
SUBMITTED TO IEEE TVCG 1

Computing Teichmüller Shape Space
Miao Jin1, Wei Zeng2, Feng Luo3, and Xianfeng Gu2

1University of Louisiana at Lafayette 2Stony Brook University 3Rutgers University

Abstract— Shape indexing, classification, and retrieval are fun-
damental problems in computer graphics. This work introduces
a novel method for surface indexing and classification based
on Teichmüller theory. Two surfaces are conformal equivalent,
if there exists a bijective angle-preserving map between them.
The Teichmüller space for surfaces with the same topology is
a finite dimensional manifold, where each point represents a
conformal equivalence class, and the conformal map is homotopic
to Identity. A curve in the Teichmüller space represents a
deformation process from one class to the other.

In this work, we apply Teichmüller space coordinates as shape
descriptors, which are succinct, discriminating and intrinsic,
invariant under the rigid motions and scalings, insensitive to
resolutions. Furthermore, the method has solid theoretic founda-
tion, and the computation of Teichmüller coordinates is practical,
stable and efficient.

The algorithms for the Teichmüller coordinates of surfaces
with positive or zero Euler numbers have been studied before.
This work focuses on the surfaces with negative Euler numbers,
which have a unique conformal Riemannian metric with −1
Gaussian curvature. The coordinates which we will compute are
the lengths of a special set of geodesics under this special metric.
The metric can be obtained by the curvature flow algorithm, the
geodesics can be calculated using algebraic topological method.

We tested our method extensively for indexing and comparison
of about one hundred of surfaces with various topologies,
geometries and resolutions. The experimental results show the
efficacy and efficiency of the length coordinate of the Teichmüller
space.

Index Terms— Surface Classification, Surface Comparison,
Shape Retrieval, Teichmüller Space, Hyperbolic Structure, Fuch-
sian Group, Ricci Flow, Riemann Uniformization

I. INTRODUCTION

A. Motivation

Effective index and classification for shapes are very demand-
ing with the dramatically increasing of 3D geometric models
in online repositories, while also challenging. For a geometric
algorithm, all the information that can be utilized is only the
topology and geometry of the shape. But for human beings,
shape classification and comparison involves the expectations
of the functionalities of the objects. For example, for a human
observer, the slatted chairs can still be quite similar even if they
have a different number of slats; but for a computer, the objects
are quite different because they have different topologies. Low
level algorithms based on the geometric information need to be
developed first to lay down the foundation for high level methods,
which are closer to the human intelligence. The algorithms in
both levels have fundamental importance. This work focuses on
the algorithms solely based on the geometric information.

Shape descriptors can be constructed using different levels of
geometric information. For example, surfaces can be classified by

their topological properties, such as the number of the handles and
the boundaries. Shapes can be differentiated more precisely by
differential geometric properties, such as principle curvatures and
fundamental forms. Topological descriptors are global, succinct
and intuitive, but less discriminating; whereas differential geomet-
ric descriptors are local, redundant, but much more discriminating.
The huge storage requirements prevent differential geometric
descriptors from practical applications. This work introduces
a novel approach for shape indexing and classification, with
descriptors based on conformal geometry. In practice, it is hard
to find two different types of shapes with handles sharing the
same conformal descriptors, so descriptors based on conformal
geometry are discriminating enough. What’s more, conformal
shape descriptors are intrinsic, independent of rotation, translation
and scaling, and are also invariant to tessellation and isometric
deformation. They are stable for deformations with small area
stretching, like the posture change of a human skin surface,
which changes slightly. They are efficient, easy to compute and
compare. Therefore, we believe conformal geometric approach
for shape classification and comparison has the potential for real
applications.

B. Conformal Equivalence

A conformal map, also called an angle-preserving map, pre-
serves local angles between two surfaces. while given two arbi-
trary surfaces with same topology, there may not exist conformal
map between them, which is demonstrated as the angle distorted
texture transferring from kitten model to rocker-arm model in
figure 1 base on a map between them. They both are genus one
surfaces, while no conformal map between them. For surfaces
with same topology, We say they are conformally equivalent or
belong to the same conformal class if there exists a bijective
conformal map between them. Therefore, surfaces can be easily
differentiated by conformal equivalence. All conformal classes
form a space called Teichmüller space, which can be modeled as a
finite dimensional manifold. Each surface has a unique coordinate
in the space, and the dimension of the coordinates is determined
by the topology of the surface. Two surfaces share the same
coordinates in Teichmüller space if and only if they belong to
the same conformal class.

An intuitive example is given by two planar annuli: we can
scale them such that both of their outer radii are 1, while the
inner radii are r1 and r2 respectively. There is no conformal map
between them as long as r1 6= r2. Therefore, the dimension of the
conformal descriptors for all planar annuli is one, and the value is
the inner radius after normalization. Another example is given by
humans faces with three boundaries in Figure 2 (a), (b), (c). Their
conformal descriptors are the geodesic lengths of their boundaries
under hyperbolic uniformization metric, after we conformally map
each face to two congruent right-angled hyperbolic polygons in
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Fig. 1. A semi-conformal Map between genus one kitten model (a) and
rocker-arm model (a) where the right corner angles on the kitten surface are
distorted on the rocker-arm surface, which demonstrates that the map is not
conformal.

Fig. 2. Three human faces sharing the same topology (two holes annulus) are
not conformally equivalent, which is verified by conformally mapping them to
hyperbolic space and comparing their conformal descriptors: the edge lengths
of the hyperbolic hexagon under hyperbolic uniformization metric.

Poincaré disk as shown in Figure 2 (d), (e), and (f). The dimension
of their coordinates in Teichmüller space is three, the number of
boundaries. Since those edge lengths are not equal, they do not
belong to the same conformal class.

Conformal descriptors are invariant under conformal deforma-
tions, which include isometric deformations, rigid motions, and
scaling. Figure 3 gives an example of a toy face (with different
view points in Fig. 3 (a) and (b)) and its conformal descriptors
(visualized as the three inner circles radii in Fig. 3 (c)). After
isometric deformation of the toy face (with different view points
in Fig. 3 (d) and (e)), the values of its conformal descriptors
(visualized as the three inner circles radii in Fig. 3 (f)) do not
change, which can be verified by the comparison of the three
circles radii (between Fig. 3 (c) and (f)), and the difference error
is under 0.0177.

This work proposes to classify surfaces based on Teichmüller
space theory. In this work, we only consider oriented surfaces.
We use (g,r) to represent the topological type of the surface,
where g means the number of handles (genus), r the number of
boundaries. After fixing the topology of the surfaces, all con-
formally equivalent classes form a finite dimensional manifold,

Fig. 3. Conformal descriptors are invariant under isometric deformations. The
first row shows two views of the original surface and its conformal image; the
second row shows two views of the deformed surface and its conformal image.
Their conformal descriptors are visualized as the inner circles radii. Under
isometric deformation, their conformal images are identical, which means
their conformal descriptors are same.

the so-called Teichmüller space [1], where each point represents
conformal equivalence class, and the conformal map is homotopic
to Identity. A curve connecting different points represents a
deformation process from one class to the other. The dimension
of the Teichmüller space of negative Euler number surfaces with
topological type (g > 1,r) is 6g−5+3r. Figure 4 illustrates the
concept. The teapot surface has one handle and one boundary
at the spout, therefore it is of topological type (1,1), with 3
dimensions in Teichmüller space. The teapot in the middle is
twisted with the deformation process indicated by the blue curve.
The more the curve changes, the greater the distortion is. Another
deformation process is depicted by the red curve where the teapot
is scaled vertically. The two deformation paths are illustrated in
both R3 and the Teichmüller space.

We briefly summarize the Teichmüller spaces for surfaces with
different Euler numbers. The Euler number of type (g,r) is
2 − 2g − r. The computational algorithms for the Teichmüller
coordinates of surfaces with non-negative Euler numbers have
been introduced before. This work focuses on surfaces with
negative Euler numbers.

• The Teichmüller space for (0,0) type surfaces, namely genus
zero closed surfaces, has only one point. That means that
all genus zero closed surfaces are conformally equivalent.
In this case, we conformally map the surface to the unit
sphere. By mapping different surfaces to the unit sphere,
we can easily construct the conformal mapping between the
two surfaces. The area distortion induced by the conformal
mapping is called the conformal factor. In [2] we proved
that the conformal factor and the mean curvature determine
the surface uniquely up to a rigid rotation of the sphere. We
use area distortion and mean curvature as shape descriptors
for shape comparison purposes in [2].

• The Teichmüller space for (0,1) type surfaces, namely genus
zero surface with a single boundary, consists of a single
point. All such surfaces can be mapped to the unit disk.
Similarly, the conformal factor and mean curvature can be
applied as shape descriptors.



SUBMITTED TO IEEE TVCG 3

• The Teichmüller space for (1,0) type surfaces, namely
tori, is two dimensional. The Teichmüller coordinates of
a torus can be computed using global surface conformal
parameterization method [3]. Basically, we can compute a
holomorphic 1-form. By integrating the 1-form, we can map
the universal covering space of the surface to the plane R2.
Each fundamental domain is mapped to a parallelogram. The
Teichmüller coordinates of the torus are the angle and the
length ratio between two adjacent edges of the parallelogram.
We refer readers to [3] for details.

• For all the other surfaces, the Euler numbers are negative.
The coordinates in Teichmüller space can be computed in the
following method. First, there exists a unique Riemannian
metric, called the hyperbolic uniformization metric, which is
conformal to the original metric of the surface and induces
−1 constant Gaussian curvature everywhere. Furthermore, all
the boundaries become geodesics under the uniformization
metric. Two closed curves are homotopic, if one can deform
to the other without leaving the surface. Under the hyperbolic
uniformization metric, each homotopy class has a unique
geodesic. We choose a special set of homotopy classes on the
surface, then compute the unique geodesic in each class. The
lengths of these geodesics are Luo’s coordinates [4], which
form the length coordinates of the surface in Teichmüller
space. This work focuses on the computation of the length
coordinates of surfaces with negative Euler numbers.

The major goal of this paper is to develop rigorous and
practical algorithms to compute length coordinates of surfaces
with negative Euler numbers in Teichmüller space. The major
contributions of this work are:

1) it proposes a theoretical framework to model all negative
Euler number surfaces in a shape space, Teichmüller space.
The framework has deep roots in modern geometry and is
practical for computation. It offers novel views and tools
for tackling engineering problems.

2) it introduces a series of practical algorithms for computing
length coordinates of negative Euler number surfaces in
Teichmüller space. Those coordinates are with finite di-
mension, independent of scaling and rigid motion, and are
also invariant to different tessellations. They can be applied
for shape indexing to classify surfaces according to their
conformal class.

The remainder of the paper is organized as follows. Section
II contains a summary of related work, and the challenges in
this area. Section III briefly introduces the theoretical background
of Teichmüller space. Section IV describes our algorithms for
computing the coordinates for general surfaces with negative
Euler numbers in Teichmüller space. Section V presents results
of our experiments on surface indexing and shape comparison,
which evaluate the robustness, discriminability, and efficiency of
our algorithms. We summarize the paper and point out future
directions in the final section VI.

II. RELATED WORK

Our work proposes to compute Teichmüller space coordinates
as shape descriptors based on surface hyperbolic uniformization
metric, which classify surfaces according to their conformal
structures. Surfaces having the same descriptors share the same
conformal structure, invariant to conformal deformations.

The research literature on shape descriptors is vast. A thorough
review of shape descriptors is beyond the scope of current work.
We will focus here only on recent shape descriptors which are
most relevant to our work using conformal geometry, and methods
for designing metrics by prescribed curvatures.

A. Shape Descriptors

For the application of 3D shape classification and matching,
shape descriptors are to extract meaningful and simplified rep-
resentations from the 3D model based on the geometric and
topological characteristics of the object. As the name suggests,
shape descriptors should be descriptive enough to be able to
discriminate similar and dissimilar shapes. The interested reader is
referred to [5], [6] and [7] for comprehensive surveys of different
shape descriptors and evaluations of their performance.

Shape descriptors can be classified by the corresponding trans-
formation groups, to which they are invariant. The following
transformation groups are considered: rigid motion, isometric
transformation and conformal deformation. The former groups
are the subgroups of the latter ones. In the discussion, we focus
on shape descriptors based on conformal geometry. There are
many other shape descriptors invariant to the above transformation
groups based on other methods. We only brief some of them.

1) Shape Descriptors Invariant to Conformal Deformations:
Conformal structure is invariant to conformal deformations, which
include isometric deformations and rigid motions. To the best of
our knowledge, the first work proposed to use conformal structure
for shape classification is [8], where the conformal structure
is represented as period matrices. Later, geodesic spectrum of
surfaces under their uniformization metrics are applied as the
conformal structure descriptors in [9], which can be computed
symbolically. A general framework for 3D surface matching is
proposed in [10] and [11]. By conformally parameterizing the
3D surfaces to canonical 2D domains, the matching problem is
greatly simplified. If the surfaces are conformally equivalent, then
2D mapping is an identity with appropriate boundary conditions.

2) Shape Descriptors Invariant to Isometric Transformations:
Pose changes are a quasi-isometric transformation of the 3D
mesh, in the sense that edge lengths do not change much as a
result of the transformation. Pose-invariant Shape Descriptors are
invariant under non-rigid isometric transformations, and tolerant
quasi-isometric transformations. Pose-invariant shape descriptors
based on conformal geometry is introduced in [12], where the
histogram of the conformal factor computed from surface uni-
formization metric is applied as shape descriptor. This descriptor
is intrinsic and pose-invariant.

Laplace-Beltrami operator is determined by the Riemannian
metric. Therefore, most descriptors related to discrete laplace-
Beltrami operators are also invariant to isometric deformations,
and tolerant quasi-isometric deformations. For examples, Reuter
et al. in [13] use the eigenvalues of Laplace-Beltrami operator;
Rustamov in [14] uses the eigenvectors; Xiang et al. in [15] use
the histogram of the solution to the volumetric Poisson equation
which involves the Laplace-Beltrami operator.

3) Shape Descriptors Invariant to Rigid Motions: Shape de-
scriptors invariant to rigid motions and based on conformal
geometry are used in [2] and [16] for medical application purpose,
where both conformal factor and mean curvature are considered.
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(a) Teapots deformed in Euclidean Space (b) Deformation paths in Teichmüller space

Fig. 4. The teapot surface with one handle and one boundary at the spout as shown in (a) has 3 dimensions in Teichmüller space, where each point represents
one conformal equivalent class, and a curve connecting different points represents a deformation process from one class to the other as shown in (b).

Conformal factor itself fully determines the Riemannian metric of
surfaces. After adding mean curvature, they two can determine
the embedding of surfaces unique up to rigid motions with
appropriate boundary conditions.

4) Other Shape Descriptors: There are many other shape de-
scriptors invariant to isometric deformations based on Riemannian
geometry. For example, those methods in [17]–[19] compute from
surface geodesic distances. The method in [20] computes the
diameter of the 3D shape at each point, and the average geodesic
distance from each point to all other points. The histograms of
the two functions are applied as the shape descriptors.

Many global or local features based, or graph based shape
descriptors are invariant to rigid motions, while extra algorithms
for feature and graph matching are necessary. We refer readers to
[7] for more details.

B. Computing Metric from Prescribed Curvature

There are many algorithms for conformal surface parameteri-
zation in the literature. Comprehensive reviews can be found in
[21] and [22]. Here we focus on approaches to compute conformal
metrics from prescribed curvatures.

Richard Hamilton introduced Ricci flow for general Rieman-
nian manifold in [23]. Later, Hamilton introduced surface Ricci
flow in [24]. Perelman applied Ricci flow for the proof of Poincaré
conjecture and Thurston’s geometrization conjecture in [25]–[27].
A thorough introduction to Ricci flow can be found in [28] and
[29].

A circle packing algorithm was introduced by Thurston in [30].
Bowers et al. and Stephenson et.al. improved the algorithm and
built the software system, which are explained in [31], [32]. Chow
and Luo discovered the intrinsic relation between Ricci flow and
circle packing and laid down the theoretic foundation for discrete
Ricci flow in [33], where the existence and convergence of the
discrete Ricci flow were established. The variational approach
to find constant curvature metrics on triangulated surfaces was
pioneered in the works [34], [35], [36]. More recently, it appears
in [37], [38] and [39]. Combinatorial Yamabe flow is introduced
in [40].

The algorithm of discrete surface Ricci flow was given in
[41], where the Ricci flows on meshes with spherical, Euclidean
and hyperbolic background geometries are explained in details.
Furthermore, Newton’s method is directly applied to optimize
the discrete Ricci energy. Optimal surface parameterization is
formulated as a variational problem with respect to the target
boundary curvatures in [42], and solved by constrained optimiza-
tion algorithm.

Circle pattern method was proposed by Bobenko-Springborn
in [43], [44], which used the notion of angle structures first
introduced by Colin de Verdiére [45]. Based on [43], circle pattern
algorithm was introduced in [46].

Metric scaling method is introduced in [47], which solved
the discretized Poisson equation with the cot-Laplace operator
induced by the original metric, then use harmonic maps to
compute the embedding from the result metric. The method is
linear and efficient.

Similar to the formulation of combinatorial Yamabe flow
introduced in [39], [48] computes conformal equivalent metrics
according to prescribed curvatures. The Yamabe energy in [39] is
represented as an integration of a differential form, and formulated
to an explicit form using Milnor’s Lobachevsky function in [48].
The explicit formula of the Hessian matrix in [39] and [48] are
equivalent, which is the cot-Laplace operator.

III. TEICHMÜLLER SPACE THEORY

In this section, we briefly introduce the theoretical background
of Teichmüller space theory, and the most directly related back-
ground knowledge in topology and hyperbolic geometry. For
details, we refer readers to [49] for information on Algebraic
topology, [50] for hyperbolic geometry, and [1] for Teichmüller
space theory.

A. Topological Background

Let Σ be a surface, the closed curves in the surface are
homotopic to each other if they can be deformed to each other
without leaving the surface. Closed curves are classified by this
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Fig. 5. (a) Building block I (b) Building block II (c) Building block III. For all of the three basic building blocks, the lengths of geodesics homotopic to the
labeled curves determine the building block’s metric. (d) Using building blocks I, II and III to build all surfaces: from left to right, using building block I and
II to build genus one surface with two boundaries. Then adding building block III to build genus two surface with one boundary. Then adding building block
II to build genus two surface with two boundaries. Repeating to get all surfaces. Note that marked curves on surface indicate the boundaries of overlapping
part where two building blocks are glued together, and red and blue colors are used to distinguish boundaries coming from different building blocks. (e) The
construction of genus two surface. (f) The geodesic lengths of the set of color labeled curves determine the metric of a genus two surface. Blue curves and
green curves come from the first and the second Building blocks with type I; red curves come from building block with type II. Note that two of the curves
for building block with type II and one for the second building block with type I are redundant and have been canceled off.

homotopic relation. The homotopy classes with the same base
point form a group, which is called the fundamental group.
Suppose Σ is of genus g, then there exists a set of canonical
fundamental group generators {a1,b1,a2,b2, · · · ,ag,bg}, such that
on each handle, there are two loops ai,bi. One loop ai circles
the hole and the other loop bi loops around the tube. Figure 6(a)
shows a set of canonical fundamental group generators of a genus
two surface.

Suppose Σ̄ is another surface, then (Σ̄,π) is said to be a
covering space of Σ if locally, π is a homeomorphism. If Σ̄ is
simply connected, then (Σ̄,π) is the universal covering space of
Σ.

For surface with negative Euler number, its universal covering
space Σ̄ is the hyperbolic space H2, which will be introduced in
Section III-C. Its Fuchsian transformations, the transformations
of the universal covering space to itself, φ : Σ̄ → Σ̄, are hy-
perbolic rigid motions (Möbius transformations). Each Fuchsian
transformation associates a homotopy class in the fundamental
group in the following manner: giving a point p on Σ and
p̄0, p̄1 ∈ π−1(p) on the universal covering space Σ̄. If φ is a
Fuchsian transformation, such that φ(p̄0) = p̄1, then any path
γ̄ ⊂ Σ̄ connecting p̄0 and p̄1 will be projected to a closed curve

γ = π(γ̄). Then we associate φ with the homotopy class of γ .
Therefore, the Fuchsian transformation group is isotopic to the
fundamental group of the surface.

B. Hyperbolic Uniformization Metric

A surface Σ in R3 has an induced Euclidean metric, denoted as
g. Suppose u is a function defined on Σ, u : Σ → R, then e2ug is
another metric conformal to the original one. If Σ has a negative
Euler number, then it has a unique metric ḡ = e2ūg, which is
conformal to g and induces −1 Gaussian curvature at all interior
points and 0 geodesic curvature at boundary points. The metric
ḡ is called the hyperbolic uniformization metric of Σ.

In order to compute the hyperbolic uniformization metric, we
need to find the function ū : Σ → R, which can be solved using
Ricci flow method:

du(t)
dt

= −2K(t),u(0) = 0,

where K(t) is induced by the metric of e2u(t)g. It has been proven
that Ricci flow will converge u(0) = 0 to u(∞) = ū which induces
the hyperbolic uniformization metric [24], .
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C. Hyperbolic Geometry

If Σ has a negative Euler number, then with uniformization
metric, the universal covering space Σ̄ can be isometrically
embedded in the hyperbolic space H2.

There are two commonly used models for hyperbolic space, the
Poincaré disk and the upper half plane model. The Poincaré disk
is the unit disk in the complex plane, |z| < 1, with Riemannian
metric ds2 = dzdz̄

(1−zz̄)2 . The rigid motions are the so-called Möbius

transformations with the form w = eiθ z−z0
1−z̄0z . The hyperbolic lines

are circular arcs perpendicular to the unit circle. The second
model is the upper half plane model y > 0 with the metric
ds2 = dzdz̄

y2 . The Möbius motions are of the form:

w =
az+b
cz+d

,a,b,c,d ∈ R,ad −bc = 1.

A Möbius transformation in the upper half plane model is
represented by its coefficients matrix. The coefficients matrix of
the product of two Möbius transformations is equal to the product
of their coefficients matrices.

The conformal transformation that maps the upper half plane
to the Poincaré disk is T = i−z

i+z . Any Möbius transformation on
the Poincaré disk φ can be converted to a Möbius transformation
on the upper half plane as

T−1 ◦φ ◦T. (1)

The deck transformations of Σ̄ on the hyperbolic disk are
Möbius transformations, which form the Fuchsian group of Σ.
Corresponding to the canonical fundamental group generators
{a1,b1,a2,b2, · · · ,ag,bg}, the canonical Fuchsian group genera-
tors are referred as {α1,β1,α2,β2, · · · ,αg,βg}. Suppose a loop
has homotopy class aib j, then its corresponding Fuchsian trans-
formation is αi ◦β j.

Suppose γ is a closed curve on a surface Σ with the hyper-
bolic uniformization metric, then there is a unique geodesic γ̃
homotopic to γ . Also, there is a unique Fuchsian transformation
φ associated with the homotopy class of γ . The length of γ̃ , l(γ̃),
satisfies the following equation:

|trace(φ)| = 2cosh(
l(γ̃)

2
).

In our implementation, we use this relation to compute the lengths
of geodesics which are homotopic to a set of special closed loops
on surfaces.

D. Teichmüller Space Coordinates

There are several coordinates defined in Teichmüller space.
Here we adopt Luo’s coordinates in [4] to avoid complicated
computation of the twisting angles of Fenchel-Nielsen coordinates
in [1].

In the following discussion, we use Σg,r to represent a surface
Σ with topological type (g,r), where g represents the genus, r
means the number of boundaries.

Given a surface Σg,r with negative Euler number, we can
decompose the surface into three types of building blocks, as
shown in Fig. 5 (a), (b) and (c). The procedure to build Σ from
the building blocks is illustrated by Fig. 5 (d). We use I

⋂
II to

denote the process of gluing the block I to the block II. The gluing

does not mean combining two blocks along their corresponding
boundary curves, but by merging their overlapping regions. For
example, in the first gluing step in the figure, the overlapping
region of I and II is a two-holed annulus. From left to right, we
use basic building blocks I and II so that I

⋂
II is homeomorphic

to Σ1,2, a genus one surface with two boundaries; smoothly joining
building block III, so that Σ1,2

⋂
III is homeomorphic to Σ2,1,

a genus two surface with one boundary; then joining building
block II, so that Σ2,1

⋂
II is homeomorphic to Σ2,2, a genus two

surface with two boundaries; repeating this procedure, we can
generate all types of surfaces with negative Euler surfaces. By
this construction, a simple method is provided to define Luo’s
coordinates in Techmüller space for general surfaces.

For each building block, its conformal structure is determined
by the lengths of geodesics homotopic to those red loops under
the hyperbolic uniformization metric.

Although on general surfaces, in each homotopy class, there
may be multiple geodesics, which are the locally shortest curves
on surfaces. For surfaces with hyperbolic uniformization metric,
the geodesic is unique in each homotopy class, which can be
proved by Gauss-Bonnet theorem. We refer readers to [51] for
details.

When two building blocks are glued together to form a new
surface, non-homotopic loops on the original blocks may become
homotopic on the resulting surface. After canceling off the
redundant loops, the lengths of geodesics homotopic to remaining
loops determine the conformal structure of the resulting surface,
which are the coordinates of this surface in Techmüller space. For
example, for a closed genus two surface, constructed from two
building blocks of type I and one building block of type II as
shown in Fig. 5 (e), its Techmüller coordinates are the lengths
of geodesics homotopic to those loops marked with different
colors as shown in Fig. 5 (f). Loops with the same color indicate
that they come from the same building block. In general, for a
surface Σg>1,r with a negative Euler number, their Teichmüller
coordinates are determined by the lengths of 6g + 3r− 5 closed
geodesics.

IV. ALGORITHMS TO COMPUTE LENGTH COORDINATES IN

TEICHMÜLLER SPACE

This section explains the algorithms for computing the Te-
ichmüller space coordinates for surfaces with negative Euler
numbers in details, represented as the lengths of a special set
of geodesics under hyperbolic uniformization metric. The lengths
of those geodesics can be symbolically computed from Fuchsian
transformations, which require the generators of Fuchsian group,
and Fuchsian group generators are calculated using the system
of loops: canonical fundamental group generators. All of these
computations are based on hyperbolic geometry.

The whole algorithms pipeline is as follows:

1) Compute hyperbolic uniformization metric of the surface,
discussed in Sec. IV-A;

2) Compute Fuchsian group generators, discussed in Sec. IV-
B;

3) Compute the coordinates in Teichmüller space, discussed in
Sec. IV-C.

Following this pipeline, we discuss each step in detail.
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(a) (b)

Fig. 6. (a) Vase model with a set of canonical fundamental group generators
marked with red. (b) Fundamental domain of vase model embedded in the
Poincaré disk with the Hyperbolic Uniformization metric

A. Step 1. Compute Hyperbolic Uniformization Metric

In engineering fields, smooth surfaces are often approximated
by discrete surfaces with triangulations. Since conformal deforma-
tion transforms infinitesimal circles to other infinitesimal circles
and preserves the intersection angles among the circles, we can
approximate discrete conformal deformation using circle packing
metric introduced by Thurston in [30] by associating each vertex
vi with a cone of radius γi, each edge with edge weight Phii j
which is the intersection angle of the two cones centered with
the ending vertices vi and v j of that edge ei j.

The discrete hyperbolic surface Ricci Flow on a discrete nega-
tive Euler number surface with circle packing metric is a process
that the scaling of cone radius of Vertex vi is proportionally
evolving according to the discrete Gaussian curvature Ki of that
vertex:

dγi

dt
= −Ki sinhγi, (2)

while the intersection angles Φi j keeping unchanged. The final
circle packing metric induces new metric of original surface
approximated by edge lengths, which is conformal to original
one but induces constantly negative Gaussian curvature, called
hyperbolic uniformization metric. The discrete hyperbolic Ricci
flow will converge exponentially. We refer the readers to [33] for
theoretical proofs for the convergence of the discrete hyperbolic
Ricci flow.

to compute discrete hyperbolic Ricci flow, we need to set the
initial circle packing metric for a giving discrete surface, which
approximates its original Euclidean metric as much as possible.
Then we can use gradient descent method to solve Eqn. 2. The
detailed algorithm can be found in Appendix Alg. 1.

We can further improve the convergence speed of comuting
discrete hyperbolic Ricci flow with Newton’s method. Letting ui =
ln tanh γi

2 , we can define an energy form

f (u) =
∫ u

u0

n

∑
i=1

Kidui,

where u = (u1,u2, · · · ,un), u0 = (0,0, · · · ,0) and ∂ f
∂ui

= Ki. Then
the discrete hyperbolic surface Ricci Flow in Eqn. 2 is the negative
gradient flow of this convex energy f (u), and the solution of an
energy optimization problem. So in practice we can use Newton’s
method to compute hyperbolic uniform metric with even faster
convergence speed.

B. Step 2. Compute Fuchsian Group Generators in the Poincaré
Disk Model

This step aims to compute the canonical Fuchsian group
generators used for computing the geodesic lengths in the future
step. There are several major steps to compute Fuchsian group
generators:

1) Compute fundamental group generators, discussed in Sec.
IV-B.1;

2) Isometric embed the mesh in the Poincaré disk, discussed
in Sec. IV-B.2;

3) Compute the Fuchsian group generators, discussed in Sec.
IV-B.3.

1) Compute Fundamental Group Generators: On a ’marked’
surface, which means we have enumerated surface handles with
h1, h2, h3 etc., we pick a point on the surface as the base
point (which can be any vertex on the surface), then for each
handle hi, we can uniquely decide a tunnel loop ai which goes
around the circle, a handle loop bi which goes around the
handle, and both of them go through the base point. By this
way, We get a set of canonical fundamental group generators
{a1,b1,a2,b2, · · · ,ag,bg}. Figure 6(a) shows a set of canonical
fundamental group generators marked with different colors on
vase model. The way to compute the canonical fundamental
group generators has been studied in computational topology
and computer graphics literature. We adopted the methods in-
troduced in [52]. The surface S is then sliced open along the
fundamental group generators to form a topological disk D,
called fundamental domain. The boundary of D takes the form
∂D = a1b1a−1

1 b−1
1 a2b2a−1

2 b−1
2 · · ·agbga−1

g b−1
g .

2) Isometric Embedding in Hyperbolic Disk: Now we isomet-
rically embed D onto the Poincaré disk using the uniformization
metric computed from the first step. Let τ : D → H2 denote the
isometric embedding.

First, we select an arbitrary face f012 from D as a starting face.
Suppose the three edge lengths of the face are {l01, l12, l20}, and
the corner angles are {θ 12

0 ,θ 20
1 ,θ 01

2 } under the uniform hyperbolic
metric. We can simply embed the triangle as

τ(v0) = 0,τ(v1) =
el01 −1
el01 +1

,τ(v2) =
el02 −1
el02 +1

eiθ 12
0 .

Second, we can embed all the faces which share an edge with
the starting face. Suppose a face fi jk is adjacent to the starting
face, and vertices vi,v j have been embedded. A hyperbolic circle
is denoted as (c,r), where c is the center, r is the radius. Then
τ(vk) should be one of the two intersection points of (τ(vi), lik)
and (τ(v j), l jk). Also, the orientation of τ(vi),τ(v j),τ(vk) should
be counter-clock-wise. In the Poincaré model, a hyperbolic circle
(c,r) coincides with an Euclidean circle (C,R),

C =
2−2µ2

1−µ2|c|2 c,R2 = |C|2 − |c|2 −µ2

1−µ2|c|2 ,

where µ = er−1
er+1 . The intersection points between two hyperbolic

circles can be found by intersecting the corresponding Euclidean
circles. The orientation of triangles can also be determined using
Euclidean geometry on the Poincaré disk.

Then, we can continue to embed faces which share edges with
embedded faces in the same manner, until we embed the whole
D onto the Poincaré disk.
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Figure 6(b) shows the embedding of fundamental domain of
vase model onto the Poincaré disk with its Hyperbolic Uni-
formization metric.

Fig. 7. (a) One Deck transformation maps the left period to the right one.
(b) Two closed loops homotopic to the red one on the vase model lift as two
blue Paths in the universal covering space.

Fig. 8. (a) 2g Fuchsian group generators act on vase model, which are rigid
motions in the hyperbolic space. Different color indicates different periods
(fundamental domains). The generators maps the central period to the colored
ones respectively. (b) A finite portion of the universal covering space of vase
model, generated by the actions of Fuchsian group elements with boundaries
marked with geodesics in hyperbolic space.

3) Fuchsian Group Generators: The embedding of a canonical
fundamental domain for a closed genus g surface has 4g different
sides, which induce 4g rigid transformations. These 4g rigid
motions are the Fuchsian group generators.

Figures 6, 7, and 8 illustrate the process to compute
Fuchsian group generators for a mesh with a negative Eu-
ler number. Let {a1,b1, · · · ,ag,bg} be a set of canonical
fundamental group generators as marked with red in Fig.
6(a), where g is the genus. The embedding of the vase’s
canonical fundamental domain in hyperbolic space has 4g
sides, τ(a1),τ(b1),τ(a−1

1 ),τ(b−1
1 ), ...,τ(ag),τ(bg),τ(a−1

g ),τ(b−1
g )

(see Fig. 6(b) in Poincaré disk). There exists unique Möbius
transformations αk,βk, which map the τ(ak) and τ(bk) to τ(a−1

k )
and τ(b−1

k ) respectively. Figure 7(a) shows one Fuchsian group
generator acting on one copy of the fundamental domain of
the vase model, which maps the τ(bk) to τ(b−1

k ). The two red
points are the pre-images of a same point on the vase model.
Paths connecting them are projected to closed loops homotopic
to the red one on vase model, see Figure 7(b). And we will
see the computation of the length of the geodesic homotopy
to the loop in Fig. 7(b) only involves the Möbius transforma-
tion which maps τ(bk) to τ(b−1

k ). The Möbius transformations
{α1,β1,α2,β2, · · · ,αg,βg} form a set of generators of Fuchsian
group. Figure 8(a) shows eight copies of the fundamental domain
of vase model tesselated coherently along boundaries by a set

of Fuchsian group generators, and Fig. 8(b) shows more copies
tesselated by Fuchsian transformations.

The following explains the details for computing β1. Let the
starting and ending vertices of the two sides be: ∂τ(b1) = q0− p0
and ∂τ(b−1

1 ) = p1 − q1. Then the geodesic distance from p0 to
q0 equals to the geodesic distance from p1 to q1 in the Poincaré
disk. To align them, we first construct a Möbius transformation
τ0, which maps p0 to the origin, and q0 to a positive real number,
with

τ0 = e−iθ0
z− p0

1− p̄0z
,θ0 = arg

q0 − p0

1− p̄0q0
.

Similarly, we can construct another Möbius transformation τ1,
which maps p1 to the origin, and q1 to a real number, with τ1(q1)
equals to τ0(q0). By composing the two, we get the final Möbius
transformation β1 = τ−1

1 ◦τ0, which satisfies p1 = β1(p0) and q1 =
β1(q0), and aligns the two sides together.

Then we convert the Fuchsian group generators from the
Poincaré disk model to the upper half plane model using formula
1.

C. Compute Teichmüller Coordinates

Teichmüller coordinates are obtained by measuring the lengths
of geodesics homotopic to a group of loops on surfaces under
hyperbolic uniformization metric, and the geodesics are unique in
each homotopy class since Gauss curvature is constantly negative
everywhere. The major steps are as follows:

1) Decompose the surface to building blocks;
2) Determine the homotopy classes of the geodesics;
3) Compute the lengths of the geodesics in each homotopy

class.

Surface with enumerated handles has fixed decomposition to
building blocks with one handle by one handle as illustrated
inversely in Figure 4(d) since the decomposition is purely based
on topology. After redundant loops with the same homotopic class
while belonging to different building blocks have been removed,
our goal is to compute the lengths of geodesics homotopic to
the remaining loops. For example, for a genus two surface, the
remaining loops can be seen in Fig. 5 (f).

Since in the above steps, the canonical homology basis
{a1,b1,a2,b2, · · · ,ag,bg} and the corresponding Fuchsian group
generator {α1,β1,α2,β2, · · · ,αg,βg} have been calculated al-
ready. To compute the length of geodesic homotopic to a loop
γ on surface, we first use the algorithm in [49] to determine
its homotopy class, which can be symbolically represented, for
example: γ = a1b1a−1

1 b−1
1 . Then by mapping each ai to αi and

b j to β j, we get its representation using corresponding Fuchsian
transformations, still the previous example: φγ = α1β1α−1

1 β−1
1 .

Let the length of γ denoted as lγ , and we use the matrix
representation of φγ on the upper half plane. lγ can be easily
computed from the following relation: |tr(φγ)| = 2cosh( lγ

2 ).

V. IMPLEMENTATION AND RESULTS

We have implemented the algorithms for computing the Te-
ichmüller coordinates using C++ on the Windows platform. We
verify our method by computing the shape coordinates on a large
number of surface models with various topologies. The triangles
count for the model ranging from thousands to tens of thousands.
Due to the page limit, we only list part of our experimental results.
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Fig. 9. Performance of curvature flow to compute hyperbolic uniformization
metric for closed genus two amphora model with 20k faces. The horizontal
axis represents time, and the vertical axis represents the maximal curvature
error. The blue curves are for the Newton’s method; the green curves are
for the gradient descent method. The tests were carried out on a laptop with
1.7GHz CPU and 1G RAM. All the algorithms are written in C++ on a
Windows platform without using any other numerical library.

A. Time Complexity

In the whole algorithm pipeline, the most time consuming is
computing the hyperbolic uniformization metric. Figure 9 shows
the statistics for the computation of hyperbolic uniformization
metric for a closed genus two amphora model with 20k faces.
The x-axis indicates the time, and the y-axis indicates the maximal
curvature error. The green curve shows the steepest descendant
method, and the blue curves show the Newton’s method. For most
models listed in the work, the time to compute their hyperbolic
uniformization metrics is less than one minute.

B. Robustness

Teichmüller space coordinates are intrinsic properties of sur-
faces, independent of translation , rotation, scaling, and also
insensitive to local noises, and the resolutions of the surface.
We tested the robustness of our algorithm by computing for a
model with different resolutions. Figure 10 illustrates one such an
example. The vase model is tessellated using different resolutions,
with the number of faces 5k, 10k, 20k and 40k respectively. We
tested our Teichmüller coordinates algorithm on them. The results
are listed in table I, including the mean average and standard
deviation. As we can see, the relative error is less than 0.3%.

C. Surface Indexing and Classification

Teichmüller coordinates can be directly applied for indexing
and classification of surfaces with the same topology. The distance
among shapes in the Teichmüller space can be approximated
directly using the Euclidean distances among their Teichmüller
coordinates. In our experiments, we tested genus two closed
surfaces and genus three closed surfaces.

For closed genus two surfaces, the dimension of Teichmüller
space is seven. The Teichmüller coordinates for eight genus two
teapot models are visualized in Fig. 11. The distances in the
Teichmüller space among 23 genus two surfaces are listed in

Coordinates of Vase Model
Vase Model 1st 2nd 3rd 4th 5th 6th 7th
Face #: 5k 3.55027 0.99990 3.88055 5.55885 6.11438 3.33029 3.66071
Face #: 10k 3.55700 0.99832 3.88144 5.55611 6.11180 3.33369 3.66703
Face #: 20k 3.55805 0.99759 3.88316 5.55517 6.11112 3.33357 3.66713
Face #: 40k 3.55905 0.99559 3.88416 5.55417 6.11012 3.33367 3.66813

Average 3.55609 0.99785 3.88232 5.55607 6.11185 3.33280 3.66575
Std. Dev. 0.00343 0.00154 0.00141 0.00174 0.00157 0.00145 0.00294

TABLE I
COMPARISON OF COORDINATES OF VASE MODEL WITH DIFFERENT

DENSITIES. THE DIMENSION OF TEICHMÜLLER SPACE COORDINATES FOR

CLOSED GENUS TWO SURFACES IS SEVEN.

Fig. 10. Same model with different triangulation density: 5k, 10k, 20k and
40k. Comparison of Teichmüller space coordinates with different densities is
listed in table I.

Table II. We cluster the shapes according to their Teichmüller
distance. For example, Table III shows a neighborhood of the
shape of the teapot7 model in the Teichmüller space. The surface
closest to the teapot7 looks very similar to it. This matches our
intuition.

More examples are illustrated in Tables IV, V, VI, VII, VIII,
and IX. For each table, we show models with the maximum and
minimum distances to example model in Teichmüller space, based
on table II. Furthermore, by examining Table II, we can also find
that the knotty bottle model (the fifth model of the first row)
is further away from all the others in the Teichmüller space,
because its geometry is quite different from the others. Therefore,
Teichmüller coordinates match our intuition.

For closed genus three surfaces, the dimension of their Te-
ichmüller space is thirteen. We visualize the Teichmüller space
coordinates for part of those models in Fig. 12. Table X lists the
distances among those genus three surfaces in the Teichmüller
space.

Models Teapot5 Teapot6 Teapot2 Teapot4 Teapot1 Teapot0 Teapot3

distance

0.6468 1.1923 3.5202 4.1694 4.1742 4.5179 4.53

TABLE III
THE SORTED DISTANCES BETWEEN TEAPOT7 AND OTHER GENUS TWO

MODELS IN TECHMÜLLER SPACE BASED ON TABLE II. HERE WE ONLY

SHOW THE CLOSEST ONES.
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distance

4.09 5.39 3.22 4.49 6.69 2.22 2.16 2.21 2.39 2.32 4.38 3.87 4.88 3.51 3.52 3.42 3.25 4.02 3.293.20 3.44 3.26 3.41

7.75 3.06 6.74 9.98 2.11 2.37 2.82 2.05 2.14 4.59 3.68 4.97 2.76 2.84 3.01 3.59 2.81 2.993.64 4.78 3.73 4.30

4. 95 1.04 7.92 6.62 5.95 5.62 6.17 6.17 7.27 7.89 7. 34 7.46 6.56 6.48 5.61 6.97 6.325.63 4.72 5.56 5. 23

3.94 8.99 2.47 1.73 1.64 1.85 1.83 4.27 4.27 4.56 3.08 3.43 3.22 2.37 3.84 3.022.52 2.75 2.43 2.64

7.79 5.61 4.92 4.59 5.16 5.14 6.35 6.91 6.45 5.44 5.56 5.48 4.57 6.00 5.304.60 3.71 4.53 4.21

8.48 8.48 8.35 8.61 8.62 9.27 9.13 9.57 8.75 8 .65 8.68 8.48 8.95 8.578.40 8.08 8.43 8.31

0.83 1.51 0.73 0.71 4.05 3.15 4.51 2.09 1.92 1.51 2.27 2.42 1.512.36 3.59 2.43 3.12

0.79 0.65 0.25 3.72 3.15 4.17 1.79 2.30 1.8 6 1.44 2.88 1.481.60 2.83 1.63 2.37

1.40 0.92 3.10 2.83 3.52 2.51 3.02 2.64 1.54 3.62 2.141.26 2.13 1.28 1.61

0.59 4.28 3.60 4.53 2.36 2.76 2.40 2.95 2.28 2.512.18 3.38 2.21 2.96

3.71 3.07 4.16 1.63 2.20 1.76 1.62 2. 761.301.74 3.01 1.79 2.52

1.62 0.64 5.21 5.71 5.40 4.61 6.26 4.834.30 4.03 4.35 3.88

1.19 4.43 4.86 4.58 4.24 5.33 4.103.97 4.30 4.06 3.94

5.67 6.19 5.88 5.02 6.73 5.314.92 4.82 4.86 4.63

0.37 0.62 1.14 1.14 0.961.30 2.55 1.36 1.61

0.63 1.63 0.63 0.961.802.9 7 1.87 2.58

1.25 1.09 0.601.45 2.68 1.49 2.23

2.20 0.870.34 1.47 0.29 1.03

0.531.39 3.57 2.45 3. 18

0.90 2.22 1.04 1.75

1.28 0.18 0.80

1.24 0.57

0.76

TABLE II
DISTANCES BETWEEN GENUS TWO SURFACES IN TECHMÜLLER SPACE.
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Fig. 11. The dimension of Teichmüller space coordinates for closed
genus two surfaces is seven. Here we visualize the Teichmüller space
coordinates for teapots listed in table III.

Distance

0.60 0.62 0.63 1.09 5.48 5.88 6.48 8.68

TABLE IV
THE SORTED DISTANCES BETWEEN POT AND OTHER GENUS TWO MODELS

IN TECHMÜLLER SPACE BASED ON TABLE II. HERE WE ONLY SHOW

MODELS WITH MAXIMUM AND MINIMUM DISTANCES TO POT MODEL.

Distance

0.53 0.60 0.87 0.90 5.30 5.31 6.32 8.57

TABLE V
THE SORTED DISTANCES BETWEEN VASE AND OTHER GENUS TWO

MODELS IN TECHMÜLLER SPACE BASED ON TABLE II. HERE WE ONLY

SHOW MODELS WITH MAXIMUM AND MINIMUM DISTANCES TO POT

MODEL.

Distance

1.04 4.72 4.95 5.23 7.46 7.75 7.89 7.92

TABLE VI
THE SORTED DISTANCES BETWEEN CUP AND OTHER GENUS TWO MODELS

IN TECHMÜLLER SPACE BASED ON TABLE II. HERE WE ONLY SHOW

MODELS WITH MAXIMUM AND MINIMUM DISTANCES TO POT MODEL.

Distance

0.57 0.76 0.80 1.03 4.30 4.63 5.23 8.31

TABLE VII
THE SORTED DISTANCES BETWEEN WORLD CUP AND OTHER GENUS TWO

MODELS IN TECHMÜLLER SPACE BASED ON TABLE II. HERE WE ONLY

SHOW MODELS WITH MAXIMUM AND MINIMUM DISTANCES TO POT

MODEL.

Distance

0.59 0.65 0.73 1.40 4.53 5.16 6.17 8.61

TABLE VIII
THE SORTED DISTANCES BETWEEN TEAPOT3 AND OTHER GENUS TWO

MODELS IN TECHMÜLLER SPACE BASED ON TABLE II. HERE WE ONLY

SHOW MODELS WITH MAXIMUM AND MINIMUM DISTANCES TO POT

MODEL.

Distance

0.37 0.62 0.96 1.14 5.44 5.67 7.46 8.75

TABLE IX
THE SORTED DISTANCES BETWEEN EIGHT AND OTHER GENUS TWO

MODELS IN TECHMÜLLER SPACE BASED ON TABLE II. HERE WE ONLY

SHOW MODELS WITH MAXIMUM AND MINIMUM DISTANCES TO POT

MODEL.
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Coordinates of Genus Three Models
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Fig. 12. The dimension of Techmüller space coordinates for closed
genus three surfaces is thirteen. Here we visualize the length coordinates
of Techmüller space for part of genus 3 surfaces listed in table X.
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Models three- tetra- vase David sculp- puppet pot pan clip
torus hedron ture

Distance

6.43 5.56 13.19 8.16 7.60 8.21 9.19 9.16 5.95

7 .07 8.36 3.89 5.11 2.16 3.02 3.27 8.50

10.80 8.28 8.82 8.76 9.53 8.73 4.84

7.29 12.17 7.50 7.03 5.83 12.02

8.61 3.35 4.45 3.87 9.81

6.52 6.66 7.49 10.56

1.47 1.97 9.85

1.79 10.50

9.97

TABLE X
DISTANCES BETWEEN GENUS THREE SURFACES IN TECHMÜLLER SPACE.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose a novel approach for surface indexing
and classification based on Teichmüller space theory. Teichmüller
space is a finite dimensional manifold, where each point rep-
resents a conformally equivalent class of surfaces, and a curve
represents a deformation process from one shape to another.

As shape descriptors, Teichmüller coordinates are succinct,
discriminating and intrinsic; invariant under the rigid motions and
scalings, insensitive to resolutions. Furthermore, the method has
solid theoretic foundation, and the computation of Teichmüller
coordinates are practical, stable and efficient.

This work introduces a series of algorithms for computing the
Teichmüller coordinates of surfaces with negative Euler numbers.
The computational algorithms are theoretically sound and prac-
tically simple. The coordinates are algebraically deduced from
lengths of geodesics homotopic to a set of special curves under
the hyperbolic uniformization metric, which is obtained by using
curvature flow method.

We verified our method on a large number of surfaces with
negative Euler number and with various geometries, topologies
and resolutions. We apply for surface indexing and classification
applications. The extensive experiments demonstrate the efficacy,
efficiency and robustness of our method.

Current work focuses on the computation of Teichmüller co-
ordinates and approximates the geodesic distance between two
points in the space by Euclidean distance. In theory, Teichmüller
space has well-defined Riemannian metrics, and the geodesics
between two shapes can be accurately computed. In the future,
we will devise practical algorithms to compute the geodesics in

Teichmüller spaces, and use geodesic distance to measure the
difference between two shapes, to apply for surface deformation
and surface morphing.
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APPENDIX

Algorithm 1 Compute Hyperbolic Uniformization Metric
for each vertex vi do

for each face fi jk adjacent to vertex vi do
compute a radius for vi:

γ jk
i =

lki + li j − l jk

2
,

{li j, l jk, lki: lengths of the edges ei j,e jk,eki on fi jk}
end for
average the radii from the faces adjacent to vi:

γi =
1
m ∑

fi jk∈F
γ jk

i ,

{m: the number of the adjacent faces to vi}
end for
{Associating each vertex with a cone of radius which approx-
imates the original Euclidean metric.}
for each edge ei j do

compute edge weight Φi j(ei j) from γi,γ j using hyperbolic
cosine law:

cosh li j = coshγi coshγ j + sinhγi sinhγ j cosΦi j

end for
{Assigning an edge weight to each edge based on the inter-
section angle of the two cones centered with the two ending
vertices of the edge.}
repeat

for each edge ei j do
compute edge length li j from the current vertices radii γi
and γ j, and the fixed edge weight Φi j using the inverse of
hyperbolic cosine law.

end for
{Computing edge length from current circle packing metric.}
for each face fi jk do

for all face fi jk do
Compute the corner angles θ jk

i from the current edge
lengths using hyperbolic cosine law.

end for
end for
for each vertex vi do

Compute the discrete Gaussian curvature Ki on vi.
if vi is interior vertex then

Ki = 2π − ∑
fi jk∈F

α jk
i , (3)

{α jk
i : corner angle attached to vertex vi in the face fi jk}

else if vi is boundary vertex then

Ki = π − ∑
fi jk∈F

α jk
i , (4)

end if
end for
for each vertex vi do

Update γi of each vertex vi,

γi = γi + ε(K̄i −Ki),

{K̄i: target Gaussian curvature}
end for

until max |K̄i −Ki| < δ
{Optimizing discrete hyperbolic Ricci energy with steepest
descent method.}


