τ(ak) and τ(bk) to τ(a−1

k )
and ρ(b−1

k ) respectively, as shown in Fig. 5(c) and (d). The
Möbius transformations {α1,β1,α2,β2, · · · ,αg,βg} form a set of

generators of the deck transformation group.

The following explains the details for computing β1. Let the
starting and ending vertices of the two sides be: ∂ τ(b1) = q0− p0

and ∂ τ(b−1
1 ) = p1−q1, the geodesic distance from p0 to q0 equals

the geodesic distance from p1 to q1 in the Poincaré disk. To align
them, we first construct a Möbius transformation τ0, which maps
p0 to the origin, q0 to a positive real number, with

τ0 = e−iθ0
z− p0

1− p̄0z
,θ0 = arg

q0 − p0

1− p̄0q0
.

Similarly, we can construct another Möbius transformation τ1,
which maps p1 to the origin, and q1 to a real number, with τ1(q1)
equals to τ0(q0). By composing the two, we get the final Möbius
transformation β1 = τ−1

1 ◦τ0, which satisfies p1 = β1(p0) and q1 =
β1(q0), and aligns the two sides together.

Tile the Canonical Domain
Any deck transformation can be produced by composing the gen-
erators {αk,βk}. Then the whole canonical domain can be tiled by
transforming a fundamental polygon by all deck transformations.
This induces a flattening of the universal covering space of the
mesh onto the canonical domain. Fig. 4(e) shows the flattening
of the universal covering space of the kitten mesh onto the whole
Euclidean plane. Fig. 5(e) illustrates the layout of the universal
covering space of a genus two amphora model onto the whole
Poincaré disk.

VI. EXPERIMENTAL RESULTS

Discrete Ricci flow is a powerful tool for computing the desired
metrics, which satisfy the user-defined Gaussian curvatures on
general surfaces. In the following, we report our experimental
results and analyze the performance of the algorithms.

A. Performance

The performance of Ricci energy optimization is analyzed
from the following aspects.

Convergence For both the Euclidean and hyperbolic cases, the
discrete Ricci energies are convex. Therefore, there exists a unique
global minimum. Both gradient descent and Newton’s method
converge to it stably. For the spherical case, the Ricci energy
cannot be theoretically proven to be strictly convex. The desired
metric is a critical point of the energy. In our experiments, the
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Fig. 8. Accuracy Testing for Hyperbolic Layout Frame (a)-(b): a set of fundamental group generators are marked with red on a genus two eight model
with 4k faces, and three randomly chosen seed faces are marked with red, green, and blue respectively. Frame (c)-(e) show the flattened results on the Poincaré
disk using the hyperbolic uniformization metric, with different seed faces. Any two of them only differ a Möbius transformation. Frame (f): randomly chosen
Edges marked with different colors can be chosen to compute the same deck transformation shown in (g).

Fig. 7. Conformality Testing Discrete Euclidean Ricci flow conformally
maps an irregular shape in (a) to a disk in (b). The parameterization is
illustrated as the check board texture mapping in (c), where all the corners
of the checkers are well-preserved visually. The histogram of the angle ratio,
which is defined as the ratio of the original angle value and the new one after
mapping, is calculated and shown in (d). The distribution highly concentrates
at 1.

Mesh Model # Face genus Bnds Sing Type Time (Sec)

Kitten 20438 1 0 0 E2 3.53
Horse 12186 0 4 0 E2 2.365
Horse 12186 0 4 1 E2 2.528
Eight 4117 2 0 0 H

2 3.89
Amphora 20010 2 0 0 H2 9.86
Whole David 19638 3 0 0 H2 13.45
Egea 20226 0 0 0 S2 3.76

TABLE I

TIME FOR COMPUTING DISCRETE RICCI FLOW.

desired spherical metrics still can be reached efficiently using
Newton’s method.

Speed Fig. 6 compares the performance of the optimization
of Ricci energy using Newton’s method (the blue curves) and
the gradient descent method (the green curves). It is obvious

that Newton’s method is much faster than the gradient descent
method for optimizing Ricci energy. We implemented our system
using C++ on a Windows platform desktop with 3.4GHz CPU
Intel Xeon, 4.0G RAM using Newton’s method. We report the
timings to compute the desired metric in Table I. The speed for
the hyperbolic case is the slowest.

Conformality Fig. 7 shows an irregular planar domain in (a) is
mapped to a disk in (b). The conformality is shown with checker-
board texture mapping in (c). We compute the ratio between each
corner angle in (a) and in (b). The histogram of the ratios is
illustrated in (d), and we can see the ratio is highly concentrated
around 1.

Accuracy From our experiments, we found it is relatively easier
to compute the metric, but it is more challenging to compute the
layout due to the accumulation error, especially for the hyperbolic
case. In order to improve the accuracy for hyperbolic flattening,
we adapt the following methods.
a) Control the target metric by the maximum curvature error. We
found the quality of the final embedding is strongly affected by
the quality of the final metric. On the other hand, the running time
depends on the maximum curvature error also. Through thorough
testing, we find a good balance to set the maximum curvature
error to be 1e−6 for a mesh with 30k faces, then the embedding
result is satisfactory and the computation speed is reasonable.
b) Move all of the computation to the center of the Poincaré disk.
Because the area distortion in the Poincaré disk is non-uniform,
computations near the boundaries are highly unstable, where the
area distortion goes to infinity. We use a Möbius transformation
to move each current processing face to the center of the Poincaré
disk, where the area distortion is close to 1 and the computation
is much more stable.
c) In flattening each face, we avoid using trigonometric functions
and use more algebraic functions. For example, in order to set the
third vertex position of a triangle, we compute the intersection
points of two circles.
d) Instead of flattening face by face for embedding the universal
covering space, we compute the deck transformations and flatten
fundamental domain by fundamental domain. This greatly reduces
the accumulated error.
e) Divide and conquer. If the mesh is big, we partition it into
patches and flatten each patch, then use Möbius transformations to
glue different patches together. Each edge on the cut determines a
Möbius transformation; we take the average of the transformations
induced by all the edges on the same cut.

Fig. 5 demonstrates the hyperbolic flattening process. Frame (f)
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zooms in on a region where 8 fundamental domains join together,
which illustrates the accuracy of our embedding method.

We conduct a special experiment to test the hyperbolic accuracy
as shown in Fig. 8. We flatten a genus two mesh in (a) with
hyperbolic uniformization metric onto the Poincaré disk. We
start from different seed faces marked with different colors and
get different layouts of its canonical fundamental domain (its
canonical fundamental generators are marked with red in both
(a) and (b)), as shown in (c), (d), and (e). By using Möbius
transformations given in table II, the layouts in (d) and (e) are
transformed to align perfectly with the layout in (c). Then we
compute a deck transformation to glue two layouts as shown
in (g). The deck transformation is computed three times using
different edges on the same side as shown in (f), where three
edges are colored as red, green, and blue. Using formulae Eq.
14, each Möbius transformation is represented by an angle θ and
a center z0, listed in table II. The differences among the three
angles are less than 1e−6; the differences among three centers are
also less than 1e−6. This shows the accuracy of our hyperbolic
embedding method.

B. Global Conformal Parameterization

A parameterization of a surface can be viewed as a one-to-
one mapping from a suitable domain to the surface, typically
a planar domain, which has many applications such as texture
mapping, surface approximation, scattered data fitting, remeshing
etc. Unfortunately, it is impossible to map the whole of a closed
surface with non-toroid topology to the 2D plane without any
angle distortion. Therefore, in order to parameterize a mesh of
this type, researchers have resorted to partitioning the mesh into
several charts [5] or introducing singularities on the mesh [19],
[22], [28]. In these cases, however, heuristic inputs or special
algorithms to locate seams or singularities are needed.

Discrete Ricci flow is an effective approach for different types
of automatic and seam-free global conformal parameterizations of
surfaces with arbitrary topologies. Ricci flow gives us the freedom
to allocate the total in different regions of the mesh: on the interior
vertices, on the boundary vertices, and on the other points.

Fig. 9 demonstrates the flexibility of this method, where for
different purposes, the total curvature is distributed to different
regions and using different background geometries. The original
surfaces are shown in the first and the last frames, which is a
genus zero surface with 3 boundaries.
1) We can allocate all the curvature on the boundaries and make
everywhere else be flat, as shown in frame (b). Furthermore,
we can make the boundaries be circles. The centers and the

Möbius Trans. θ Z0
M0 2.917271 (−0.200690,−0.568453)
M1 0.567858 (0.197063,−0.776343)
M2 −2.982119 (0.187574,0.951998)
M3 −2.982118 (0.187576,0.951999)
M4 −2.982113 (0.187578,0.951990)

TABLE II

ACCURACY TESTING FOR HYPERBOLIC LAYOUT IN FIG. 8. MÖBIUS

TRANSFORMATION M0 MOVES DOMAIN IN (D) TO (C); M1 MOVES (E) TO

(C); M2 , M3 , AND M4 ARE DECK TRANSFORMATIONS COMPUTED FROM

DIFFERENT EDGES ON THE SAME BOUNDARY SEGMENT.

radii of the boundary circles are determined by the geometries
of the original surface. They can be used as the fingerprint
of the surfaces, which are valuable for shape recognition and
classification applications in the vision field (see [44] for more
details).
2) We can make all the interior vertex curvatures be zeros, and
the curvatures on the boundary vertex also be zeros (i.e. the
boundaries become geodesics), and set the curvature to be −1 for
every point on the mesh, as shown in frame (c). The background
geometry is hyperbolic. The geodesic lengths of three boundaries
are the fingerprints of the shape, which can be used for shape
classification and comparison. (see [43] for more details).
3). We can set one boundary curvature to be zero, and the other
two boundaries to be circles. All vertex curvatures are zeros
except 4 cone singularities, whose curvatures equal to π

2 , as shown
in frame (d). This can be used to construct polycube splines in
geometric modeling field, (see [45] for more details). The way we
construct the cube-shaped model is as follows: We use discrete
Euclidean Ricci flow to conformally map the head model to the
unit disk with circular holes as in (b). We then map the cube
(without the bottom face) onto the unit disk. By matching the
two unit disks, we locate the positions of cone singularities in
the head model. We set the target curvatures of cone singularities
to be π

2 .

We set the target curvatures on the outer boundary to zero, and
the target curvatures of other boundary vertices to be constant.
A flat metric satisfying these curvature conditions can be found
using discrete Euclidean Ricci flow. Next we find the geodesics
from the cone singularities to the outer boundaries under the target
metric, which are orthogonal to the outer boundary. This gives us
the isometric embedding of the surface with the target curvature
in R

3.

Different parameterizations have different numbers of singu-
larities and different area distortions. The followings are some
comparisons among different parameterization methods, which
demonstrates the versatility of the Ricci flow method.

Boundaries vs. Vertices The bottom of the hoofs of the horse
mesh in Fig. 10 are removed as shown in (c), therefore the mesh
is a genus zero surface with 4 boundaries, and the total curvature
is −4π. We set the total curvature of each boundary to be −π,
and all interior vertex curvatures to be zero. The layout of a
fundamental domain with the flat metric is shown in (b), where
the body region has a bigger area in the parameter domain, and
the leg regions have smaller areas in the parameter domain. Then
we concentrate all the curvature at a single vertex, colored as
red in (c), the layout is shown in (d). Compared to (b), the leg
regions are greatly enlarged, and the body region shrinks greatly.

Boundary vs. Boundary Fig. 11 gives the comparison of dif-
ferent layouts of the same David head model, which is depicted
in Fig. 9(a) and (e). Since the mesh is with three boundaries, the
total curvature is −2π. Each row shows a periodic layout induced
by a flat metric, which allocates the total curvature on a single
boundary.
Euclidean vs. Hyperbolic Fig. 12 gives a comparison for the same
model using different methods. The right one was conformally
parameterized to a Euclidean plane with 4 singularities, where
the area distortion is highly non-uniform. The left one was
conformally parameterized to the Poincaré disk using discrete
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Fig. 9. Different Global Conformal Parameterizations based on Ricci flow (a) and (e) Original surface (b) All the curvatures are allocated on the
boundaries using Euclidean Ricci flow. (c) Uniformization metric by discrete hyperbolic Ricci flow, boundaries are geodesics. (d) Flat metric with singularities
by discrete Euclidean Ricci flow.

Fig. 10. Curvature Allocations: Boundary vs. Vertex (a) (b) A horse
model: four boundaries on its hoofs marked with red; one singularity vertex
marked with red; the cut graph marked with blue. (c) By pushing all curvatures
to boundaries, the horse model is embedded on the plane with the cut graph.
(d) By concentrating all curvatures on one singularity vertex, the horse model
is embedded on the plane with the same cut graph.

hyperbolic Ricci flow but without singularity.

VII. CONCLUSION

This work proposes a unified framework for discrete Ricci
flows, generalized from continuous Ricci flow from modern
geometry for computing Riemannian metrics with user-defined
Gaussian curvatures. The algorithms to compute Riemannian
metrics with user-defined Gaussian curvatures for general discrete
meshes are presented in detail. Experimental results for spherical,
Euclidean and hyperbolic Ricci flows are demonstrated to show
the efficiency and accuracy of the algorithms.

In future research work, we will study the intrinsic relations
between discrete Ricci flow and discrete holomorphic 1-forms.
Algorithms for designing metrics with different conditions will be
investigated. We will explore more applications of discrete Ricci

Fig. 11. Curvature Allocation: Boundary vs. Boundary The original
surface is illustrated in Fig. 9(a) and (e). All the curvatures are allocated
on one of the three boundaries. The universal covering space is flattened
periodically with the corresponding metrics onto the plane.

Fig. 12. Euclidean vs. Hyperbolic The right one was conformally
parameterized to a Euclidean plane with 4 singularities, while the left one
was conformally parameterized to the Poincaré disk and is singularity-free.

flow in graphics, visualization, geometric modeling and medical
imaging fields.
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[26] A. Bobenko and P. Schröoder, “Discrete willmore flow,” in Symposium
on Geometry Processing, pp. 101–110, 2005.

[27] Y. C. de Verdière, “Un principe variationnel pour les empilements de
cercles. (french) [a variational principle for circle packings],” Invent.
Math., vol. 104, no. 3, pp. 655–669, 1991.

[28] L. Kharevych, B. Springborn, and P. Schröder, “Discrete conformal
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APPENDIX

In this section, we briefly list the major concepts in hyperbolic
geometry, differential geometry, and algebraic topology, which
are necessary for the algorithms. Furthermore, we give detailed
formulae for the Hessian matrices of hyperbolic and spherical
Ricci energies.

A. Fundamental Group and Universal Covering Space

The closed loops on the surface can be classified by homotopic
equivalence. If two closed curves on surface M can deform to
each other without leaving the surface, they are homotopic to
each other. Two closed curves sharing common points can be
concatenated to form another loop. This operation defines the
multiplication of homotopic classes. All the homotopy classes
form the so called first fundamental group of M. A collection of
curves on the surface is a cut graph, if their complement is a
topological disk, which is called the fundamental domain of the
surface.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



TO APPEAR IN IEEE TVCG 13

For genus g closed surface, the fundamental group
has 2g generators. A set of fundamental group basis
{a1,b1,a2,b2, · · · ,ag,bg} is canonical, if ai,bi have one geometric
intersection, but ai,a j have zero geometric intersection, and
ai,b j have zero geometric intersection too. Figs. 4(a) and 5(a)
show the sets of canonical fundamental group generators for
the kitten model with zero Euler number and the amphora
model with a negative Euler number. If we slice M along
the curves, we can get a disk-like domain with boundary
{a1b1a−1

1 b−1
1 a2b2a−1

2 b−1
2 · · ·agbga−1

g b−1
g }, which is called the

canonical fundamental domain of the surface M.

A covering space of M is a surface M̄ together with a con-
tinuous surjective map p : M̄ → M, such that for every q ∈ M
there exists an open neighborhood U of q such that p−1(U)
(the inverse image of U under p) is a disjoint union of open
sets in M̄ each of which is mapped homeomorphically onto U
by p. If M̄ is simply connected, then M̄ is called the universal
covering space of M. Suppose φ : M̄ → M̄, p = φ ◦ p, then φ
is called a deck transformation. A deck transformation maps a
fundamental domain to another fundamental domain. All the deck
transformations form the so-called deck transformation group,
which is isomorphic to the fundamental domain. We use the
algorithms in [46] to compute the canonical fundamental group
generators.

B. Riemannian Metric and Gaussian Curvature

All the concepts and the detailed explanations can be found
in [47]. Suppose S is a C2 smooth surface embedded in R

3 with
local parameter (u1,u2). Let r(u1,u2) be a point on S and dr =
r1du1 + r2du2 be the tangent vector defined at that point, where
r1,r2 are the partial derivatives of r with respect to u1 and u2,
respectively. The Riemannian metric or the first fundamental form
is:

< dr,dr >= ∑ < ri,r j > duidu j, i, j = 1,2.

The Gauss map G : S → S
2 from the surface S to the unit

sphere S2 maps each point p on the surface to its normal n(p)
on the sphere. The Gaussian curvature K(p) is defined as the
Jacobian of the Gauss map. Intuitively, it is the ratio between the
infinitesimal area of the Gauss image on the Gaussian sphere and
the infinitesimal area on the surface.

Let ∂ S be the boundary of the surface S, kg the geodesic
curvature, dA the area element, ds the line element, and χ(S) the
Euler characteristic number of S. The total curvature is determined
by the topology: ∫

S
KdA+

∫
∂S

kgds = 2πχ(S). (13)

C. Hyperbolic Geometry

The hyperbolic space model we used in this paper is the
Poincaré disk, which is a unit disk on the complex plane, with
Riemannian metric

ds2 =
4dwdw̄

(1− w̄w)2 .

In the Poincaré disk, rigid motion is a Möbius transformation,

z → eiθ z− z0

1− z̄0z
,z0 ∈ C,θ ∈ [0,2π);

the geodesics are circle arcs which are orthogonal to the unit
circle; the hyperbolic circle (c,r) coincides with an Euclidean
circle (C,R) with

C =
2−2μ2

1−μ2|c|2 c, R2 = |C|2 − |c|2 −μ2

1−μ2|c|2 ,

where μ = er−1
er+1 .

D. Hessian Matrix

Let c(x),s(x) be cosx,sinx for the spherical case and
coshx,sinhx for the hyperbolic case. Define a function

τi j = s(γi)c(γ j)+ c(γi)s(γ j)cosφi j,

The elements in the Hessian matrix of Ricci energy are:

∂ Ki

∂ ui
= s(γi)×∑

fi jk

CB−DA

A
√

A2 −B2

∂ Ki

∂ u j
= s(γ j)×∑

fi jk

EB−FA

A
√

A2 −B2

where

A = s(li j)s(lki)
B = c(li j)c(lki)− c(l jk)

C = τi j · s(lki) · c(li j)

s(li j)
+ τ jk · s(li j) · c(lki)

s(lki)

D = τi j · c(lki)+ τki · c(li j)

E = τ ji · s(lki) · c(li j)

s(li j)

F = τ ji · c(lki)− τ jk
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